
Fixed-Precision Approximate Continuous Aggregate

Queries in Peer-to-Peer Databases

Farnoush Banaei-Kashani

Computer Science Department

University of Southern California

Los Angeles, CA 90089

Email: banaeika@usc.edu

Abstract-In this paper, we propose an efficient sample-based
approach to answer fixed-precision approximate continuous
aggregate queries in peer-to-peer databases. First, we define
practical semantics to formulate fixed-precision approximate
continuous aggregate queries. Second, we propose "Digest", a
two-tier system for correct and efficient query answering by

sampling. At the top tier, we develop a query evaluation engine
that uses the samples collected from the peer-to-peer database
to continually estimate the running result of the approximate
continuous aggregate query with guaranteed precision. For ef­
ficient query evaluation, we propose an extrapolation algorithm
that predicts the evolution of the running result and adapts the
frequency of the continual sampling occasions accordingly to
avoid redundant samples. We also introduce a repeated sampling
algorithm that draws on the correlation between the samples at
successive sampling occasions and exploits linear regression to
minimize the number of the samples derived at each occasion.
At the bottom tier, we introduce a distributed sampling algorithm
for random sampling (uniform and nonuniform) from peer­
to-peer databases with arbitrary network topology and tuple
distribution. Our sampling algorithm is based on the Metropolis
Markov Chain Monte Carlo method that guarantees randomness
of the sample with arbitrary small variation difference with the
desired distribution, while it is comparable to optimal sampling
in sampling cost/time. We evaluate the efficiency of Digest via
simulation using real data.

I. INTRODUCTION

A peer-to-peer database is a fragmented database which

is distributed among the nodes of a peer-to-peer network,

with both the data and the network dynamically changing.

In this paper, we focus on answering continuous aggregate

queries in peer-to-peer databases, where the underlying peer­

to-peer network of the database is inherently unstructured

(as opposed to DHT-based structured peer-to-peer networks).

Continuous queries [20] allow users to obtain new results

from the database without having to issue the same query

repeatedly. Continuous queries are especially useful with peer­

to-peer databases which inherently comprise of large amounts

of frequently changing data. For example, in a weather forecast

system with thousands of interconnected stations the system

administrator can issue a continuous aggregate query of the

form:
"Over next 24 hours, notifY me whenever the av­

erage temperature of the area changes more than

2 oF."

Cyrus Shahabi

Computer Science Department

University of Southern California

Los Angeles, CA 90089

Email: shahabi@usc.edu

Or in a peer-to-peer computing system with distributed re­

sources, users can issue the following query to determine when

there is enough memory space available to schedule their tasks:
"NotifY me whenever the total amount of available

memory is more than 4GB."

However, considering the large size and the high rate of change

in peer-to-peer databases, exact continuous aggregate queries

are inevitably inefficient, if not infeasible. Exact answers are

rarely necessary, and even if needed, a consistent approxima­

tion can converge to the exact result with arbitrary precision.

Therefore, in this paper we consider approximate continuous

aggregate queries.

Previous approaches for approximate query answering are

not applicable to peer-to-peer databases. The model based

approaches [6] are parameterized, where with peer-to-peer

databases parameters are unknown and variable. The histogram

based [11] and the precomputed-sample based [13] data reduc­

tion approaches are not appropriate either. Although dynam­

ically updated, with the high rate of change in peer-to-peer

databases maintaining histograms and precomputed samples

is intolerably costly. The large set of techniques proposed for

approximate continuous aggregate query over data streams [2]

naturally assume the data are collected centrally and are being

received in sequence, where none of these assumptions hold

for the data in peer-to-peer databases. Finally, the current on­

the-fly sampling approaches, mostly developed for query size

estimation [14], are limited to snapshot (or one-time) aggregate

queries.

In this paper, we propose an approach for answering fixed­

precision approximate continuous aggregate queries by on-the­

fly sampling from peer-to-peer databases. Our query answer­

ing system, called Digest, evaluates approximate continuous

aggregate queries by continual execution of the approximate

snapshot aggregate queries, where each snapshot query is

evaluated by sampling the database. The snapshot queries

probe the database and accordingly the running result of the

continuous query is updated. As we elaborate below, with

continuous queries the main issue transcends how to execute

each snapshot query, but how to execute snapshot queries

continually such that while the fixed precision requirements

of the continuous query are guaranteed, the query is answered

efficiently by deriving minimum number of samples.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.2

With fixed-precision approximate continuous aggregate

queries, the required (or fixed) precision of the approximate

result is defined by the user in terms of 1) the resolution
of the result in capturing the changes of the actual rurming

aggregate value (e.g., the result reflects the changes of the

average temperature iff a change is more than 2 OF), and 2) the

confidence (or accuracy) of the result at each time as compared

to the exact aggregate value at that time. Using continual

snapshot queries to answer such queries, the resolution of the

result is determined by the frequency of the snapshots, and the

confidence of the result depends on the number of the samples

derived to approximate the result of each snapshot query.

Therefore, for efficient evaluation of the continuous queries

while guaranteeing the fixed precision, both the frequency of

the snapshot queries and the number of the samples derived at

each snapshot query must be minimized while the resolution

requirement and the confidence requirement of the query are

still satisfied, respectively. Digest provides solutions for both

of these optimization problems.

Digest is implemented as a two-tier system, with a sampling

operator at the bottom tier and a query evaluation engine at the

top tier. The sampling operator implements a distributed sam­

pling algorithm to derive arbitrary random samples from the

peer-to-peer databases (with arbitrary topology and tuple dis­

tribution). The query engine uses the samples collected from

the database to evaluate the snapshot queries. To minimize

the frequency (or equivalently, the number) of the snapshot

queries, the query engine exploits an extrapolation algorithm
that predicts the evolution of the running aggregate value

based on its previous behavior and adapts the frequency of

the continual snapshot queries accordingly. With this approach,

the more varying the aggregate value, the more becomes the

frequency of the snapshot queries in order to maintain the

resolution of the result, and when the aggregate value is steady

the frequency of the snapshot queries decreases accordingly to

avoid redundant sampling.

On the other hand, to minimize the number of the samples

derived at each snapshot query, the query engine employs

a repeated sampling algorithm. Repeat sampling draws on

the observation that across successive snapshot queries the

values of the database tuples are expected to be autocorrelated

and, therefore, exploiting the regression of the value of a

sampled tuple at the current query on that of the previous

query can improve the accuracy of the current estimate.

Repeated sampling uses regression estimation to achieve the

required confidence using fewer samples as compared with

the straightforward independent sampling which ignores the

correlation between the snapshots.

We study both the extrapolation algorithm and the repeated

sampling algorithm analytically. Besides, we demonstrate their

effectiveness via simulation using real data. We show that the

combined effect of our extrapolation and repeated sampling

algorithms can improve the efficiency of the query evaluation

up to 320% as compared with the straightforward continual

query execution with fixed frequency and independent sam­

pling.

The remainder of this paper is organized as follows. In

Section II, we define the semantics of the fixed-precision

approximate continuous aggregate queries. Section III presents

an overview of the Digest architecture. In Section IV, we

describe the query evaluation component of Digest, and follow

by explaining the distributed sampling component in Section

V. Section VI presents the results of our empirical study on

Digest. In Section VII, we briefly discuss the remaining related

work. Finally, Section VIII concludes the paper and discusses

the future directions of this research.

II. ApPROXIMATE CONTINUOUS QUERY

We model an unstructured peer-to-peer network as an

undirected graph G(V, E) with arbitrary topology. The set of

vertices V = {VI, V2, ... , Vr} represent the set of the network

nodes, and the set of edges E = {el' e2, ... , eq } represent

the set of the network links, where ei = (Vj,Vk) is a link

between Vj and Vk. As nodes autonomously join and leave

the network, the member-set of V, and accordingly, that of

E vary in time. Consequently, the set sizes rand q are also

variable and unknown a priori. We assume the rate of the

changes in G is relatively low as compared to the sampling

time (i.e., the time required to draw a sample from the peer-to­

peer database), such that the network can be assumed almost

static during each sampling occasion (although it may change

significantly between successive sampling occasions).

For a peer-to-peer database stored in such an unstructured

peer-to-peer network, without loss of generality we assume

a relational model. Suppose the database consists of a single

relation R = {UI' U2, ... , UN}. R (a multiset) is horizontally

partitioned and each disjoint subset of its tuples is stored at a

separate node. The number of tuples stored at the node Vi is

denoted by mVi' The member-set of R also varies in time; the

changes are either due to the changes of V, as nodes with new

content join the network (as if inserting tuples) and existing

nodes leave and remove their content (as if deleting tuples), or

as the existing nodes autonomously modify their local content

by insertion, update, and deletion.

With such a model for peer-to-peer databases, we define

our basic query model for the continuous aggregate queries as

follows. Consider the queries of the form:

SELECT op(expression) FROM R

where op is one of the aggregate operations AVG, COUNT, or

SUM, and expression is an arithmetic expression involving

the attributes of R. Suppose Q is an instance of such queries.

Assuming a discrete-time model (i.e., the time is modelled as a

discrete quantity with some fixed unit), the snapshot aggregate

query Qt is the query Q evaluated at time t. Correspondingly,

the continuous aggregate query QC is the query Q evaluated

continuously (i.e., repeated successively without intermission)

for all t ?: to, where to is the arrival time of QC. The result

of QC is X[t], a discrete-time function where for all t ?: to,
X[t] is the aggregate-value result of the snapshot query Qt.

For instance, in a peer-to-peer computing system each node

(a node consists of one or more computing units) keeps

to = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Fig. I. Fixed-Precision Approximate Continuous Aggregate Query

a current record of its available resources by maintaining
tuples of the form Ui = (cpu, memory, storage, bandwidth),
one tuple for each local computing unit. Considering
R(cpu, memory, storage, bandwidth) as a single-relation
peer-to-peer database representing the resources available in
such a peer-to-peer computing system, the following continu­
ous query returns X, the total amount of the space currently
available throughout the system, as a function of time:

SELECT SUM(memory + storage) FROM R

With a fixed-precision approximate version of the exact
continuous query QC defined above, the exact result X[t] is
approximated by an estimate X[t] with guaranteed precision
(see Figure 1). Our model for approximate queries includes
three extra user-defined parameters, J, E, and p, to specify
the desired precision of the estimation. With J, user specifies
the resolution of X[t] in capturing the incremental changes in
X[t] as it evolves in time. To answer an exact query, X[t] is
updated (i.e., re-evaluated by snapshot query) at every time
instant t, regardless of the amount of change in X since the
last update at t -1. However, with approximate queries smaller
changes below some threshold may be insignificant to the
user/application and, the�fore, not required to be reflected
in the estimated result X [t]. The parameter J defines this
application-specific thresh�ld. Suppose tUi is the most recent
time at which the result X[t] is updated (initially, tuo = to).
For t > tu" the approximate query is not required to re-update
the result until t = tU'+l' where tU'+l is the earliest time at
which �X 2: J (by definition �X = IX[tUi+l]-X[tuJI). For
all times t in the interval (tu" tU'+l)' X[t] can be est�ated
without update/re-evaluation, e.g., by "holding" (i.e., X[t] =

X[tuJ) or interpolation. With this semantic for approximation,
the smaller changes of X during the intervals (tu" tU'+l) for
i = 0, 1,2,3, . . . are filtered out of the estimated result. Back
to our running example mentioned above, changes on the order
of several megabytes in the total space may not be noteworthy
for a distributed task scheduling application and/or may be
too costly to monitor. In such a case, e.g., J = 1GB might
be an effective choice to formulate an approximate query that
is both useful and practical. It is important to note that in
addition to allowing for optimization of the query efficiency, J

provides useful functionality to the user. Consider each update
of the running query result raises an alarm for the user. With J,

user can avoid false alarms. For example, consider a scenario
where a weather reporter does not want to report the average
temperature unless the change in the average is more than
J = 5°F.

Next, the parameter E indica�s the maximum tolerable
absolute error in the estimate X[t] at each time tu;. The
approximate query should guarantee IX[tuJ - X[tuJ I ::; E

for all i. The interval [X[tuJ - E, X[tuJ + E] is termed
the confidence interval of the estimation at time tUi' with
X[tuJ - E and X[tuJ + E as the lower and upper confidence
limits, respectively. The provided guarantee is probabilistic and
with the parameter p user specifies the desired confidence.Jevel
of the guarantee, i.e., the probability that the estimation X[tuJ
is actually confined within the confidence interval. The user­
defined parameters E and p t�gether determine the required
confidence of the estimate X[tuJ Note that, approximate
query generalizes exact query; an exact query is an approxi­
mate query with J = 0, E = 0, and p = 1.

To answer an exact continuous aggregate query, snapshot
queries must be executed continuously, each evaluated for an
exact result; hence, termed continuous-exact snapshot queries.
Alternatively, an approximate continuous aggregate query can
be answered by executing the more flexible and general contin­
ual-approximate snapshot queries. With continual-approximate
queries, the less frequent the snapshot queries and the less
accurate the approximation by each snapshot query, the less
the cost of evaluating the continuous aggregate query, but also
the less the precision (i.e., the resolution and the confidence,
respectively) of the result. That allows a trade-off between the
precision and the cost of obtaining the result, such that while
the fixed-precision approximate query is correctly satisfied, the
cost of evaluating the query can be optimized for efficiency. An
extreme case of the trade-off is with continuous-exact snapshot
queries to answer exact continuous aggregate queries. With
continuous-exact snapshot queries, both the frequency of the
snapshot queries and the accuracy of the approximation by
each snapshot query are maximal, such that Q1e estimated
result of the continuous query is exact (i.e., X[t] = X[t])
while it costs the most to evaluate. Next, we present Digest, a
query answering system that executes continual-approximate
snapshot queries by sampling the database, and optimizes the
frequency and accuracy of the snapshot queries to answer
approximate continuous aggregate queries both correctly (with
guaranteed precision) and efficiently.

III. DIGEST: OVERVIEW

Figure 2 depicts the two-tier architecture of Digest. Each
node of the peer-to-peer database operates its own individual
instance of Digest to answer the continuous queries received
from the local user. As discussed in Section I, the query
evaluation engine at the top tier exploits an extrapolation
algorithm (see Section IV-A on continual querying) and a
repeated sampling algorithm (see Section IV-B on approximate
querying) to optimize the number of the samples derived to

Query

Sample·based Query
Evaluation Engine

- -------� ------ -

Random Sampling
Operator

.
Sam les

Peer·to·Peer Database

Top
Tier

Bottom
Tier

Fig. 2. Two-Tier Architecture of Digest

answer continuous aggregate queries. In addition to the query

evaluation engine, Digest benefits from a sampling operator

at the bottom tier that (in collaboration with other instances

of Digest distributed throughout the peer-to-peer network) effi­

ciently derives random samples from the peer-to-peer database.

Here, we describe the interface of the sampling operator; the

distributed sampling algorithm developed to implement the

sampling operator itself is presented in Section V .

The sampling operator of Digest implements a distributed

sampling algorithm to draw random samples (sample nodes

and correspondingly sample tuples) from the peer-to-peer

databases with arbitrary network topology and tuple distri­

bution. The interface of the sampling operator is defined

as follows. First, consider a generic weight function w that

assigns a weight Wv to each node v of the database. For

instance, WI = {\Iv E V I Wv = I} is a uniform weight

function, and W2 = {\Iv E V I Wv = mv} is a (possibly)

nonunifonn weight function with which each node is weighted

according to the number of the tuples mv stored at the node.

We assume that with w the weight of each node is a function of

the local properties of the node (such as the content-size mv of

the node, the degree of connectivity of the node, the reputation

of the node, the accuracy and relevance of the tuples stored

at the node, etc.), and the assigned weight is not necessarily

normalized. Given such a weight function w as input, once

invoked the sampling operator S randomly derives a sample

node v from V such that Pv = wv/ LUEV Wu, where Pv
is the probability of sampling the node v. In other words,

the distribution of the sampling probability among the nodes

is proportional to the distribution of the weight according

to the desired (uniform or nonuniform) weight function w.

As we show in Section V, with our distributed sampling

algorithm each node only needs to know the weights of its

local neighbors; hence, no need to acquire global infonnation.

While the sampling operator S proposed in this paper can

be used to draw sample nodes based on any generic weight

function, as we discuss in Section IV-Bl with Digest we em­

ploy S to draw uniformly random sample tuples from R using

the weight function W= {\Iv E V I Wv = mv}, where mv is

the number of tuples stored at each node. For this purpose, first

S is invoked with the weight function w to derive a sample

node with a sampling probability proportional to its content­

size. Thereafter, the content of the sampled node is uniformly

sampled to derive a sample tuple. The combination of the two

samplings, i.e., the distributed node sampling via S and the

local tuple sampling from the sampled node, uniquely specifies

the random distribution of the sampled tuple in the entire R,

which in this case is uniform as desired. This sampling scheme

is termed two-stage sampling [7]. Instead, one can use cluster

sampling with which all tuples of the sampled node are drawn

as a batch sample. However, since with most P2P applications

the contents of a node are highly correlated (high intra-cluster

and low inter-cluster correlation), cluster sampling results in

imprecise estimations with these applications. Therefore, with

Digest we prefer two-stage sampling to cluster sampling.

With the above two-stage sampling scheme, sampling the

tuples stored at the sampled node is perfonned locally; hence,

it is standard and inexpensive. The sampling operator S, which

implements the more complicated and costly distributed node

sampling, ensures suboptimal performance (comparable to that

of the optimal sampling) in terms of communication cost

and sampling time, while guaranteeing randomness of the

derived sample node with arbitrary small error (i.e., variation

difference) as compared to the desired sampling probability

distribution (see Section V for details).

IV. SAMPLE-BASED QUERY EVALUATION

As mentioned in Section I, to evaluate an approximate

continuous query one needs to provide solution for two sub­

problems: 1) continual querying, i.e., to determine when to

execute the next snapshot query, and 2) approximate querying,

i.e., to minimize the number of samples required to answer

each snapshot query. An integrated technique that incorporates

solutions for the two sub-problems simultaneously is ideal but

complicated. With Digest, we address the two sub-problems

separately. First, at each occasion Digest uses an extrapolation

algorithm to decide when to execute the next snapshot query

(Section IV-A). Thereafter, Digest uses a repeated sampling

algorithm to evaluate the snapshot query with the minimum

number of samples required to satisfy the confidence require­

ments of the query (Section IV-B). This process is repeated

while the continuous query is running. Below, we describe

these algorithms.

A. Continual Querying

Suppose the most recent snapshot query is executed at

time tUi = k (see Figure 3). For continual querying, we

should predict the next update time tUi+1 such that IX[tUi+1]­
X [tuJ I ?: J. To predict tUi+ l' in brief our approach is to fit

a curve to the previously observed values of X to predict its

values in the near future with guaranteed error bounds. If the

ratio of the change/variation of X [t] in time is unbounded, the

future values of X are unpredictable and, therefore, inevitably

continual querying reduces to continuous querying to ensure

the required resolution. However, the aggregate value X[t] is

expected to be a smooth function of time with considerable

autocorrelation in short time intervals that bounds its variation

(e.g., consider the variation of the total amount of the available

space in a peer-to-peer computing system). Hereafter, by con­

vention we model such a smooth function X[t] with bounded

;
IUi_2: IUi_1

k-8 k-7 -6 k-5 k-4 k 3 k-2 k-l

Fig. 3. Computing tUi+1 by Polynomial Extrapolation: at t = tui+l' we
have I�Pn[tui+lll + IRn[tui+1ll > <5

variation as an analytic function of time, i.e., we assume X[t]
possesses derivatives of all orders and agrees with its Taylor
series in the neighborhood of every point.

Assuming that X[t] is an analytic function, our continual
querying algorithm predicts the evolution of the analytic func­
tion X[t] by polynomial extrapolation using the Taylor series
expansion. Based on the Taylor's theorem, at the neighborhood
of tUi' X [t] can be approximated by a degree-n Taylor
polynomial Pn[t]:

[] [] ()
'

[]
(t - tuJ 2 "

[] Pn t = X tUi + t - tUi X tUi +
2!

X tUi

(t - t)n
+ ... + n!

Ui X(n) [tuJ (1)

The upper bound error for this approximation of X[t] with the
Taylor polynomial is the Lagrange remainder Rn[t], such that
IX[t]- Pn[tll < IRn [t]l, Wh�W+l

R [t] =

(t - tUi) x(n+l) [Ct] (2) n (n+1)!
with Ct E [tUil t] a constant minimizing x(n+l) [t] in this
interval.

To find tUi+l' first Pn [t] is computed by fitting a degree-n
polynomial to n+1 previous values of X[t] at t = (k-n), t =

(k - n + 1), ... , and t = k. We use the well-known Levenberg­
Marquardt Method (based on non-linear least squares fitting
via trust regions) for fitting. This method is known for robust
estimation of the Taylor polynomial. Note that the exact values
of X[t] are unknown unless the snapshot queries are exact.
Instead of the exact values, assuming sufficiently accurate
approximate snapshot results, we compute Pn[t] using n + 1
previous values of X[tl at t = tUi_n, t = tUi_n+l' ... , and

t = tUi (n = 3 in Figure 3). Next, having Pn[t] as an
approximation with bounded error for X[t], tUi+1 is derived
by extrapolation as the minimum t satisfying:

IPn[t]- Pn[tuJI + IRn[tll > 0 (3)
Note that the upper bound error IRn[t]1 of the polynomial

approximation is a decreasing function of n. Therefore, the
higher the degree of the polynomial approximation, the tighter
is the error bound and, thus, the predicted update time tUi+1
is less conservative, which makes the continual querying more
efficient. Also, while t < tUn' a degree-n polynomial approx­
imation is not applicable. During the bootstrapping period,
i.e., the interval [tUG' tUn)' our continual querying algorithm
implements continuous querying instead of continual querying.

B. Approximate Querying

1) Independent Sampling: To provide the background for
explaining the repeated sampling algorithm, in this section we
briefly review the query evaluation process for an approxi­
mate AVG query based on the classical independent sampling
algorithm.

With the independent sampling algorithm, to answer an AVG
snapshot query Ot

SELECT AVG(expression) FROM R

n sample tuples Ul, U2, ... , un are derived from R, uniformly
random and with replacement. The time interval (beginning at

t) during which the database is probed to draw samples for
evaluating Ot is called the sampling occasion for Ot. During
the sampling occasion, each sample is drawn by first calling
the sampling operator S with the weight function w = {\Iv E
V I Wv = mv} to derive a sample node with a sampling
probability proportional to its content-size. Next, the content
of the sampled node is uniformly sampled to derive a sample
tuple. Suppose the value of the expression when applied to
the sample tuple Ui is denoted by Yi. Based on the derived
samples, the result (X =) Y = liN 2::::1 Yi of the AVG
query is estimated by the unbiased and consistent estimator:

� n
Y = 1 In L Yi (4)

The number of the same.Iesirl is computed such that with
probability p the estimate Y is within the confidence interval

[Y - E, Y + Ej. One can use the standard central limit theorem
to compute n. Let cr2 = liN 2::::1 (Yi - y)2 be 0e true
variance of Yi in R, and

&
2 = lin 2::�=1 (Yi - y)2 the

estimated variance. For sufficiently large n, it f�lows from the
central limit theorem that the random variable Y has a normal
distribution with mean Y and variance�cr2 In, or equivalently,
the standardized random variable Vn(Y - Y)lcr has a normal
distribution with mean 0 and variance 1. Therefore:

Pr{IY - YI ::; E} Pr { I Vn(Y
cr
- Y)

I
::; EVn

cr
n }

(5)

where <I> is the standard cumulative normal distribution func­
tion. Let lp be the (p + 1) 12 quantile of this distribution (i.e.,
<I>(lp) = (p + 1)/2). To derive n, we set the rightmost term in
Equation 5 equal to p and solve the equation for n:

n =

(
&
�
p r (6)

2) Repeated Sampling: With independent sampling, each
snapshot query is answered independently, disregarding the
results and the samples derived for the previous queries. How­
ever, across successive queries the values of the database tuples
are expected to be autocorrelated and, therefore, exploiting the
regression of the value of a sampled tuple at the current sam­
pling occasion on that at the previous occasion can improve the
accuracy of the current estimate. Alternatively, by regression
estimation one can achieve the same accuracy/confidence

using fewer samples at each sampling occasion; hence, more
efficient query evaluation. Repeated sampling relies on this
observation to improve the efficiency of independent sampling
while still satisfying the confidence requirement of the query.
Below, we explain the repeated sampling algorithm in details
for evaluation of the AVG queries. Other types of aggregate
queries are evaluated similarly. We begin with regression
estimation for the evaluation of the 2nd snapshot query (i.e.,
the special bootstrapping snapshot query) of a continuous
aggregate query. Later, we extend the analysis for evaluation
of the general kth snapshot query.

a) Evaluating 2nd Snapshot Query: Suppose the sample­
set is of size n in both the first and the second sampling
occasions of a continuous A VG query. Let Uik denote the
state of the sampled tuple Ui at occasion k (i.e., the current
attribute-values of the tuple Ui at occasion k), and let Yik
denote the corresponding value of Uik when evaluated by
the expression in the AVG query at occasion k. At the first
occasion, there is no prior information to utilize. Therefore,
all n samples Ul, U2, ... , Un are new samples derived from the
database and the result of the first snapshot query is simply
estimated based on the independent sampling algorithm using
uu, U21, ... , Un1 as the samples. At the second occasion, each
sampled tuple Ui is either replaced by a new sample Ui' from
the database (with the current state Ui'2), or retained and re­
evaluated to its current state Ui2. Thus, the sample-set at the
second occasion consists of n samples U1, ... , ug, ug', ... , Un',
where 9 is the number of retained samples. A new sample
Ui' must be derived using the sampling operator S and incurs
communication overhead to locate, whereas a retained sample
Ui is already located and is only retrieved to be re-evaluated
(to refresh Uil to Ui2) after a possible state update in between
the two sampling occasions. If a sample tuple is deleted or the
node storing the tuple leaves the network, the tuple is always
replaced. Repeated sampling uses the current state of the new
samples, i.e., Ug'2, ... , Un'2, for regular estimation as in the
first occasion, while utilizing the current state of the retained
samples, i.e., U12, ... , Ug2, for regression estimation (where Yi2
regresses on Yi1 as the auxiliary regression variate). The final
estimate of the repeated sampling algorithm for the result of
the second snapshot query is a combined estimate, a weighted
sum of the regular estimate and the regression estimate from
the new portion and the retained portion of the sample-set,
respectively.

With the above estimation scheme, an optimal sample
replacement policy is required to determine the proportion
of the new and retained portions of the sample-set such that
the combined estimate of the result is optimal (i.e., the most
accurate estimate with minimum variance). With two extreme
cases of the replacement policy, the samples are either all
replaced or all retained. As we show below, none of these
policies are optimal.

With repeated sampling we establish the optimal replace­
ment policy as follows. Suppose among n samples at the kth
sampling occasion (here k = 2), 9 samples are retained from
the previous occasion and the rest f samples ('1' for fresh)

Estimator

Y2f = fhf

Variance

&"(l-p") + �2 &2 _ 1
9 P n - W2g

TABLE I
REGULAR AND REGRESSION ESTIMATORS AT 2nd OCCASION

are new samples. Let Ykf' Ykg' and Yk denote the average
value of the samples in the new portion, the retained portion,
and the entire sample-set (both portions together) at the kth
sampling occasion, respectively. Correspondingly, the values
of the regular estimate, regression estimate, and the combined
estimate for � the �esult Y k � of the kth snapshot query are

denoted by Y kf' �kg, and r k, respectively.

The estimators Y 2f and Y 2g and their corresponding vari­
ances are defined in Table I. O'§ = lin L�=l (Yi2 - Y2)2 is an
estimate of the true variance O"§ = lINL�1(Yi2 - y2)2
of Yi in R at the secolld occasion, and we have 0'2 ;::::: 0'
(= 0'1). The estimator Y 2f is simply the average value of
the samples Y2f in the

�
new portion of the sample-set. For

the regression estimate Y 2g, we consider a linear regression
with the regression coefficient b = �. The parameter b is 0",
an estimate of the true regression coefficient B = .<::y., where 0",
0"1,2 is the covariance of Yi1 and Yi2 in the entire RJ.. and 0'1,2
is its estimate in the sample-set. Similarly, p = ;:" :-.2 is an (71 (12
estimate of the true correlation coefficient p = 0"1,2 . _ (71(72

The combined estimate 1::.2 is deriyed as the sum of the

two independent estimates Y 2f and Y 2g weighted inversely
by their variance:

(7)

where a =
w

w�fv . By the least squares theory the variance 2J 2g
of Y 2 is:

- 1 var(Y2) =
W W 2f + 2g

which from Table I works out as:
.:::::. 0'2(n _ gp2) var(Y 2) = 2 2� n - 9 P

(8)

The minimum variance varmin (Y 2) is calculated from Equa­
tion 8 by derivation with respect to g. This gives the optimal
partitioning of the sample-set as:

n n JI=P2
gopt=

�
foPt=

� 1 + V 1 - p- 1 + V 1 - p-
(9)

and with optimal partitioning, the minimum variance is derived
as:

(10)

Note that if 9 = 0 (all samples replaced, like independent
sampling) or f = 0 (all samples retained), the estimate
variance (see Equation 8) is equal to that of the independent
sampling, i.e., 0'2 In (;::::: 0"2 In). However, with optimal parti­
tioning (g = gopt) repeated sampling improves the variance
with the ratio:

f3 = (&2/n) - var�in(Y2) 1 - J1=P2

varmin(Y 2) 1 + VI - (J2
(11)

Based on Equation 11, depending on the correlation 1P1 (:S 1)
between values of the tuples at successive occasions, repeated
sampling can improve the accuracy of the estimation over that
of the independent sampling by up to 100% (with maximum
correlation 1P1 = 1). Also, as the correlation 1P1 increases, with
optimal partitioning a larger portion of the samples are retained
because regression estimation is more effective. However,
unless the correlation is maximum, repeated sampling replaces
a considerable portion of the samples to account for the tuple
insertions, deletions, and pathological updates.

b) Evaluating kth Snapshot Query: Query evaluation at
the kth occasion is a generalization of that of the second
occasion. Details are included in the extended version of this
paper.

V. RANDOM SAMPLING OPERATOR

Given a weight function w = {\Iv E V I wv} as input,
the sampling operator S should randomly derive a sample
node v from V with the sampling probability distribution
Pv = wv/ LUEV Wu· We implement our sampling operator
based on a distributed sampling algorithm inspired by the
Markov Chain Monte Carlo (MCMC) methods for sampling
from a desired probability distribution. To sample from a
distribution, first an MCMC method constructs a Markov chain
that has the desired distribution as its stationary distribution.
With such a Markov chain, starting a traversal of the chain
from any initial state, under certain conditions the distribution
of the covered states of the chain converges to the stationary
distribution of the chain after a sufficiently large number of
steps. Once converged, the current state is returned as a sample
from the desired distribution.

With our distributed sampling algorithm, we consider a
peer-to-peer network as a Markov chain, with nodes as the
states of the chain, and links as the transitions between the
states. Also, our algorithm uses random-walking sampling
agents that are forwarded from node to node to emulate the
state transition process. To sample the peer-to-peer database,
the sampling operator at a node initiates a random walk
(a sampling agent). If the forwarding probabilities of the
random walk (corresponding to the transition probabilities of
the constructed Markov chain) are properly assigned such
that the stationary distribution of the walk is equivalent to
the desired sampling distribution Pv, after a sufficiently large
number of steps the distribution of the nodes covered by the
random walk converges to Pv and the current node is returned
to the originating node as the sampled node. In the rest of
this section, first we describe how our distributed sampling
algorithm employs the Metropolis Markov Chain construction
algorithm to assign the forwarding probabilities of the random
walk for the desired stationary distribution Pv' Second, we
present our result that determines the number of steps required
to converge to the desired distribution with arbitrary difference.

A. Forwarding Probabilities

Let the undirected connected graph G(V, E) model a peer­
to-peer network with arbitrary topology. A random walk that
starts at a node Vo (the originating node), arrives at a node
Vt at time t and with certain forwarding probability moves to
a neighbor node VHl at time t + 1. Suppose 7rt denotes the
distribution of the node Vt such that 7rt(i) =

Pr(vt = i), for
all i E V. Let P = (Pij), i, j E V, denote the forwarding
matrix of the random walk, where Pij is the probability that
the random walk moves from node i to node j. Pij =

0 if i
and j are not adjacent. By definition, we have 7rHl = 7rtP =

7ropH 1, where 7ro is the distribution of the originating node
Vo. The following existence result is classic [17]:

Theorem i: If P is irreducible (i.e., any two nodes are
mutually reachable by random walk) and P is aperiodic (which
will be if G is non-bipartite), then 7rt converges to the unique
stationary distribution 7r such that 7r P = 7r independent of the
initial distribution 7ro.

The Metropolis algorithm [16] is designed to assign the for­
warding probabilities Pij such that the stationary distribution 7r
corresponds to a desired distribution (uniform or nonuniform)
such as Pv:

Theorem 2: Consider the graph G(V, E) and let di denote
the degree of the node i in G. For each neighbor j of i, the
forwarding probability Pij' i -I- j, is defined as follows:

{ �(i)
Pij =

�U
)

(�:)

if l!.i < Pi
di - dj

if l!.i > Pj
di dj

(12)

and Pii = 1 - LjEneighbors(i) Pij. Then, with the forwarding
matrix P, Pv is the unique stationary distribution of the random
walk on G.
The proof for Theorem 2 is complicated [16]. Intuitively, the
Metropolis algorithm modifies a regular random walk with
uniform forwarding probability to a biased random walk with
forwarding probabilities that depend on the desired sampling
probability of the neighbor nodes. The Metropolis forwarding
matrix P is irreducible [9]. Also, the laziness factor 1/2 adds
a virtual self-loop to each node of the G, which makes G non­
bipartite and P aperiodic. Thus, convergence of the Metropolis
follows from Theorem 1.

Note that using the Metropolis algorithm, S implements
a fully distributed sampling process with which it does
not require to know/compute the global normalization factor
LUEV Wu (to calculate Pv = wv/ LUEV wu) in order to
assign the forwarding probabilities Pij. Each node i deter­
mines its local forwarding probabilities Pij (j is a neighbor
of i) individually and only based on the local information.
According to Equation 12, to determine Pij' i only needs
to know the ratio Wj/Wi (= Pj/Pi), which it computes by
obtaining the weight Wj from its neighbor j.

B. Convergence Time

To determine how rapidly 7rt converges to Pv, first consider
the following definitions and the subsequent classic result
(Theorem 3):

Definition 1: The total-variance difference (or simply vari­

ance difference) between two distributions 7r t and Pv is defined

as II7rt,Pvll = � maxvo 2::i l7rt(i) - Pil.
The variance difference is a measure to quantify the total

difference between two probability distributions, and we have

o :s; II7rt, Pv II :s; 1.
Definition 2: For 1 > 0, the mixing time is defined as

T h) = min{tIVt' ?: t, II7rt',Pvll :s; 1}·
The mixing time T h) is the time (i.e., number of time steps) it

takes for 7rt to converge to Pv to within the difference 1, such

that II7rt, Pv II :s; T The following theorem bounds the mixing

time when the random walk is on a graph G with arbitrary

topology [lO]:

Theorem 3: Let PV"'in mini Pi , then T h) <

ep1log((Pvmin1)-1), where ep is the eigengap of the for­
warding matrix P.

The eigengap of P is defined as ep = 1 - 1'\21, where '\2
is the second eigenvalue of the matrix. Thus, the larger the

eigengap, the more rapidly the random walk converges to the

desired distribution.

However, computing the exact eigengap of P for peer­

to-peer networks with large size and dynamic topology is

difficult, if not infeasible. Instead, one can utilize the geometric

bounding approach [10] to derive a bound for the eigengap.

Considering power-law graph as a generic and realistic model

for the topology of the peer-to-peer networks [19], we use

the geometric bounding approach to derive the mixing time

(or convergence time) of the random walk on a graph G with

power-law topology:

Theorem 4: Suppose G is a random graph with the node

degree distribution Pk ex: k-cx, where 2 < 0: < 3. Then, T h)
is of order O(N-CX log1-1log4 N), where N is size of the

network.

Proof Omitted. •

Considering this result, the mixing time, i.e., the sampling

cost/time of our sampling operator S, is suboptimal, com­

parable to the optimal mixing time which is achieved by a

centralized algorithm [5].

VI. EXPERI MENTS

We conducted a set of experiments via simulation using real

data to study the performance of Digest. We implemented a

multi-threaded simulator in C++ and used two Enterprise 250
Sun servers to perform these experiments.

A. Experimental Methodology
To study Digest empirically, we used two sets of real

data: the TEMPERATURE dataset and the MEMORY dataset.

The TEMPERATURE data are collected from a set of in­

terconnected weather forecast stations from JPLINASA, and

the MEMORY data are collected from the nodes of the

SETI@HOME peer-to-peer computing system. Each weather

station/node collects recent readings from one or more tem­

perature sensor units, and each node at SETI@HOME may

include one or more computing units (multiple units in the

case of the nodes that are clusters). Each dataset consists

of timestamped tuples with a single attribute (temperature

and available memory space, respectively), where each tuple

records the current value of the attribute at a particular

time at a particular unit (sensor unit and computing unit,

respectively). Whenever the value of the attribute is modified

(i.e., autonomously updated, or inserted/deleted due to the

node or unit join/leave), a new tuple is appended to the dataset

to record the modification. Tuples are collected from a large

set of nodes over a specific duration. The nodes and units of

the weather forecast network are almost stable whereas those

of SETI@HOME join and leave the network more frequently.

Table II lists the dataset parameters.

We simulated the weather forecast network and the peer­

to-peer computing network with two networks of the corre­

spondingly same size, with mesh and power-law topologies,

respectively. Each node of the network represents a node

of the real network and emulates the updates of the local
attributes according to the most recent recorded values in the

corresponding dataset. The nodes of the two networks are

Digest enabled. To perform the experiments, we considered

a continuous AVG query of the form:

SELECT AVG(a) FROM R

where a is the recorded attribute. The duration of the continu­

ous query is equal to the duration of recording for each dataset

(see Table II). We picked random nodes from the networks to

issue the queries and combined the results of the queries to

derive a statistically reliable estimation of the result, wherever

applicable.

As an aside, we should mention that we used the sampling

operator S in batch mode, i.e., to derive n samples we

invoke S for n times simultaneously, which initiates n random

walks with overlapping convergence time, to expedite the

experiments. Also, once converged for the first time, to derive

successive samples we continue the random walk from where

it stops. In this case, the time to re-converge is reduced from

the mixing time to the reset time, which is much shorter than

the mixing time of the random walk.

B. Experimental Results
We studied the efficiency of Digest by considering the im­

provement due to the extrapolation algorithm and the repeated

sampling algorithm, individually and combined.

1) Effect of the Extrapolation Algorithm: Figure 4-a il­

lustrates the results of our experiment with the extrapolation

algorithm. For this experiment, we report our results for the

TEMPERATURE dataset, focusing on different variations of

I TEMPERATURE I MEMORY I
Number of Tuples 8640000
Number of Units 8000

Number of Nodes 530
Duration of Recording 18 months
Frequency of Updates Twice per day

p 0.89
"8 8

TABLE II
PA RAMETERS OF THE DATASETS

95445
1000
820

I hour
Continuous

0.68
10

'"
1200 1

.� .---
� 1000
.5
:g 800
'"
i 600
c IJ)
'0 400

i 200
" z

� � � � � �
(0/&)

a. Extrapolation Algorithm

600

8. C 500
"' -! � 400

� � 300
_ 0 O�
G; a. 200
., ..
5 � 100
z

b. Repeated Sampling Algorithm

Fig. 4. Effect of the Algorithms

the extrapolation algorithm (we observe similar trend with

the MEMORY dataset). In Figure 4-a, PRED-k denotes the

extrapolation algorithm when k previous values are used for

prediction. The PRED-k algorithms are compared with the

naive continuous querying algorithm (ALL), which executes

snapshot queries at all time steps. The time step (i.e., the

discrete-time unit) for executing snapshot queries is 12 hours,

equal to the data update period with the TEMPERATURE

dataset. With a fixed confidence (for the reported result, E = 2
and p = 0.95), we vary the required resolution !j of the query

(in the figure, it is normalized to the variance a), and observe

the number of the snapshot queries executed to maintain the

resolution using different algorithms.

As depicted in Figure 4-a, all of the extrapolation algorithms

behave similarly. With small !j (relative to a), there are not

many sampling occasions that an extrapolation algorithm can

skip and, therefore, the performance is similar to ALL. How­

ever, with larger resolution thresholds, the extrapolation algo­

rithms significantly outperform the naive continuous querying

algorithm by gracefully eliminating the redundant snapshot

queries according to the required resolution. For example, with

!j = 8 (i.e., !j fa = 1), the number of the snapshot queries

executed to answer the query are up to 75% reduced.

2) Effect of the Repeated Sampling Algorithm: Figure 4-b

shows the results of our experiment with the repeated sampling

algorithm (RPT) as compared with the independent sampling

algorithm (INDEP). For this experiment, we used both of the

datasets. Assuming a fixed resolution (!j fa = 1, where a is

known for each dataset) and fixed confidence level (p = 0.95),
we vary the required confidence interval E of the query, and

observe the (average) number of the samples required per
snapshot query to satisfy the confidence requirement of the

query using each algorithm. Note that here, for RPT we

report the total number of the samples required per snapshot

query, including both the retained and the fresh samples (for

INDEP, all samples are fresh). This is to isolate and show

the effect of considering the correlation in reducing the total

number of the required samples with RPT. In Section V I-B3,

we investigate another advantage of RPT due to the retained

samples. Although the retained samples must be re-evaluated,

they incur negligible communication cost to derive; therefore,

in fact with RPT only the fresh samples actually cost to derive

from the database (refer to Section IV-B2).

As depicted in Figure 4-b, the behavior of INDEP and

III
�
c.
E ..

en
'0(")­
_ 0
'" � �)(
E�
:::l

Z

�

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0 -l-L...L..IL __ L-.--L..L.-'----I--.
TEMPERATURE

Dataset
MEMORY
Dataset

a. Total Number of Samples

100.00

10.00

1 .00 +-L--'-'-----,--L-'-"--<-,
TEMPERATURE MEMORY

Dataset Dataset

b. Total Communication Cost

Fig. 5. Efficiency of Digest

RPT follow our analytical results, and RPT consistently out­

performs INDEP with both datasets. From the experiments,

we measure the average improvement factor I = nindep fnrpt
(where nindep and nrpt are the total number of the samples per

snapshot query for INDEP and RPT) as 1.63 and 1.21 for the

TEMPERATURE and the MEMORY datasets, respectively,

which correspondingly translate to 39% and 18% less samples

with RPT. As suggested by the results, the benefit of the

repeated sampling algorithm is more when applied to the

TEMPERATURE dataset; this is expected because of the

higher correlation (as indicated by the correlation coefficient

p> as well as less churn at the weather forecast network.

3) Overall Efficiency of Digest: To evaluate the overall

efficiency of Digest due to the combined effect of the ex­

trapolation algorithm and the repeated sampling algorithm,

we measured the total number of samples required to an­

swer a continuous query (for the reported result, !j fa = 1,

Efa = 0.25, and p = 0.95) using four different combinations

of the algorithms: (ALL + INDEP), (ALL + RPT), (pRED3 +
INDEP), and (PRED3 + RPT). We performed this experiment

with both of the datasets. As shown in Figure 5-a, with

the TEMPERATURE dataset, Digest (i.e., PRED3 + RPT)

outperforms a naive solution (i.e., ALL + INDEP) up to

320%. Similar results are obtained for other continuous queries

with a full spectrum of different precision parameters; these

results reveal a cost-precision trade-off that conform with those

represented by the results in Figures 4-a and 4-b (we omit these

results due to lack of space).

Thus far, we used the total number of the samples derived

to answer the query as the measure of efficiency for the

algorithms. Assuming a fixed (in average) communication

cost for deriving each sample, this can be translated to the

total communication cost (i.e., the total number of messages

sent from node to node) for answering the query. To factor

in and evaluate the communication cost for deriving each

sample using our random sampling algorithm, we considered

the performance of the Digest (PRED3 + RPT) for the same

query (!jfa = 1, Efa = 0.25, p = 0.95), this time measuring

the total communication cost as the measure of efficiency.

Here we compared Digest, which is a sample-based (and pull­

based) approach, with the naive-sampling pull-based approach

(ALL + INDEP) as well as two non-sampling push-based

approaches: 1) the baseline solution (ALL + ALL), with which

at every snapshot query all tuples from the entire network

are pushed to the querying node to evaluate the query (only

supports exact queries), and 2) the filter-based solution (ALL

+ FILTER) proposed by Olston et al. [18], which installs

adaptive filters at the nodes to reduce the number of the data

updates pushed to the querying node. With ALL + FILTER,

we set the user-defined precision interval [L, H] such that

(H - L) < 2E, to compare the approaches under equal

conditions.

As shown in Figure 5-b (note that the vertical axis is in

logarithmic scale), with Digest we improve the communication

cost of evaluating a typical continuous query more than one

order of magnitude over that of the filter-based solution (ALL

+ FILTER), and almost two orders of magnitude over that

of the baseline solution (ALL + ALL). Also we observe

that even a naive sample-based solution (i.e., ALL+INDEP)

substantially outperforms an improved non-sampling solution

(i.e., ALL + FILTER). Comparing our results in Figure 5-
b versus those in Figure 5-a, we note that as mentioned in

Section VI-B2 the improvement of Digest over the naive­

sampling solution (ALL + INDEP) almost doubles in terms

of the communication cost, which reflects the fact that with

repeated sampling the cost of deriving the retained samples is

negligible and asymptotically only half of the required samples

are fresh samples costly to derive from the database. Finally,

based on our results, the average costs of deriving each sample

are 65 and 43 messages for the simulated weather forecast

network and the SETI@HOME network, respectively, loosely

consistent with Theorem 4 that predicts a poly-logarithmic

complexity for our random sampling operator.

VII. RELATED WORK

In contrast with Digest and other aggregate query answering

approaches with which the query evaluation process occurs out

of the network at the querying node, there are a number of

techniques recently developed for in-network aggregate query

processing. The randomized distributed algorithms [4], [8] are

communication-intensive and their communication overhead is

only justified when all nodes of the network issue the same

aggregate query simultaneously. TAG [15] incurs less overhead

but with its tree-based aggregation scheme, it is prone to severe

miscalculations due to frequent fragmentation of the poorly

connected topology of the tree, specially in the dynamic peer­

to-peer databases. Also, DHT based aggregation techniques

[12] are limited to the peer-to-peer databases with structured

topologies.

The most relevant related work is the work by Arai et al. [1]

on sample-based approximate aggregation queries in peer-to­

peer networks, which is limited to snapshot queries, whereas

we focus on continuous queries. Finally, we should mention

that we have previously presented the preliminary concepts of

the work we detailed in this paper as a poster [3].

VIII. FUTURE WORK

We intend to extend this study in three directions. First,

we plan to complement our reverse regression algorithm by

forward regression, which allows adjusting the previous result.

Second, we intend to expand on our contributions in this

paper to cover more complex aggregate queries with multiple

relations and arbitrary select-join predicates. Finally, with

the peer-to-peer databases where the time-scale of the data

changes is comparable with the sampling time, our snapshot

sampling assumption no longer holds. With such peer-to-peer

databases, either the sampling techniques should be improved

or new semantics should be defined for continuous queries.

ACKNOWLED GMEN TS

This research has been funded in part by NSF grant CNS-

0831505 (CyberTrust), the NSF Integrated Media Systems

Center (IMSC), unrestricted cash-gift from Google, and in part

from the METRANS Transportation Center, under grants from

USD OT and Caltrans. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[I] B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki. Approximating
aggregation queries in peer-to-peer networks. In Proceedings of ICDE,
April 2006.

[2] S. Babu and 1. Widom. Continuous queries over data streams. SfGMOD
Record, September 200 I.

[3] F. Banaei-Kashani and C. Shahabi. Fixed-precision approximate con­
tinuous aggregate queries in peer-to-peer databases (poster paper). In
Proceedings of the 24nd International Conference on Data Engineering
(/CDE'08), April 2008.

[4] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating
aggregates on a peer-to-peer network. Submitted for publication.

[5] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a
graph. SIAM ReView, 46(4):667-689, 2004.

[6] C. Chen and N. Roussopoulos. Adaptive selectivity estimation using
query feedback. In Proceedings of SIGMOD, May 1994.

[7] W. Cochran. Sampling Techniques. John Wiley and Sons, 3rd edition,
1977.

[8] E. Cohen and H. Kaplan. Spatially-decaying aggregation over a network:
model and algorithms. In Proceedings of SIGMOD, June 2004.

[9] P. Diaconis and L. Saloff-Coste. What do we know about the Metropolis
algorithm. In Proceedings of STOC, May 1995.

[10] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of
Markov chains. Annals of Applied Probability, 1(1):36-61, 1991.

[11] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan. Dynamic his-
tograms: Capturing evolving data sets. In Proceedings of ICDE,
February 2000.

[12] L. Galanis and D. DeWitt. Scalable distributed aggregate computations
through collaboration in peer-to-peer systems. Submitted for publication.

[13] P. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. In Proceedings of SIGMOD,
June 1998.

[14] R. Lipton, 1. Naughton, and D. Schneider. P ractical selectivity estimation
through adaptive sampling. In Proceedings of SIGMOD, May 1990.

[15] S. Madden, M. Franklin, 1. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation service for ad-hoc sensor networks. In Proceedings of
OSDI, December 2002.

[16] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21: 1087-1091, 1953.

[17] S. Meyn and R. Tweedie. Markov chains and stochastic stability.
Springer-Verlag, 1993.

[18] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries
over distributed data streams. In Proceedings of SIGMOD, June 2003.

[19] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer­
to-peer file sharing systems. In Proc. of MMCN, January 2002.

[20] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In Proceedings of SIGMOD, June 1992.

