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Abstract—We describe the use of keystroke-dynamics patterns for
authentication and detecting infected hosts, and evaluate its robustness
against forgery attacks. Specifically, we present a remote authentication
framework called TUBA for monitoring a user’s typing patterns. We
evaluate the robustness of TUBA through comprehensive experimen-
tal evaluation including two series of simulated bots. Support vector
machine is used for classification. Our results based on 20 users’
keystroke data are reported. Our work shows that keystroke dynamics
is robust against synthetic forgery attacks studied, where attacker draws
statistical samples from a pool of available keystroke datasets other
than the target. TUBA is particularly suitable for detecting extrusion
in organizations and protecting the integrity of hosts in collaborative
environments, as well as authentication.

Index Terms—Keystroke dynamics, authentication, malware detection,
forgery.

1 INTRODUCTION

Keystroke-dynamics based authentication is a cheap bio-
metric mechanism that has been proven accurate in dis-
tinguishing individuals [2], [7], [9], [10], [17], [21]. Most
of the attack models considered in keystroke-dynamics
literature assume the attackers are humans, e.g., a col-
league of Alice trying to log in as Alice. However, there
has not been much study on the robustness of this
technique against synthetic and automatic attacks and
forgeries. For example, an attacker may write a program
that performs statistic manipulation and synthesis to
produce keystroke sequences in order to spoof others.
These types of forgery attacks pose a serious threat. It is
unclear from the current literature how robust keystroke
dynamics is against forgery attacks. We address this gap
in our work.

We present a design and implementation of a remote
authentication framework called TUBA for monitoring
a user’s typing patterns; and evaluate the robustness of
TUBA through comprehensive experimental evaluation
including two series of simulated bots.
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We also describe the use of keystroke dynamics as a
tool to help identify anomalous activities on a personal
computer, e.g., activities that may be due to malware.
We consider a model where a user’s computer in an or-
ganization or enterprise may be infected with malicious
software that may stealthily launch attacks. This model
is motivated by the increasing number of infected hosts
caused by organized malicious botnets.

Our contributions are summarized as follows.

1) We design and implement a simple and easy-
to-adopt protocol for authenticating a computer
owner that utilizes the user’s keyboard activities as
an authentication metric. We present our protocol
in a lightweight client-server architecture using the
X Windows System (X or X11 for short).

We analyze keystroke data from a group of users on
a diverse set of inputs, including email addresses,
a password, and Web addresses. We find that per-
formance results vary according to the strings used
for authentication. We find that different types of
strings give different performance when used for
authentication.

We evaluate the robustness of keystroke-dynamics
based authentication against automated bot at-
tacks. We implement two bot programs, called
GaussianBot and NoiseBot, respectively, which
are capable of injecting statistically-generated
keystroke event sequences on a (victim) machine.
The bot programs aim to pass our keystroke au-
thentication tests by mimicking a particular user’s
keystroke dynamics. Our prototype and evalua-
tion results on the accuracy and robustness of
TUBA demonstrate the feasibility of utilizing hu-
man keystroke-dynamics as behavior features in
host-based malware detection.

The bots are capable of launching a series of intel-
ligent attacks drawn upon the statistical analysis
of collected keystroke data. Experiments show that
our classification is robust against several types of
attacks, and is able to correctly classify the attacks
by GaussianBot and NoiseBot with low false posi-
tive rates.

2)

3)

TUBA is particularly suitable for detecting extrusion
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in enterprises and organizations, protecting the integrity
and security of hosts in collaborative environments, and
as an authentication method. Our work also suggests
that certain human behaviors, namely user inputs, can
be leveraged for malware detection. We give concrete
examples detailing how to prevent malware forgery
in such human-behavior driven security systems. This
study is the result of an on-going effort towards design-
ing human-inspired security solutions. The techniques
and results presented in this paper serve as fundamental
building blocks for constructing advanced and sophisti-
cated host-based malware detection tools.

Organization of the Paper: We describe a remote
authentication framework and our security model in
Section 2, where a use case of using TUBA to de-
tect anomalous network activities is also described. De-
tails of our implementation including data collection,
keystroke logging, feature extraction, and classification
can be found in Section 3. Two bots capable of injecting
synthetic keystroke events are presented in Section 4.
Our experimental evaluation results and user study are
described in Section 5. Related work is described in
Section 6. In Section 7, we conclude the paper and
describe plans for future work.

2 OVERVIEW AND SECURITY MODEL

TUBA (Telling Human and Bot Apart) is a remote
biometric authentication system based on keystroke-
dynamics information. We use machine-learning tech-
niques to detect intruders merely based on keystroke
dynamics, i.e., timing information of keyboard events.
We allow for certain types of key event injection by bots.

Security model and malware attack model We
assume that the host operating system and kernel-
level data—including our client-side keystroke-collection
modules and cryptographic keys used—are secure
and not compromised. The remote server for issuing
keystroke challenge and data analysis is trusted and
secure. Client-side malware may run as a user-level
application — type I malware (malicious software) ac-
cording to the stealthy malware taxonomy in [15], e.g.,
spyware implemented as Firefox extensions. Malware
is active in making outside connections for command
& control or attacks. We allow malware to inject arbi-
trary keystroke events and sequences, e.g., synthesized
sequences, except the ones belonging to the owner of
the computer. Thus, under this malware-attack model
we assume that keylogging by spyware or by human
attackers [22] on the owner’s computer is infeasible. An
attacker may also carry out conventional network attacks
such as eavesdropping on the communication channel
between client and server, or replaying network packets.

We note that with hardware TPM (Trusted Platform
Module) enabled, fake key events can be detected and
removed with reasonable overhead (e.g., [5], [18]). In
comparison, we consider a relaxed environment where
TPM is not enabled or available — referred to, by us, as a
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Fig. 1. TUBA architecture in a client-server model.
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non-TPM environment. Our security assumption on the
kernel integrity can be relaxed through the use of TPM
attestation [16] or virtualization based introspection [12],
which are not considered in this paper.

We introduce definitions used in our model. We refer
to an individual who has legitimate access to the com-
puter as the owner. Without loss of generality, we assume
that a computer has one owner, as our solutions can be
easily generalized to a multi-owner setting. Our TUBA
framework can be realized with a stand-alone program on
the client’s local machine. The program is responsible
for collecting training keystroke data, building learning
models, analyzing, and classifying TUBA challenges.
This type of stand-alone architecture is easy to deploy
and implement. It is, however, required that the user
ensure that the program is running and that proper
measures are taken if TUBA issues warnings or alerts.

The use of keystroke-dynamic authentication requires
initial training, after which TUBA challenges may be
issued.

Training Phase: The remote authentication server col-
lects keystroke data from a legitimate user. We assume
that the user’s computer is not infected during the
training phase, but may be infected and recruited into
a botnet after the training phase has ended. The training
phase is as follows. The user and the remote server
authenticate each other and set up a secure connection.
The user then types M strings s;, ¢ = 1,...,M, as
specified by the server, n times each. The authentication
server records the keystroke data from the user, which
is possible using the X Window System. The user runs
X server with a XTrap extension, which intercepts the
user’s keystroke events and sends the information to the
application on the remote authentication server. Once a
sufficient number of samples have been collected, the
authentication server processes the user’s keystroke data
by training a support vector machine, the details of
which are presented in Section 3.1.

TUBA challenge: When a suspicious network event
is observed, TUBA prompts the user with a window
requesting him/her to type in a server-chosen string,
s;. Based on this user’s keystroke timing data and the
classification model built during the training phrase,
TUBA decides whether the user is the legitimate owner
or not. The suspicious events mentioned above may
be triggered by existing bot detection solutions, such
as BotHunter [4], BINDER [3], or according to other



(simple) pre-defined policies.

Use cases A TUBA authentication test can be triggered
periodically or when one or more suspicious events
are observed. Our TUBA authentication model can also
run in a non-intrusive mode where the user’s keystroke
timing is analyzed without explicitly prompting an au-
thentication window for the user to type into. We define
an event as a set of network and/or input activities (key-
board or mouse). Suspicious events are activities that are
pre-defined and related to malicious bot activities, such
as sending a large number of email messages (potential
spam) or making a large number of HTTP requests to a
single target host (potential DoS attacks). A suspicious
event can be related to external inputs, such as the
computer sending email (i.e., SMTP traffic) without any
prior keyboard or mouse activities. Some additional
examples of trigger events that can be used to start a
TUBA challenge including: HTTP requests without a
browser process which can be identified using lsof
and netstat, certain user-initiated network activities
such as sending email without keyboard /mouse input or
with a screensaver active, listening sockets on suspicious
ports, sending high-volume traffic to a single target
host, attempting to disable the bot detection program,
etc. Furthermore, trigger events may be issued based
on network traffic patterns or content. For example,
if the owner’s computer is sending email with spam-
like characteristics, is periodically visiting a server in
a foreign country with no hostname or other records
(possible HTTP-based C&C channel), or has an unusual
chat application establishing connections (possible IRC-
based C&C channel) a TUBA challenge is issued.

Next, we describe the technical details of our TUBA
framework, including feature extraction, classification,
and comprehensive evaluation.

3 IMPLEMENTATION DETAILS

The architecture of TUBA in client-server model is illus-
trated in Figure 1. We describe the use of X server for
key forwarding from the client to the trusted server next.

In TUBA, a trusted remote server is responsible for
data collection and analysis in a remote fashion, e.g.,
using SSH (Secure Shell) the client would remotely lo-
gin to the server with X11-forwarding enabled so that
the keystroke events can be monitored by the server.
The connection to and storage on the remote server is
assumed to be secure. Various key-logging methods for
the GNU/Linux operating system exist. However, most
of the currently-available keyloggers were not designed
with the intention to extract timing information from a
user’s typing pattern, and require superuser privileges
to be installed or used. Addressing these issues and
the need for a platform-independent utility, we imple-
mented a keylogger for the X Windows System using the
XTrap extension. The X Windows System is a powerful
graphical user interface composed of the X server and
X clients. The X server runs on the machine where the

keyboard, mouse and screen are attached, while X clients
are common applications (e.g., Firefox, KPDF or XTerm)
that run on either the local machine or a remote machine,
due to the inherent network capabilities of X11.

The X server can be extended with modules, such
as the XTrap server extension used in our event col-
lection. One of the capabilities of the XTrap extension
is to intercepts the core input (keyboard and mouse)
events and forward them to XTrap client applications.
As such, our keylogger (client application) contains a
callback function that is executed whenever a KeyPress
or KeyRelease event occurs to record the event infor-
mation. Some supplementary data, such as the current
location of the mouse pointer and the name of the
current window in focus, are obtained and formatted to
be easily parsed by the feature extractor.

Figure 2 is an example of the partial output of the
keylogger when typing the word “bot”.

The communication channel between the client and
server can be secured using SSL or other encryption
protocols, which effectively prevent eavesdropping and
packet tampering attacks.

The key events are parsed by the feature extractor,
which contains a small buffer of the last C' KeyPress
and KeyRelease events. Given a database of words
(si, © = 1,..., M) to monitor and feature descriptions
(i.e., keystroke durations, total time to type a word,
press-to-press times, etc.) of how the strings were typed,
when the buffer contents of the keyboard input matches
a database word, the features are extracted and again
formatted to be easily parsed by the classifier. Size C is
adjusted to match the largest word in the database.

3.1

Given a sequence of key-press and key-release events,
features represent various temporal aspects of the user’s
typing patterns. Features may include the total typ-
ing time of the word and various inter-key timings
such as the interval between two adjacent press or
release events. Even for a short string such as the URL
www.amazon.com, the dimensionality of all possible
features is quite high. The TUBA classification algorithm
uses principle component analysis (PCA) to reduce the
dimensions of the feature vectors as a preprocessing step.
PCA is an existing data mining and statistical technique
which is commonly used to condense high-dimensional
data to lower dimensions in order to simplify analysis.
The premise of PCA is to reduce the dimensions of and
transform the original multi-dimensional datasets so that
high variations within the data are retained, i.e., the
principal components are retained.

A key observation in feature extraction is that humans
are imperfect typists and are keen to creating negative
timing features in a sequence of keystroke events. For
example, when typing the string “abc”, a user may create
negative press-to-release (PR) time by pressing ‘c’ before
having released ‘b’. More formally, if we denote the state

Feature Extraction and Classification



1 Window=xterm:XTerm|Event=KeyPress|...|char=b|screen=0|rootXY=(1236,370) |root=0|state=0|time=86474468
2 Window=xterm:XTerm|Event=KeyRelease|...|char=b|screen=0|rootXY=(1236,370) |root=0|state=0|time=86474562
3 Window=xterm:XTerm|Event=KeyPress|...|char=o|screen=0|rootXY=(1236,370) |root=0|state=0|time=86474626
4 Window=xterm:XTerm|Event=KeyPress|...|char=t|screen=0|rootXY=(1236,370) |root=0|state=0|time=86474683
5 Window=xterm:XTerm|Event=KeyRelease|...|char=o|screen=0|rootXY=(1236,370) |root=0|state=0|time=86474692
6 Window=xterm:XTerm|Event=KeyRelease]|...|char=t|screen=0|rootX¥Y=(1236,370) |root=0|state=0|time=86474785

Fig. 2. Examples of logged key events when typing “bot”.
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Fig. 3. Screenshot of the data collection GUI (a) before
and (b) during recording.

Fig. 4. Comparisons between the typing abilities of a
person and a bot modeled by using a first-order Markov
chain. z;, and z;, denote the i-th letter pressed and
released, respectively. Linear combinations of the f; el-
ements represent timing features.

ati—1as ;1 = ‘b’, and that at ¢ as z; = ‘c’, given that
‘c’ is pressed before ‘b’ is released then PR(z;_1,z;) =
Zip — Ti—1,r < 0. From our experimental data, we find
that a large number of users have negative press-to-
release timings in their datasets. Although an adversary
can synthesize arbitrary keystroke events, we find that
it considerably more difficult to create an intelligent bot

which can inject keystroke events that result in negative
inter-key timings (See also Section 4).

Figure 4 illustrates the practical differences in the
capabilities between human and bots. Assuming that
keystroke events can be modeled accurately by a first-
order Markov chain, a human’s key event path would
be a combination of the dashed and solid lines shown
in the figure. It is, however, difficult for a bot to sim-
ulate certain events, as is the case of negative timing
features (paths including dashed lines in Figure 4). When
considering higher-order Markov chains, it is even more
challenging for the attackers to successfully mimic typ-
ing patterns with negative timing; a person may, for
example, press ‘c’ before both ‘a’ and ‘b’ are released.
Using such high-dimensional data leads to higher au-
thentication accuracy and stronger security guarantees.
However, increasing the complexity of the model (e.g.,
to a second- or third-order Markov chain) should be
accompanied by an increase in training instances as to
avoid overfitting (the model to) the data.

Once keystroke features are collected and processed,
we train and classify the data using support vector
machines (SVMs). The use of SVMs is appropriate as the
technique can be used to classify both linearly-separable
(i.e., classes which are separable into two or more groups
using hyperplanes) and non-linearly separable data [6],
[8], [13]. To classify a set of data points in a linear model,
support vector machines select a small number of critical
boundary points from each class, which are called the
support vectors of the class. Then, a linear function is
built based on the support vectors in order to separate
the classes as much as possible; a maximum margin
hyperplane, i.e., a high-dimensional generalization of a
plane, is used to separate the different classes. An SVM
model can classify non-linear data by transforming the
feature vectors into a high-dimensional feature space
using a kernel function (e.g., polynomial, sigmoid or
radial basis function (RBF)) and then performing the
maximum-margin separation. As a result, the separating
function is able to produce more complex boundaries
and therefore yield better classification performance. In
our authentication system, we use the WEKA [20] SVM
implementation with a Gaussian RBF kernel. We refer
readers to data mining and machine learning literature
such as the book by Witten and Frank [20] or Bishop [1]
for detailed descriptions of SVM techniques.

4 BOT SIMULATION AND EVENTS INJECTION

We find that even if we allow for certain types of
key event injection by bots under our security model,



classification based on keystroke dynamics is able to
identify intruders with high accuracy. We play the devil’s
advocates and create two series of bots, the algorithms of
which are described next. We assume that the goal of an
adversary in our model is to create keystroke events that
pass our classification tests. That is, the attacker attempts
to create fake keystroke events expecting them to be
falsely classified as the owner’s. Under our adversary
model, we assume that bots possess keystroke data
of some users except the owner’s, i.e., replaying the
owner’s keystroke sequence is prohibited as described
at the beginning of Section 2.

We implement a program in C which injects keyboard
events with specific timing information in order to simu-
late forgeries. Our attack simulator has two components:
the data synthesizer and typing event injection. To simulate
an (intelligent) bot’s attack, we write a program to create
fake keyboard events and inject them into the X server
core-event-stream (using the XTrap extension) as if typed
on the actual keyboard. From the application’s (or X
client’s) perspective, the fake keyboard events cannot
be distinguished from actual key events (even though
the keyboard is not touched). To test the performance
of a bot injecting fake events we implemented two bots
which simulate human typing patterns according to the
first-order Markov model shown in Figure 4. That is, bots
consider only keystroke durations and positive inter-key
timings (paths shown by the solid lines in Figure 4).

In our simulations, the keystroke duration of the ith
character in a word is modeled as a random variable
X; > 0, where X; is either

1) Gaussian with mean p; and variance af: X; ~
N (,U/i, 0-1'2 )’ or
2) constant with additive uniform noise (mean 0):
Xi ~ pi +U(=ni,m3),

depending on the type of bot desired, GaussianBot or
NoiseBot. The parameter p; is calculated as the mean
key duration of the i-th character from selected instances
of the user study. For example, to calculate 1 for the
first character (‘1’) in the string lcalend4r, we take
the 1calend4r instances from the user study and cal-
culate the sample mean and variance of the keystroke
durations for the character ‘1. Similarly, the press-release
inter-key timing feature between the i-th and (i — 1)-th
character was modeled as a random variable X, whose
parameters are also calculated from the user study in-
stances. Algorithm 1 below shows the pseudocode for
the GaussianBot, which injects n instances of the given
string. Similarly, the pseudocode for NoiseBot which
generates noisy instances (i.e., mean + noise) is shown
in Algorithm 2. The classification performance of these
bots against users are further presented later.

It is important to note that a more complex bot
would additionally consider negative inter-key timing
and therefore a high-order Markov Model may be imple-
mented. This advanced bot would require considerably
greater effort from the bot designer, as the order of

events would have to be calculated a priori. For ex-
ample, if the bot were to correctly simulate the word
“botnet” typed by a person, the probability of injecting
a KeyPress event for the character ‘o’ before injecting a
KeyRelease event of ‘b’ would have to be considered
and therefore our bot Algorithms would need to be
modified significantly.

Algorithm 1: GaussianBot simulation of a human

input: string={x1,z2,..., 25},
durations:{(,ul, 01)7 (;U'Qa UQ)a tey (;U'Na UN)}/
inter-key
timing={ (s, 74), (15, 74), - (i o)},
n=number of words to generate
forn+ 1ton do
fori<+ 1to N do
SimulateXEvent(KeyPress, z;);
X; «— N(pi, 02); /* key duration x/
if X; <0 then X, + 0; /* adjust for
large variance */
Sleep(X;);
SimulateXEvent(KeyRelease, r;);
X!+ N(ui,0l); /+ inter-key timing */
if X/ <0 then X/ < 0;
Sleep(X?);

Algorithm 2: NoiseBot simulation of a human

input: string={x1,z2,..., 25},
durations={(u1,m1), (12, 72), - - > (b, 0N) },
inter-key
timing={ (115, 75), (13, m5); - - -, (W v) b
n=number of words to generate
forn+ 1ton do
fori<+ 1to N do
SimulateXEvent(KeyPress, x;);
X+ pi +U(=n;,m;); /+ key duration =/
if X; <0 then X, + 0; /* adjust for
large noise */
Sleep(X;);
SimulateXEvent(KeyRelease, x;);
X] « ph+U(—nf,n5); /* inter-key
timing */
if X/ <0 then X/ < 0;
negative timing =/

Sleep(X?);

/* adjust

5 EVALUATION OF CLASSIFICATION Accu-
RACY

We collect keystroke timing data from 20 user subjects,
10 females and 10 males on M =5 different strings. We



implement a program with a graphic user interface (GUI)
that records the keystroke dynamics of the participants.
Screen shots of the GUI are shown in Figure 3.
The user is asked to type in the following strings,

n = 35 times each: google.com, www.amazon.com,
lcalenddr, yao.danfeng@gmail.com, and
deianstefan@gmail.com. The gender and age

of each participant are recorded, as well as their
familiarity ("high’, ‘medium’, or low’) with each string.
This data is later used for analyzing the correlation
between demographic data and keystroke dynamics.
Before the recording begins, each user has a chance to
practice typing each string up to five times each. The
study is carried out one user at a time in a controlled
environment where the user can concentrate and focus
on what he or she is typing. Experimental variables,
such as the keyboard, monitor and computer are also
kept constant.

We perform three sets of experiments to test the
feasibility and the performance of TUBA in classifying
keystroke timing features. We illustrate the setup of the
experiments in Table 1.

The goal of Experiment 1 is to confirm our ability
to distinguish different individuals’ keystroke patterns
with good prediction results, as has been shown in the
existing literature. We are able to achieve high accuracy
in classifying individual humans.

5.1 Experiment 1 (Human vs. Human)

Among the 20 users, we set up a basic SVM test to
see if our classification algorithm can distinguish each
user from the others. Three different classification sets
¢, © = 1,2,3 for each word were created according
to the users’ gender: ¢; = {all male instances}, ¢, =
{all female instances}, and ¢3 = ¢; U co. The class i
experimental setup of word s; for user u; was then
performed as follows:

e Label each of the user’s 35 instances as owner,

o Pick 5 random instances for every user w, # u;
whose instances are in the set {¢;} and label them
as unknown,

o Given the relabeled instances, perform a 10-fold
cross-validation for SVM classification (manually
adjusting the model parameters).

o Calculate the average TP and FP rates.

The classification analysis was repeated for all the user
subjects, words in the database, and classification sets.
Finally, the average TP and FP rates for every word and
class were calculated, the results of which are summa-
rized in Table 2 — the average false positive rate of 4.2%
confirms the robustness of using keystroke dynamics for
authentication.

In general, the performance across the different classes
had little effect on the performance of the SVM classi-
fier. We note, however, that the familiarity and length
do affect the results. From Table 2 we observer that
less familiar strings such as 1calend4r, have a lower

true positive rate than the more familiar strings, like
www.amazon.com. This is because the users were still
not very comfortable with the string and the variance
(which in this case may effectively be considered noise)
in the feature vectors is quite high.

On average, the true positive and false positive rates
of the longer strings (yao.danfeng@gmail.com and
deianstefan@gmail.com) perform better because the
users have an additional “freedom” to demonstrate their
unique typing style. Since the strings are very long,
some users, for example, pause (unconsciously) mid-
word and this is reflected in some of the inter-key timing
measurements.

5.2 Experiments 2 & 3 (Human vs. Bots)

Existing literature on keystroke authentication does not
provide any analysis of attacks that are based on statis-
tical and synthetic keystroke timing; to our knowledge,
there are currently no bots which are able to perform
the attacks that we consider. Therefore, we design two
sets of experiments to simulate some sophisticated bot
attacks.

We evaluate the robustness of keystroke analysis
against artificially and statistically created sequences of
events. As auxiliary information for the attacker, we give
the adversary access to the keystroke data of all 19 users
excluding the owner’s data. Results from Experiment 2
and 3 are presented below.

In the bot experiments, only 10 user cases and M =
3 strings are used, with extended focus on tweaking
the model parameters. The chosen strings (s;, j =
1,...,M) included a URL (www.amazon.com), an email
address (deianstefan@gmail.com) and a password
(1calend4r). Similar to the results of Experiment 1,
gender classes only affect the results minimally, and
therefore only the class containing both genders was
considered for Experiments 2 and 3. The detailed setup
for Experiment 2, for word s; of user u; was performed
as follows:

e Label each of the user’s 35 instances as owner,

o For each character z;, ¢ = 1,...N in string s;,
calculate the parameters p; and o;, and similarly
the average and standard deviation of the press-to-
release times (i) and o}) using the remaining users’
(ur # u;) instances,

o Using the parameters as arguments for GaussianBot,
Algorithm 1, generate n = 35 bot instances and label
them unknown

o Perform a 10-fold cross-validation for SVM classifi-
cation using the owner and unknown data sets,

o Calculate the average true positive (TP) and false
positive (FP) rates.

The procedure for Experiment 3 is the same, using
NoiseBot and parameters computed as 7, = 0,;/2 and
n; = o;/2. Table 3 shows the results of Experiments 2
and 3. In summary, the successes of the GaussianBot
and NoiseBot in breaking the model are negligible, as



# Experiment series Purpose Tests on Gender
1 Human vs. Human To distinguish between two users Yes
. To distinguish between a user
2 | Human vs. GaussianBot and a GaussianBot (Algorithm GaussianBot) No
. To distinguish between a user and
3 Human vs. NoiseBot and a NoiseBot (Algorithm NoiseBot) No

TABLE 1

The setup of three series of experiments. We evaluate the

following strings in all experiments: www.amazon.com,

lcalend4r, deianstefan@gmail.com. For human vs. human experiments, we also perform separate analysis
on different gender groups and also evaluate additional strings: google.com and yao.danfeng@gmail . com.

Strin Female Male Both
8 TP FP TP FP TP FP
google.com 93.68% | 5.56% | 92.00% | 5.50% | 91.86% | 4.53%
WWW .amazon.com 94.00% | 4.46% | 94.71% | 4.62% | 91.71% | 2.89%
lcalend4r 92.29% | 5.69% | 92.57% | 7.51% | 89.29% | 4.48%
yao.danfeng@gmail.com | 96.26% | 2.90% | 95.14% | 3.17% | 94.00% | 2.26%
deianstefan@gmail.com | 95.29% | 3.68% | 96.00% | 2.90% | 94.43% | 2.79%
TABLE 2
Human vs. human true positive(TP) and false positive (FP) SVM classification results. Real email addresses are
anonymized.
Strin GaussianBot NoiseBot
8 TP FP TP FP
WWW .amazon . com 96.29% | 2.00% | 100.0% | 0.00%
lcalend4r 93.74% | 3.43% | 97.71% | 1.43%
deianstefan@gmail.com | 96.57% | 1.71% | 99.71% | 0.29%
TABLE 3

Human vs. bots SVM

indicated by the extremely low (average 1.5%) FP rates.
Furthermore, these experiments support the results of
Experiment 1 and confirm the robustness of keystroke
authentication to statistical attacks that are considered.

6 RELATED WORK

What differs our work from existing keystroke-dynamics
work [2], [7], [9], [10], [17], [21], and mouse-movement-
based continuous authentication work, such as [14], is
that we analyze the robustness of keystroke-dynamics
authentication against synthetic forgery attacks. Our em-
pirical investigation indicates the feasibility and security
of keystroke authentication against potential statistical
bot attacks, as opposed to just human impostors. Our
evaluation on bot attacks involves more complex imple-
mentations and attack simulations.

It is worth mentioning that there exists a fundamental
difference between TUBA and CAPTCHA, which is a
technique that attempts to differentiate between humans
and machines on visual ability [19]. TUBA’s challenges are
personalized, whereas CAPTCHA challenges are generic.
TUBA is a fine-grained authentication and identification
framework, where CAPTCHA is a coarse-grained classi-
fication mechanism. Attacks on CAPTCHA are typically
based on computer vision techniques and can be quite
successful, as demonstrated in [11]. However, a success-
ful attack on TUBA requires forging a specific person’s

classification results.

keystroke patterns, which represents a personalized type
of attack as the attacker needs to learn about the typing
patterns of the target.

TUBA is complementary to existing traffic-based mal-
ware detection solutions. The detection results produced
by other means may serve as triggers to invoke a remote
authentication session. For example, TUBA can start
a verification test for the user whenever BotSniffer or
BotHunter identify suspicious communication patterns.
The element of human behavior has not been extensively
studied in the context of malware detection, with a few
notable exceptions including solutions by Cui, Katz, and
Tan [3] and Gummadi et al. [5]. They investigated and
enforced the temporal correlation between user inputs
and observed traffic. The BINDER work [3] describes
the correlation of inputs and network traffic based on
timestamps. Note, however, that TUBA does not rely
on existing botnet detection solutions to work because
the verification tests may be launched periodically or
according to the trigger events defined by TUBA.

7 CONCLUSIONS AND FUTURE WORK

We presented our design and implementation of a re-
mote authentication framework called TUBA for moni-
toring a user’s keystroke-dynamics patterns and identi-
fying intruders. We evaluated the robustness of TUBA



through comprehensive experimental evaluation includ-
ing two series of simulated bots.

The TUBA model can be adopted to be used for contin-
uous and non-intrusive authentication in both, the stand-
alone and client-server, architectures by monitoring fre-
quently typed strings, such as usernames, passwords,
email addresses, URLs, etc. A database of these strings
(si, i =1,..., M) and corresponding SVM models is cre-
ated during an initial training phase. After the training
phase we assume TUBA to be running in the background
(non-intrusively) checking the stream of typed characters
for matching strings in the database and only extracting
features for evaluation against the trained models when
a match occurs. When a match occurs the features of the
typed string are classified as either owner or unknown.
After a number of instances are classified as unknown
the user is notified of the suspicious behavior and (de-
pending on the chosen configuration) the computer may
be automatically locked, under the assumption that it’s
under attack. Conversely, if the majority of the instances
are classified as owner then no suspicion arises. We
will carry out more investigation on the continuous
authentication problem in our future work.
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