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Abstract-In this paper, we propose an efficient sample-based 
approach to answer fixed-precision approximate continuous 
aggregate queries in peer-to-peer databases. First, we define 
practical semantics to formulate fixed-precision approximate 
continuous aggregate queries. Second, we propose "Digest", a 
two-tier system for correct and efficient query answering by 

sampling. At the top tier, we develop a query evaluation engine 
that uses the samples collected from the peer-to-peer database 
to continually estimate the running result of the approximate 
continuous aggregate query with guaranteed precision. For ef­
ficient query evaluation, we propose an extrapolation algorithm 
that predicts the evolution of the running result and adapts the 
frequency of the continual sampling occasions accordingly to 
avoid redundant samples. We also introduce a repeated sampling 
algorithm that draws on the correlation between the samples at 
successive sampling occasions and exploits linear regression to 
minimize the number of the samples derived at each occasion. 
At the bottom tier, we introduce a distributed sampling algorithm 
for random sampling (uniform and nonuniform) from peer­
to-peer databases with arbitrary network topology and tuple 
distribution. Our sampling algorithm is based on the Metropolis 
Markov Chain Monte Carlo method that guarantees randomness 
of the sample with arbitrary small variation difference with the 
desired distribution, while it is comparable to optimal sampling 
in sampling cost/time. We evaluate the efficiency of Digest via 
simulation using real data. 

I. INTRODUCTION 

A peer-to-peer database is a fragmented database which 

is distributed among the nodes of a peer-to-peer network, 

with both the data and the network dynamically changing. 

In this paper, we focus on answering continuous aggregate 

queries in peer-to-peer databases, where the underlying peer­

to-peer network of the database is inherently unstructured 

(as opposed to DHT-based structured peer-to-peer networks). 

Continuous queries [20] allow users to obtain new results 

from the database without having to issue the same query 

repeatedly. Continuous queries are especially useful with peer­

to-peer databases which inherently comprise of large amounts 

of frequently changing data. For example, in a weather forecast 

system with thousands of interconnected stations the system 

administrator can issue a continuous aggregate query of the 

form: 
"Over next 24 hours, notifY me whenever the av­

erage temperature of the area changes more than 

2 oF." 
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Or in a peer-to-peer computing system with distributed re­

sources, users can issue the following query to determine when 

there is enough memory space available to schedule their tasks: 
"NotifY me whenever the total amount of available 

memory is more than 4GB." 

However, considering the large size and the high rate of change 

in peer-to-peer databases, exact continuous aggregate queries 

are inevitably inefficient, if not infeasible. Exact answers are 

rarely necessary, and even if needed, a consistent approxima­

tion can converge to the exact result with arbitrary precision. 

Therefore, in this paper we consider approximate continuous 

aggregate queries. 

Previous approaches for approximate query answering are 

not applicable to peer-to-peer databases. The model based 

approaches [6] are parameterized, where with peer-to-peer 

databases parameters are unknown and variable. The histogram 

based [11] and the precomputed-sample based [13] data reduc­

tion approaches are not appropriate either. Although dynam­

ically updated, with the high rate of change in peer-to-peer 

databases maintaining histograms and precomputed samples 

is intolerably costly. The large set of techniques proposed for 

approximate continuous aggregate query over data streams [2] 

naturally assume the data are collected centrally and are being 

received in sequence, where none of these assumptions hold 

for the data in peer-to-peer databases. Finally, the current on­

the-fly sampling approaches, mostly developed for query size 

estimation [14], are limited to snapshot (or one-time) aggregate 

queries. 

In this paper, we propose an approach for answering fixed­

precision approximate continuous aggregate queries by on-the­

fly sampling from peer-to-peer databases. Our query answer­

ing system, called Digest, evaluates approximate continuous 

aggregate queries by continual execution of the approximate 

snapshot aggregate queries, where each snapshot query is 

evaluated by sampling the database. The snapshot queries 

probe the database and accordingly the running result of the 

continuous query is updated. As we elaborate below, with 

continuous queries the main issue transcends how to execute 

each snapshot query, but how to execute snapshot queries 

continually such that while the fixed precision requirements 

of the continuous query are guaranteed, the query is answered 

efficiently by deriving minimum number of samples. 
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With fixed-precision approximate continuous aggregate 

queries, the required (or fixed) precision of the approximate 

result is defined by the user in terms of 1) the resolution 
of the result in capturing the changes of the actual rurming 

aggregate value (e.g., the result reflects the changes of the 

average temperature iff a change is more than 2 OF), and 2) the 

confidence (or accuracy) of the result at each time as compared 

to the exact aggregate value at that time. Using continual 

snapshot queries to answer such queries, the resolution of the 

result is determined by the frequency of the snapshots, and the 

confidence of the result depends on the number of the samples 

derived to approximate the result of each snapshot query. 

Therefore, for efficient evaluation of the continuous queries 

while guaranteeing the fixed precision, both the frequency of 

the snapshot queries and the number of the samples derived at 

each snapshot query must be minimized while the resolution 

requirement and the confidence requirement of the query are 

still satisfied, respectively. Digest provides solutions for both 

of these optimization problems. 

Digest is implemented as a two-tier system, with a sampling 

operator at the bottom tier and a query evaluation engine at the 

top tier. The sampling operator implements a distributed sam­

pling algorithm to derive arbitrary random samples from the 

peer-to-peer databases (with arbitrary topology and tuple dis­

tribution). The query engine uses the samples collected from 

the database to evaluate the snapshot queries. To minimize 

the frequency (or equivalently, the number) of the snapshot 

queries, the query engine exploits an extrapolation algorithm 
that predicts the evolution of the running aggregate value 

based on its previous behavior and adapts the frequency of 

the continual snapshot queries accordingly. With this approach, 

the more varying the aggregate value, the more becomes the 

frequency of the snapshot queries in order to maintain the 

resolution of the result, and when the aggregate value is steady 

the frequency of the snapshot queries decreases accordingly to 

avoid redundant sampling. 

On the other hand, to minimize the number of the samples 

derived at each snapshot query, the query engine employs 

a repeated sampling algorithm. Repeat sampling draws on 

the observation that across successive snapshot queries the 

values of the database tuples are expected to be autocorrelated 

and, therefore, exploiting the regression of the value of a 

sampled tuple at the current query on that of the previous 

query can improve the accuracy of the current estimate. 

Repeated sampling uses regression estimation to achieve the 

required confidence using fewer samples as compared with 

the straightforward independent sampling which ignores the 

correlation between the snapshots. 

We study both the extrapolation algorithm and the repeated 

sampling algorithm analytically. Besides, we demonstrate their 

effectiveness via simulation using real data. We show that the 

combined effect of our extrapolation and repeated sampling 

algorithms can improve the efficiency of the query evaluation 

up to 320% as compared with the straightforward continual 

query execution with fixed frequency and independent sam­

pling. 

The remainder of this paper is organized as follows. In 

Section II, we define the semantics of the fixed-precision 

approximate continuous aggregate queries. Section III presents 

an overview of the Digest architecture. In Section IV, we 

describe the query evaluation component of Digest, and follow 

by explaining the distributed sampling component in Section 

V. Section VI presents the results of our empirical study on 

Digest. In Section VII, we briefly discuss the remaining related 

work. Finally, Section VIII concludes the paper and discusses 

the future directions of this research. 

II. ApPROXIMATE CONTINUOUS QUERY 

We model an unstructured peer-to-peer network as an 

undirected graph G(V, E) with arbitrary topology. The set of 

vertices V = {VI, V2, ... , Vr} represent the set of the network 

nodes, and the set of edges E = {el' e2, ... , eq } represent 

the set of the network links, where ei = (Vj,Vk) is a link 

between Vj and Vk. As nodes autonomously join and leave 

the network, the member-set of V, and accordingly, that of 

E vary in time. Consequently, the set sizes rand q are also 

variable and unknown a priori. We assume the rate of the 

changes in G is relatively low as compared to the sampling 

time (i.e., the time required to draw a sample from the peer-to­

peer database), such that the network can be assumed almost 

static during each sampling occasion (although it may change 

significantly between successive sampling occasions). 

For a peer-to-peer database stored in such an unstructured 

peer-to-peer network, without loss of generality we assume 

a relational model. Suppose the database consists of a single 

relation R = {UI' U2, ... , UN}. R (a multiset) is horizontally 

partitioned and each disjoint subset of its tuples is stored at a 

separate node. The number of tuples stored at the node Vi is 

denoted by mVi' The member-set of R also varies in time; the 

changes are either due to the changes of V, as nodes with new 

content join the network (as if inserting tuples) and existing 

nodes leave and remove their content (as if deleting tuples), or 

as the existing nodes autonomously modify their local content 

by insertion, update, and deletion. 

With such a model for peer-to-peer databases, we define 

our basic query model for the continuous aggregate queries as 

follows. Consider the queries of the form: 

SELECT op(expression) FROM R 

where op is one of the aggregate operations AVG, COUNT, or 

SUM, and expression is an arithmetic expression involving 

the attributes of R. Suppose Q is an instance of such queries. 

Assuming a discrete-time model (i.e., the time is modelled as a 

discrete quantity with some fixed unit), the snapshot aggregate 

query Qt is the query Q evaluated at time t. Correspondingly, 

the continuous aggregate query QC is the query Q evaluated 

continuously (i.e., repeated successively without intermission) 

for all t ?: to, where to is the arrival time of QC. The result 

of QC is X[t], a discrete-time function where for all t ?: to, 
X[t] is the aggregate-value result of the snapshot query Qt. 

For instance, in a peer-to-peer computing system each node 

(a node consists of one or more computing units) keeps 
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Fig. I. Fixed-Precision Approximate Continuous Aggregate Query 

a current record of its available resources by maintaining 
tuples of the form Ui = (cpu, memory, storage, bandwidth), 
one tuple for each local computing unit. Considering 
R(cpu, memory, storage, bandwidth) as a single-relation 
peer-to-peer database representing the resources available in 
such a peer-to-peer computing system, the following continu­
ous query returns X, the total amount of the space currently 
available throughout the system, as a function of time: 

SELECT SUM(memory + storage) FROM R 

With a fixed-precision approximate version of the exact 
continuous query QC defined above, the exact result X[t] is 
approximated by an estimate X[t] with guaranteed precision 
(see Figure 1). Our model for approximate queries includes 
three extra user-defined parameters, J, E, and p, to specify 
the desired precision of the estimation. With J, user specifies 
the resolution of X[t] in capturing the incremental changes in 
X[t] as it evolves in time. To answer an exact query, X[t] is 
updated (i.e., re-evaluated by snapshot query) at every time 
instant t, regardless of the amount of change in X since the 
last update at t -1. However, with approximate queries smaller 
changes below some threshold may be insignificant to the 
user/application and, the�fore, not required to be reflected 
in the estimated result X [t]. The parameter J defines this 
application-specific thresh�ld. Suppose tUi is the most recent 
time at which the result X[t] is updated (initially, tuo = to). 
For t > tu" the approximate query is not required to re-update 
the result until t = tU'+l' where tU'+l is the earliest time at 
which �X 2: J (by definition �X = IX[tUi+l]-X[tuJI). For 
all times t in the interval (tu" tU'+l)' X[t] can be est�ated 
without update/re-evaluation, e.g., by "holding" (i.e., X[t] = 

X[tuJ) or interpolation. With this semantic for approximation, 
the smaller changes of X during the intervals (tu" tU'+l) for 
i = 0, 1,2,3, . . .  are filtered out of the estimated result. Back 
to our running example mentioned above, changes on the order 
of several megabytes in the total space may not be noteworthy 
for a distributed task scheduling application and/or may be 
too costly to monitor. In such a case, e.g., J = 1GB might 
be an effective choice to formulate an approximate query that 
is both useful and practical. It is important to note that in 
addition to allowing for optimization of the query efficiency, J 

provides useful functionality to the user. Consider each update 
of the running query result raises an alarm for the user. With J, 

user can avoid false alarms. For example, consider a scenario 
where a weather reporter does not want to report the average 
temperature unless the change in the average is more than 
J = 5°F. 

Next, the parameter E indica�s the maximum tolerable 
absolute error in the estimate X[t] at each time tu;. The 
approximate query should guarantee IX[tuJ - X[tuJ I ::; E 

for all i. The interval [X[tuJ - E, X[tuJ + E] is termed 
the confidence interval of the estimation at time tUi' with 
X[tuJ - E and X[tuJ + E as the lower and upper confidence 
limits, respectively. The provided guarantee is probabilistic and 
with the parameter p user specifies the desired confidence.Jevel 
of the guarantee, i.e., the probability that the estimation X[tuJ 
is actually confined within the confidence interval. The user­
defined parameters E and p t�gether determine the required 
confidence of the estimate X[tuJ Note that, approximate 
query generalizes exact query; an exact query is an approxi­
mate query with J = 0, E = 0, and p = 1. 

To answer an exact continuous aggregate query, snapshot 
queries must be executed continuously, each evaluated for an 
exact result; hence, termed continuous-exact snapshot queries. 
Alternatively, an approximate continuous aggregate query can 
be answered by executing the more flexible and general contin­
ual-approximate snapshot queries. With continual-approximate 
queries, the less frequent the snapshot queries and the less 
accurate the approximation by each snapshot query, the less 
the cost of evaluating the continuous aggregate query, but also 
the less the precision (i.e., the resolution and the confidence, 
respectively) of the result. That allows a trade-off between the 
precision and the cost of obtaining the result, such that while 
the fixed-precision approximate query is correctly satisfied, the 
cost of evaluating the query can be optimized for efficiency. An 
extreme case of the trade-off is with continuous-exact snapshot 
queries to answer exact continuous aggregate queries. With 
continuous-exact snapshot queries, both the frequency of the 
snapshot queries and the accuracy of the approximation by 
each snapshot query are maximal, such that Q1e estimated 
result of the continuous query is exact (i.e., X[t] = X[t]) 
while it costs the most to evaluate. Next, we present Digest, a 
query answering system that executes continual-approximate 
snapshot queries by sampling the database, and optimizes the 
frequency and accuracy of the snapshot queries to answer 
approximate continuous aggregate queries both correctly (with 
guaranteed precision) and efficiently. 

III. DIGEST: OVERVIEW 

Figure 2 depicts the two-tier architecture of Digest. Each 
node of the peer-to-peer database operates its own individual 
instance of Digest to answer the continuous queries received 
from the local user. As discussed in Section I, the query 
evaluation engine at the top tier exploits an extrapolation 
algorithm (see Section IV-A on continual querying) and a 
repeated sampling algorithm (see Section IV-B on approximate 
querying) to optimize the number of the samples derived to 
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Fig. 2. Two-Tier Architecture of Digest 

answer continuous aggregate queries. In addition to the query 

evaluation engine, Digest benefits from a sampling operator 

at the bottom tier that (in collaboration with other instances 

of Digest distributed throughout the peer-to-peer network) effi­

ciently derives random samples from the peer-to-peer database. 

Here, we describe the interface of the sampling operator; the 

distributed sampling algorithm developed to implement the 

sampling operator itself is presented in Section V .  

The sampling operator of Digest implements a distributed 

sampling algorithm to draw random samples (sample nodes 

and correspondingly sample tuples) from the peer-to-peer 

databases with arbitrary network topology and tuple distri­

bution. The interface of the sampling operator is defined 

as follows. First, consider a generic weight function w that 

assigns a weight Wv to each node v of the database. For 

instance, WI = {\Iv E V I Wv = I} is a uniform weight 

function, and W2 = {\Iv E V I Wv = mv} is a (possibly) 

nonunifonn weight function with which each node is weighted 

according to the number of the tuples mv stored at the node. 

We assume that with w the weight of each node is a function of 

the local properties of the node (such as the content-size mv of 

the node, the degree of connectivity of the node, the reputation 

of the node, the accuracy and relevance of the tuples stored 

at the node, etc.), and the assigned weight is not necessarily 

normalized. Given such a weight function w as input, once 

invoked the sampling operator S randomly derives a sample 

node v from V such that Pv = wv/ LUEV Wu, where Pv 
is the probability of sampling the node v. In other words, 

the distribution of the sampling probability among the nodes 

is proportional to the distribution of the weight according 

to the desired (uniform or nonuniform) weight function w. 

As we show in Section V, with our distributed sampling 

algorithm each node only needs to know the weights of its 

local neighbors; hence, no need to acquire global infonnation. 

While the sampling operator S proposed in this paper can 

be used to draw sample nodes based on any generic weight 

function, as we discuss in Section IV-Bl with Digest we em­

ploy S to draw uniformly random sample tuples from R using 

the weight function W= {\Iv E V I Wv = mv}, where mv is 

the number of tuples stored at each node. For this purpose, first 

S is invoked with the weight function w to derive a sample 

node with a sampling probability proportional to its content­

size. Thereafter, the content of the sampled node is uniformly 

sampled to derive a sample tuple. The combination of the two 

samplings, i.e., the distributed node sampling via S and the 

local tuple sampling from the sampled node, uniquely specifies 

the random distribution of the sampled tuple in the entire R, 

which in this case is uniform as desired. This sampling scheme 

is termed two-stage sampling [7]. Instead, one can use cluster 

sampling with which all tuples of the sampled node are drawn 

as a batch sample. However, since with most P2P applications 

the contents of a node are highly correlated (high intra-cluster 

and low inter-cluster correlation), cluster sampling results in 

imprecise estimations with these applications. Therefore, with 

Digest we prefer two-stage sampling to cluster sampling. 

With the above two-stage sampling scheme, sampling the 

tuples stored at the sampled node is perfonned locally; hence, 

it is standard and inexpensive. The sampling operator S, which 

implements the more complicated and costly distributed node 

sampling, ensures suboptimal performance (comparable to that 

of the optimal sampling) in terms of communication cost 

and sampling time, while guaranteeing randomness of the 

derived sample node with arbitrary small error (i.e., variation 

difference) as compared to the desired sampling probability 

distribution (see Section V for details). 

IV. SAMPLE-BASED QUERY EVALUATION 

As mentioned in Section I, to evaluate an approximate 

continuous query one needs to provide solution for two sub­

problems: 1) continual querying, i.e., to determine when to 

execute the next snapshot query, and 2) approximate querying, 

i.e., to minimize the number of samples required to answer 

each snapshot query. An integrated technique that incorporates 

solutions for the two sub-problems simultaneously is ideal but 

complicated. With Digest, we address the two sub-problems 

separately. First, at each occasion Digest uses an extrapolation 

algorithm to decide when to execute the next snapshot query 

(Section IV-A). Thereafter, Digest uses a repeated sampling 

algorithm to evaluate the snapshot query with the minimum 

number of samples required to satisfy the confidence require­

ments of the query (Section IV-B). This process is repeated 

while the continuous query is running. Below, we describe 

these algorithms. 

A. Continual Querying 

Suppose the most recent snapshot query is executed at 

time tUi = k (see Figure 3). For continual querying, we 

should predict the next update time tUi+1 such that IX[tUi+1]­
X [tuJ I ?: J. To predict tUi+ l' in brief our approach is to fit 

a curve to the previously observed values of X to predict its 

values in the near future with guaranteed error bounds. If the 

ratio of the change/variation of X [t] in time is unbounded, the 

future values of X are unpredictable and, therefore, inevitably 

continual querying reduces to continuous querying to ensure 

the required resolution. However, the aggregate value X[t] is 

expected to be a smooth function of time with considerable 

autocorrelation in short time intervals that bounds its variation 

(e.g., consider the variation of the total amount of the available 

space in a peer-to-peer computing system). Hereafter, by con­

vention we model such a smooth function X[t] with bounded 



; 
IUi_2: IUi_1 

k-8 k-7 -6 k-5 k-4 k 3 k-2 k-l 

Fig. 3. Computing tUi+1 by Polynomial Extrapolation: at t = tui+l' we 
have I�Pn[tui+lll + IRn[tui+1ll > <5 

variation as an analytic function of time, i.e., we assume X[t] 
possesses derivatives of all orders and agrees with its Taylor 
series in the neighborhood of every point. 

Assuming that X[t] is an analytic function, our continual 
querying algorithm predicts the evolution of the analytic func­
tion X[t] by polynomial extrapolation using the Taylor series 
expansion. Based on the Taylor's theorem, at the neighborhood 
of tUi' X [t] can be approximated by a degree-n Taylor 
polynomial Pn[t]: 
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The upper bound error for this approximation of X[t] with the 
Taylor polynomial is the Lagrange remainder Rn[t], such that 
IX[t]- Pn[tll < IRn [ t]l, Wh�W+l 

R [t] = 

( t - tUi ) x(n+l) [Ct] (2) n (n+1)! 
with Ct E [tUil t] a constant minimizing x(n+l) [t] in this 
interval. 

To find tUi+l' first Pn [t] is computed by fitting a degree-n 
polynomial to n+1 previous values of X[t] at t = (k-n), t = 

(k - n + 1), ... , and t = k. We use the well-known Levenberg­
Marquardt Method (based on non-linear least squares fitting 
via trust regions) for fitting. This method is known for robust 
estimation of the Taylor polynomial. Note that the exact values 
of X[t] are unknown unless the snapshot queries are exact. 
Instead of the exact values, assuming sufficiently accurate 
approximate snapshot results, we compute Pn[t] using n + 1 
previous values of X[tl at t = tUi_n, t = tUi_n+l' ... , and 

t = tUi (n = 3 in Figure 3). Next, having Pn[t] as an 
approximation with bounded error for X[t], tUi+1 is derived 
by extrapolation as the minimum t satisfying: 

IPn[t]- Pn[tuJI + IRn[tll > 0 (3) 
Note that the upper bound error IRn[t]1 of the polynomial 

approximation is a decreasing function of n. Therefore, the 
higher the degree of the polynomial approximation, the tighter 
is the error bound and, thus, the predicted update time tUi+1 
is less conservative, which makes the continual querying more 
efficient. Also, while t < tUn' a degree-n polynomial approx­
imation is not applicable. During the bootstrapping period, 
i.e., the interval [tUG' tUn)' our continual querying algorithm 
implements continuous querying instead of continual querying. 

B. Approximate Querying 

1) Independent Sampling: To provide the background for 
explaining the repeated sampling algorithm, in this section we 
briefly review the query evaluation process for an approxi­
mate AVG query based on the classical independent sampling 
algorithm. 

With the independent sampling algorithm, to answer an AVG 
snapshot query Ot 

SELECT AVG(expression) FROM R 

n sample tuples Ul, U2, ... , un are derived from R, uniformly 
random and with replacement. The time interval (beginning at 

t) during which the database is probed to draw samples for 
evaluating Ot is called the sampling occasion for Ot. During 
the sampling occasion, each sample is drawn by first calling 
the sampling operator S with the weight function w = {\Iv E 
V I Wv = mv} to derive a sample node with a sampling 
probability proportional to its content-size. Next, the content 
of the sampled node is uniformly sampled to derive a sample 
tuple. Suppose the value of the expression when applied to 
the sample tuple Ui is denoted by Yi. Based on the derived 
samples, the result (X =) Y = liN 2::::1 Yi of the AVG 
query is estimated by the unbiased and consistent estimator: 

� n 
Y = 1 In L Yi (4) 

The number of the same.Iesirl is computed such that with 
probability p the estimate Y is within the confidence interval 

[Y - E, Y + Ej. One can use the standard central limit theorem 
to compute n. Let cr2 = liN 2::::1 (Yi - y)2 be 0e true 
variance of Yi in R, and 

&
2 = lin 2::�=1 (Yi - y)2 the 

estimated variance. For sufficiently large n, it f�lows from the 
central limit theorem that the random variable Y has a normal 
distribution with mean Y and variance�cr2 In, or equivalently, 
the standardized random variable Vn(Y - Y)lcr has a normal 
distribution with mean 0 and variance 1. Therefore: 

Pr{IY - YI ::; E} Pr { I Vn(Y
cr
- Y) 

I 
::; EVn

cr
n } 

(5) 

where <I> is the standard cumulative normal distribution func­
tion. Let lp be the (p + 1) 12 quantile of this distribution (i.e., 
<I>(lp) = (p + 1)/2). To derive n, we set the rightmost term in 
Equation 5 equal to p and solve the equation for n: 

n = 

(
&
�
p r (6) 

2) Repeated Sampling: With independent sampling, each 
snapshot query is answered independently, disregarding the 
results and the samples derived for the previous queries. How­
ever, across successive queries the values of the database tuples 
are expected to be autocorrelated and, therefore, exploiting the 
regression of the value of a sampled tuple at the current sam­
pling occasion on that at the previous occasion can improve the 
accuracy of the current estimate. Alternatively, by regression 
estimation one can achieve the same accuracy/confidence 



using fewer samples at each sampling occasion; hence, more 
efficient query evaluation. Repeated sampling relies on this 
observation to improve the efficiency of independent sampling 
while still satisfying the confidence requirement of the query. 
Below, we explain the repeated sampling algorithm in details 
for evaluation of the AVG queries. Other types of aggregate 
queries are evaluated similarly. We begin with regression 
estimation for the evaluation of the 2nd snapshot query (i.e., 
the special bootstrapping snapshot query) of a continuous 
aggregate query. Later, we extend the analysis for evaluation 
of the general kth snapshot query. 

a) Evaluating 2nd Snapshot Query: Suppose the sample­
set is of size n in both the first and the second sampling 
occasions of a continuous A VG query. Let Uik denote the 
state of the sampled tuple Ui at occasion k (i.e., the current 
attribute-values of the tuple Ui at occasion k), and let Yik 
denote the corresponding value of Uik when evaluated by 
the expression in the AVG query at occasion k. At the first 
occasion, there is no prior information to utilize. Therefore, 
all n samples Ul, U2, ... , Un are new samples derived from the 
database and the result of the first snapshot query is simply 
estimated based on the independent sampling algorithm using 
uu, U21, ... , Un1 as the samples. At the second occasion, each 
sampled tuple Ui is either replaced by a new sample Ui' from 
the database (with the current state Ui'2), or retained and re­
evaluated to its current state Ui2. Thus, the sample-set at the 
second occasion consists of n samples U1, ... , ug, ug', ... , Un', 
where 9 is the number of retained samples. A new sample 
Ui' must be derived using the sampling operator S and incurs 
communication overhead to locate, whereas a retained sample 
Ui is already located and is only retrieved to be re-evaluated 
(to refresh Uil to Ui2) after a possible state update in between 
the two sampling occasions. If a sample tuple is deleted or the 
node storing the tuple leaves the network, the tuple is always 
replaced. Repeated sampling uses the current state of the new 
samples, i.e., Ug'2, ... , Un'2, for regular estimation as in the 
first occasion, while utilizing the current state of the retained 
samples, i.e., U12, ... , Ug2, for regression estimation (where Yi2 
regresses on Yi1 as the auxiliary regression variate). The final 
estimate of the repeated sampling algorithm for the result of 
the second snapshot query is a combined estimate, a weighted 
sum of the regular estimate and the regression estimate from 
the new portion and the retained portion of the sample-set, 
respectively. 

With the above estimation scheme, an optimal sample 
replacement policy is required to determine the proportion 
of the new and retained portions of the sample-set such that 
the combined estimate of the result is optimal (i.e., the most 
accurate estimate with minimum variance). With two extreme 
cases of the replacement policy, the samples are either all 
replaced or all retained. As we show below, none of these 
policies are optimal. 

With repeated sampling we establish the optimal replace­
ment policy as follows. Suppose among n samples at the kth 
sampling occasion (here k = 2), 9 samples are retained from 
the previous occasion and the rest f samples ('1' for fresh) 

Estimator 

Y2f = fhf 

Variance 

&"(l-p") + �2 &2 _ 1 
9 P n - W2g 

TABLE I 
REGULAR AND REGRESSION ESTIMATORS AT 2nd OCCASION 

are new samples. Let Ykf' Ykg' and Yk denote the average 
value of the samples in the new portion, the retained portion, 
and the entire sample-set (both portions together) at the kth 
sampling occasion, respectively. Correspondingly, the values 
of the regular estimate, regression estimate, and the combined 
estimate for � the �esult Y k � of the kth snapshot query are 

denoted by Y kf' �kg, and r k, respectively. 

The estimators Y 2f and Y 2g and their corresponding vari­
ances are defined in Table I. O'§ = lin L�=l (Yi2 - Y2)2 is an 
estimate of the true variance O"§ = lINL�1(Yi2 - y2)2 
of Yi in R at the secolld occasion, and we have 0'2 ;::::: 0' 
(= 0'1). The estimator Y 2f is simply the average value of 
the samples Y2f in the 

�
new portion of the sample-set. For 

the regression estimate Y 2g, we consider a linear regression 
with the regression coefficient b = �. The parameter b is 0", 
an estimate of the true regression coefficient B = .<::y., where 0", 
0"1,2 is the covariance of Yi1 and Yi2 in the entire RJ.. and 0'1,2 
is its estimate in the sample-set. Similarly, p = ;:" :-.2 is an (71 (12 
estimate of the true correlation coefficient p = 0"1,2 . _ (71(72 

The combined estimate 1::.2 is deriyed as the sum of the 

two independent estimates Y 2f and Y 2g weighted inversely 
by their variance: 

(7) 

where a = 
w 

w�fv . By the least squares theory the variance 2J 2g 
of Y 2 is: 

- 1 var(Y2) = 
W W 2f + 2g 

which from Table I works out as: 
.:::::. 0'2(n _ gp2) var(Y 2) = 2 2� n - 9 P 

(8) 

The minimum variance varmin (Y 2) is calculated from Equa­
tion 8 by derivation with respect to g. This gives the optimal 
partitioning of the sample-set as: 

n n JI=P2 
gopt= 

� 
foPt= 

� 1 + V 1 - p- 1 + V 1 - p-
(9) 

and with optimal partitioning, the minimum variance is derived 
as: 

(10) 

Note that if 9 = 0 (all samples replaced, like independent 
sampling) or f = 0 (all samples retained), the estimate 
variance (see Equation 8) is equal to that of the independent 
sampling, i.e., 0'2 In (;::::: 0"2 In). However, with optimal parti­
tioning (g = gopt) repeated sampling improves the variance 
with the ratio: 



f3 = (&2/n) - var�in(Y2) 1 - J1=P2 

varmin(Y 2) 1 + VI - (J2 
(11) 

Based on Equation 11, depending on the correlation 1P1 (:S 1) 
between values of the tuples at successive occasions, repeated 
sampling can improve the accuracy of the estimation over that 
of the independent sampling by up to 100% (with maximum 
correlation 1P1 = 1). Also, as the correlation 1P1 increases, with 
optimal partitioning a larger portion of the samples are retained 
because regression estimation is more effective. However, 
unless the correlation is maximum, repeated sampling replaces 
a considerable portion of the samples to account for the tuple 
insertions, deletions, and pathological updates. 

b) Evaluating kth Snapshot Query: Query evaluation at 
the kth occasion is a generalization of that of the second 
occasion. Details are included in the extended version of this 
paper. 

V. RANDOM SAMPLING OPERATOR 

Given a weight function w = {\Iv E V I wv} as input, 
the sampling operator S should randomly derive a sample 
node v from V with the sampling probability distribution 
Pv = wv/ LUEV Wu· We implement our sampling operator 
based on a distributed sampling algorithm inspired by the 
Markov Chain Monte Carlo (MCMC) methods for sampling 
from a desired probability distribution. To sample from a 
distribution, first an MCMC method constructs a Markov chain 
that has the desired distribution as its stationary distribution. 
With such a Markov chain, starting a traversal of the chain 
from any initial state, under certain conditions the distribution 
of the covered states of the chain converges to the stationary 
distribution of the chain after a sufficiently large number of 
steps. Once converged, the current state is returned as a sample 
from the desired distribution. 

With our distributed sampling algorithm, we consider a 
peer-to-peer network as a Markov chain, with nodes as the 
states of the chain, and links as the transitions between the 
states. Also, our algorithm uses random-walking sampling 
agents that are forwarded from node to node to emulate the 
state transition process. To sample the peer-to-peer database, 
the sampling operator at a node initiates a random walk 
(a sampling agent). If the forwarding probabilities of the 
random walk (corresponding to the transition probabilities of 
the constructed Markov chain) are properly assigned such 
that the stationary distribution of the walk is equivalent to 
the desired sampling distribution Pv, after a sufficiently large 
number of steps the distribution of the nodes covered by the 
random walk converges to Pv and the current node is returned 
to the originating node as the sampled node. In the rest of 
this section, first we describe how our distributed sampling 
algorithm employs the Metropolis Markov Chain construction 
algorithm to assign the forwarding probabilities of the random 
walk for the desired stationary distribution Pv' Second, we 
present our result that determines the number of steps required 
to converge to the desired distribution with arbitrary difference. 

A. Forwarding Probabilities 

Let the undirected connected graph G(V, E) model a peer­
to-peer network with arbitrary topology. A random walk that 
starts at a node Vo (the originating node), arrives at a node 
Vt at time t and with certain forwarding probability moves to 
a neighbor node VHl at time t + 1. Suppose 7rt denotes the 
distribution of the node Vt such that 7rt(i) = 

Pr(vt = i), for 
all i E V. Let P = (Pij), i, j E V, denote the forwarding 
matrix of the random walk, where Pij is the probability that 
the random walk moves from node i to node j. Pij = 

0 if i 
and j are not adjacent. By definition, we have 7rHl = 7rtP = 

7ropH 1, where 7ro is the distribution of the originating node 
Vo. The following existence result is classic [17]: 

Theorem i: If P is irreducible (i.e., any two nodes are 
mutually reachable by random walk) and P is aperiodic (which 
will be if G is non-bipartite), then 7rt converges to the unique 
stationary distribution 7r such that 7r P = 7r independent of the 
initial distribution 7ro. 

The Metropolis algorithm [16] is designed to assign the for­
warding probabilities Pij such that the stationary distribution 7r 
corresponds to a desired distribution (uniform or nonuniform) 
such as Pv: 

Theorem 2: Consider the graph G(V, E) and let di denote 
the degree of the node i in G. For each neighbor j of i, the 
forwarding probability Pij' i -I- j, is defined as follows: 

{ �(i) 
Pij = 

�U
)

(�:) 

if l!.i < Pi 
di - dj 

if l!.i > Pj 
di dj 

(12) 

and Pii = 1 - LjEneighbors(i) Pij. Then, with the forwarding 
matrix P, Pv is the unique stationary distribution of the random 
walk on G. 
The proof for Theorem 2 is complicated [16]. Intuitively, the 
Metropolis algorithm modifies a regular random walk with 
uniform forwarding probability to a biased random walk with 
forwarding probabilities that depend on the desired sampling 
probability of the neighbor nodes. The Metropolis forwarding 
matrix P is irreducible [9]. Also, the laziness factor 1/2 adds 
a virtual self-loop to each node of the G, which makes G non­
bipartite and P aperiodic. Thus, convergence of the Metropolis 
follows from Theorem 1. 

Note that using the Metropolis algorithm, S implements 
a fully distributed sampling process with which it does 
not require to know/compute the global normalization factor 
LUEV Wu (to calculate Pv = wv/ LUEV wu) in order to 
assign the forwarding probabilities Pij. Each node i deter­
mines its local forwarding probabilities Pij (j is a neighbor 
of i) individually and only based on the local information. 
According to Equation 12, to determine Pij' i only needs 
to know the ratio Wj/Wi (= Pj/Pi), which it computes by 
obtaining the weight Wj from its neighbor j. 

B. Convergence Time 

To determine how rapidly 7rt converges to Pv, first consider 
the following definitions and the subsequent classic result 
(Theorem 3): 



Definition 1: The total-variance difference (or simply vari­

ance difference) between two distributions 7r t and Pv is defined 

as II7rt,Pvll = � maxvo 2::i l7rt(i) - Pil. 
The variance difference is a measure to quantify the total 

difference between two probability distributions, and we have 

o :s; II7rt, Pv II :s; 1. 
Definition 2: For 1 > 0, the mixing time is defined as 

T h) = min{tIVt' ?: t, II7rt',Pvll :s; 1}· 
The mixing time T h) is the time (i.e., number of time steps) it 

takes for 7rt to converge to Pv to within the difference 1, such 

that II7rt, Pv II :s; T The following theorem bounds the mixing 

time when the random walk is on a graph G with arbitrary 

topology [lO]: 

Theorem 3: Let PV"'in mini Pi , then T h) < 

ep1log((Pvmin1)-1), where ep is the eigengap of the for­
warding matrix P. 

The eigengap of P is defined as ep = 1 - 1'\21, where '\2 
is the second eigenvalue of the matrix. Thus, the larger the 

eigengap, the more rapidly the random walk converges to the 

desired distribution. 

However, computing the exact eigengap of P for peer­

to-peer networks with large size and dynamic topology is 

difficult, if not infeasible. Instead, one can utilize the geometric 

bounding approach [10] to derive a bound for the eigengap. 

Considering power-law graph as a generic and realistic model 

for the topology of the peer-to-peer networks [19], we use 

the geometric bounding approach to derive the mixing time 

(or convergence time) of the random walk on a graph G with 

power-law topology: 

Theorem 4: Suppose G is a random graph with the node 

degree distribution Pk ex: k-cx, where 2 < 0: < 3. Then, T h) 
is of order O(N-CX log1-1log4 N), where N is size of the 

network. 

Proof Omitted. • 

Considering this result, the mixing time, i.e., the sampling 

cost/time of our sampling operator S, is suboptimal, com­

parable to the optimal mixing time which is achieved by a 

centralized algorithm [5]. 

VI. EXPERI MENTS 

We conducted a set of experiments via simulation using real 

data to study the performance of Digest. We implemented a 

multi-threaded simulator in C++ and used two Enterprise 250 
Sun servers to perform these experiments. 

A. Experimental Methodology 
To study Digest empirically, we used two sets of real 

data: the TEMPERATURE dataset and the MEMORY dataset. 

The TEMPERATURE data are collected from a set of in­

terconnected weather forecast stations from JPLINASA, and 

the MEMORY data are collected from the nodes of the 

SETI@HOME peer-to-peer computing system. Each weather 

station/node collects recent readings from one or more tem­

perature sensor units, and each node at SETI@HOME may 

include one or more computing units (multiple units in the 

case of the nodes that are clusters). Each dataset consists 

of timestamped tuples with a single attribute (temperature 

and available memory space, respectively), where each tuple 

records the current value of the attribute at a particular 

time at a particular unit (sensor unit and computing unit, 

respectively). Whenever the value of the attribute is modified 

(i.e., autonomously updated, or inserted/deleted due to the 

node or unit join/leave), a new tuple is appended to the dataset 

to record the modification. Tuples are collected from a large 

set of nodes over a specific duration. The nodes and units of 

the weather forecast network are almost stable whereas those 

of SETI@HOME join and leave the network more frequently. 

Table II lists the dataset parameters. 

We simulated the weather forecast network and the peer­

to-peer computing network with two networks of the corre­

spondingly same size, with mesh and power-law topologies, 

respectively. Each node of the network represents a node 

of the real network and emulates the updates of the local 
attributes according to the most recent recorded values in the 

corresponding dataset. The nodes of the two networks are 

Digest enabled. To perform the experiments, we considered 

a continuous AVG query of the form: 

SELECT AVG(a) FROM R 

where a is the recorded attribute. The duration of the continu­

ous query is equal to the duration of recording for each dataset 

(see Table II). We picked random nodes from the networks to 

issue the queries and combined the results of the queries to 

derive a statistically reliable estimation of the result, wherever 

applicable. 

As an aside, we should mention that we used the sampling 

operator S in batch mode, i.e., to derive n samples we 

invoke S for n times simultaneously, which initiates n random 

walks with overlapping convergence time, to expedite the 

experiments. Also, once converged for the first time, to derive 

successive samples we continue the random walk from where 

it stops. In this case, the time to re-converge is reduced from 

the mixing time to the reset time, which is much shorter than 

the mixing time of the random walk. 

B. Experimental Results 
We studied the efficiency of Digest by considering the im­

provement due to the extrapolation algorithm and the repeated 

sampling algorithm, individually and combined. 

1) Effect of the Extrapolation Algorithm: Figure 4-a il­

lustrates the results of our experiment with the extrapolation 

algorithm. For this experiment, we report our results for the 

TEMPERATURE dataset, focusing on different variations of 

I TEMPERATURE I MEMORY I 
Number of Tuples 8640000 
Number of Units 8000 

Number of Nodes 530 
Duration of Recording 18 months 
Frequency of Updates Twice per day 

p 0.89 
"8 8 

TABLE II 
PA RAMETERS OF THE DATASETS 

95445 
1000 
820 

I hour 
Continuous 

0.68 
10 
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Fig. 4. Effect of the Algorithms 

the extrapolation algorithm (we observe similar trend with 

the MEMORY dataset). In Figure 4-a, PRED-k denotes the 

extrapolation algorithm when k previous values are used for 

prediction. The PRED-k algorithms are compared with the 

naive continuous querying algorithm (ALL), which executes 

snapshot queries at all time steps. The time step (i.e., the 

discrete-time unit) for executing snapshot queries is 12 hours, 

equal to the data update period with the TEMPERATURE 

dataset. With a fixed confidence (for the reported result, E = 2 
and p = 0.95), we vary the required resolution !j of the query 

(in the figure, it is normalized to the variance a), and observe 

the number of the snapshot queries executed to maintain the 

resolution using different algorithms. 

As depicted in Figure 4-a, all of the extrapolation algorithms 

behave similarly. With small !j (relative to a), there are not 

many sampling occasions that an extrapolation algorithm can 

skip and, therefore, the performance is similar to ALL. How­

ever, with larger resolution thresholds, the extrapolation algo­

rithms significantly outperform the naive continuous querying 

algorithm by gracefully eliminating the redundant snapshot 

queries according to the required resolution. For example, with 

!j = 8 (i.e., !j fa = 1), the number of the snapshot queries 

executed to answer the query are up to 75% reduced. 

2) Effect of the Repeated Sampling Algorithm: Figure 4-b 

shows the results of our experiment with the repeated sampling 

algorithm (RPT) as compared with the independent sampling 

algorithm (INDEP). For this experiment, we used both of the 

datasets. Assuming a fixed resolution (!j fa = 1, where a is 

known for each dataset) and fixed confidence level (p = 0.95), 
we vary the required confidence interval E of the query, and 

observe the (average) number of the samples required per 
snapshot query to satisfy the confidence requirement of the 

query using each algorithm. Note that here, for RPT we 

report the total number of the samples required per snapshot 

query, including both the retained and the fresh samples (for 

INDEP, all samples are fresh). This is to isolate and show 

the effect of considering the correlation in reducing the total 

number of the required samples with RPT. In Section V I-B3, 

we investigate another advantage of RPT due to the retained 

samples. Although the retained samples must be re-evaluated, 

they incur negligible communication cost to derive; therefore, 

in fact with RPT only the fresh samples actually cost to derive 

from the database (refer to Section IV-B2). 

As depicted in Figure 4-b, the behavior of INDEP and 
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RPT follow our analytical results, and RPT consistently out­

performs INDEP with both datasets. From the experiments, 

we measure the average improvement factor I = nindep fnrpt 
(where nindep and nrpt are the total number of the samples per 

snapshot query for INDEP and RPT) as 1.63 and 1.21 for the 

TEMPERATURE and the MEMORY datasets, respectively, 

which correspondingly translate to 39% and 18% less samples 

with RPT. As suggested by the results, the benefit of the 

repeated sampling algorithm is more when applied to the 

TEMPERATURE dataset; this is expected because of the 

higher correlation (as indicated by the correlation coefficient 

p> as well as less churn at the weather forecast network. 

3) Overall Efficiency of Digest: To evaluate the overall 

efficiency of Digest due to the combined effect of the ex­

trapolation algorithm and the repeated sampling algorithm, 

we measured the total number of samples required to an­

swer a continuous query (for the reported result, !j fa = 1, 

Efa = 0.25, and p = 0.95) using four different combinations 

of the algorithms: (ALL + INDEP), (ALL + RPT), (pRED3 + 
INDEP), and (PRED3 + RPT). We performed this experiment 

with both of the datasets. As shown in Figure 5-a, with 

the TEMPERATURE dataset, Digest (i.e., PRED3 + RPT) 

outperforms a naive solution (i.e., ALL + INDEP) up to 

320%. Similar results are obtained for other continuous queries 

with a full spectrum of different precision parameters; these 

results reveal a cost-precision trade-off that conform with those 

represented by the results in Figures 4-a and 4-b (we omit these 

results due to lack of space). 

Thus far, we used the total number of the samples derived 

to answer the query as the measure of efficiency for the 

algorithms. Assuming a fixed (in average) communication 

cost for deriving each sample, this can be translated to the 

total communication cost (i.e., the total number of messages 

sent from node to node) for answering the query. To factor 

in and evaluate the communication cost for deriving each 

sample using our random sampling algorithm, we considered 

the performance of the Digest (PRED3 + RPT) for the same 

query (!jfa = 1, Efa = 0.25, p = 0.95), this time measuring 

the total communication cost as the measure of efficiency. 

Here we compared Digest, which is a sample-based (and pull­

based) approach, with the naive-sampling pull-based approach 

(ALL + INDEP) as well as two non-sampling push-based 

approaches: 1) the baseline solution (ALL + ALL), with which 

at every snapshot query all tuples from the entire network 



are pushed to the querying node to evaluate the query (only 

supports exact queries), and 2) the filter-based solution (ALL 

+ FILTER) proposed by Olston et al. [18], which installs 

adaptive filters at the nodes to reduce the number of the data 

updates pushed to the querying node. With ALL + FILTER, 

we set the user-defined precision interval [L, H] such that 

(H - L) < 2E, to compare the approaches under equal 

conditions. 

As shown in Figure 5-b (note that the vertical axis is in 

logarithmic scale), with Digest we improve the communication 

cost of evaluating a typical continuous query more than one 

order of magnitude over that of the filter-based solution (ALL 

+ FILTER), and almost two orders of magnitude over that 

of the baseline solution (ALL + ALL). Also we observe 

that even a naive sample-based solution (i.e., ALL+INDEP) 

substantially outperforms an improved non-sampling solution 

(i.e., ALL + FILTER). Comparing our results in Figure 5-
b versus those in Figure 5-a, we note that as mentioned in 

Section VI-B2 the improvement of Digest over the naive­

sampling solution (ALL + INDEP) almost doubles in terms 

of the communication cost, which reflects the fact that with 

repeated sampling the cost of deriving the retained samples is 

negligible and asymptotically only half of the required samples 

are fresh samples costly to derive from the database. Finally, 

based on our results, the average costs of deriving each sample 

are 65 and 43 messages for the simulated weather forecast 

network and the SETI@HOME network, respectively, loosely 

consistent with Theorem 4 that predicts a poly-logarithmic 

complexity for our random sampling operator. 

VII. RELATED WORK 

In contrast with Digest and other aggregate query answering 

approaches with which the query evaluation process occurs out 

of the network at the querying node, there are a number of 

techniques recently developed for in-network aggregate query 

processing. The randomized distributed algorithms [4], [8] are 

communication-intensive and their communication overhead is 

only justified when all nodes of the network issue the same 

aggregate query simultaneously. TAG [15] incurs less overhead 

but with its tree-based aggregation scheme, it is prone to severe 

miscalculations due to frequent fragmentation of the poorly 

connected topology of the tree, specially in the dynamic peer­

to-peer databases. Also, DHT based aggregation techniques 

[12] are limited to the peer-to-peer databases with structured 

topologies. 

The most relevant related work is the work by Arai et al. [1] 

on sample-based approximate aggregation queries in peer-to­

peer networks, which is limited to snapshot queries, whereas 

we focus on continuous queries. Finally, we should mention 

that we have previously presented the preliminary concepts of 

the work we detailed in this paper as a poster [3]. 

VIII. FUTURE WORK 

We intend to extend this study in three directions. First, 

we plan to complement our reverse regression algorithm by 

forward regression, which allows adjusting the previous result. 

Second, we intend to expand on our contributions in this 

paper to cover more complex aggregate queries with multiple 

relations and arbitrary select-join predicates. Finally, with 

the peer-to-peer databases where the time-scale of the data 

changes is comparable with the sampling time, our snapshot 

sampling assumption no longer holds. With such peer-to-peer 

databases, either the sampling techniques should be improved 

or new semantics should be defined for continuous queries. 
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