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Abstract-This paper presents MAPS -a personalized Multi­
Attribute Probabilistic Selection framework- to estimate the 
probability of an item being a user's best choice and rank the 
items accordingly. The MAPS framework makes three original 
contributions in this paper. First, we capture the inter-attribute 
tradeoff by a visual angle model which maps multi-attribute items 
into points (stars) in a multidimensional space (sky). Second, 
we model the inter-item competition using the dominating areas 
of the stars. Third, we capture the user's personal preferences 
by a density function learned from his/her history. The MAPS 
framework carefully combines all three factors to estimate the 
probability of an item being a user's best choice, and produces 
a personalized ranking accordingly. We evaluate the accuracy 
of MAPS through extensive simulations. The results show that 
MAPS significantly outperforms existing multi-attribute ranking 
algorithms. 

I. INTRODUCTION 

Social networks and online communities are one of the 

most successful collaborative computing platforms in the 

computing and communication history. Personalized ranking 

capability is fundamental for search, question answering, and 

recommendation in eCommerce and social networks related 

applications. Such applications require ranking a set of multi­

attribute items to help a user find his/her best choice among 

all items. For example, Alice wants to buy an iPhone 8G 
using eBay. There are many sellers selling the iPhones 8G 
with different prices and reputations. Alice expects eBay to 

provide her a personalized ranking of all sellers with high 

ranking accuracy. By high ranking accuracy, we mean that 

given a user and a set of multi-attribute items from which 

the user needs to select one as hislher best choice, the best 

choice should be ranked as high as possible in the ranking 

list. Concretely, the best choice of Alice refers to the seller 

from which Alice will purchase an iPhone after an exhaustive 

search over all available sellers. 

In this paper, we argue that there are three key factors in de­

signing a personalized multi-attribute ranking algorithm with 

high accuracy: inter-attribute tradeoff, inter-item competition, 

and personalized user preferences. 

The first factor is inter-attribute tradeoff. Different items 

often have different attribute values. When the items with 

multiple attributes can be compared, it is straightforward to 

rank them. In eBay, if one seller has higher reputation and 

lower price than another, this seller is clearly a better choice. 

However, if one seller has higher reputation and higher price 

than another seller, it is hard to determine which one is 

better. In this situation, the inter-attribute tradeoff needs to 

be considered. Existing approaches concentrate on balancing 

weights of multiple attributes for each item. In this paper we 

argue that only considering inter-attribute tradeoff may not 

be sufficient. We observe that when it is hard to compare 

items with contradicting inter-attribute tradeoff, a user also 

makes hislher best choice decision based on other factors, 

especially the competition between sellers with similar prices 

and reputations in the eBay case. This motives us to introduce 

the next factor. 

The second factor is inter-item competition. The proba­

bility of an item being a user's best choice depends on not 

only its own attribute values, such as price and reputation of 

the seller, but also other similar items that are in competing 

value ranges. For example, the existence of an iPhone seller 

will reduce the probabilities of other iPhone sellers, who have 

prices and reputations similar to this seller, being the best 

choice. In this paper, we show that inter-item competition not 

only plays an important role in determining the probability of 

an item being the best choice, but also helps in making inter­

attribute tradeoff in the situation where the multiple attributes 

of items being ranked do not agree with one another. Thus, we 

argue that a ranking algorithm should incorporate inter-item 

competition by jointly considering other similar items when 

calculating an item's ranking score. 

The third critical factor is personalized user preferences. 
We argue that both inter-attribute tradeoff and inter-item 

competition can vary significantly for different users or for the 

same user under different contexts. In eBay, we observe that 

some users prefer sellers with low price and reasonable reputa­

tion, some users prefer high reputation and reasonable price, 

and some extreme users always choose the items with the 

lowest price. Furthermore, a user may prefer sellers offering 

low price when purchasing a cheap product, and prefer sellers 

with high reputation when purchasing an expensive product. 

Thus, a ranking algorithm should capture personalized user 

preferences with respect to inter-attribute tradeoff and inter­

item competition. 

Unfortunately, most existing multi-attribute ranking algo­

rithms rank a set of items based solely on inter-attribute 

tradeoff and personalized user preferences on how such inter­

attribute tradeoff is handled. However, they fail to address 

inter-item competition. Concretely, existing multi-attribute 

ranking algorithms fail to capture the background knowledge 

of a user about how he/she has handled the inter-item compe-
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tition in the past when items being ranked have contradicting 

attribute values. We show in this paper that existing algorithms 

work well only in simplistic scenarios and tend to fail drasti­

cally for users with slightly more sophisticated preferences in 

terms of inter-item competition. As a result, existing ranking 

algorithms produce low ranking accuracy, i.e., placing a user's 

best choice at low position on the ranking list. 

With these challenges in mind, we present MAPS - a 

personalized Multi-Attribute Probabilistic Selection frame­

work. The MAPS is unique in three aspects. First, MAPS 

presents a visual angle model, a novel approach to modeling 

items such that inter-attribute tradeoff and inter-item compe­

tition can be elegantly captured using the same underlying 

model of items. Second, MAPS presents a methodical scheme 

to modeling personalized user preferences by capturing the 

past behaviors of a user in terms of how the user makes 

the best choice selection. Third but not the least, MAPS 

develops a probability-based ranking algorithm. It estimates 

the probability of each item being a user's best choice as the 

ranking score to rank the items that match to a user's query. 

We evaluate MAPS through extensive simulations. We 

show that MAPS offers higher ranking accuracy compared 

to existing multi-attribute ranking algorithms. Furthermore, 

MAPS requires a short learning curve and can scale to a large 

number of items. To the best of our knowledge, MAPS is the 

first multi-attribute ranking algorithm to date that identifies 

and incorporates inter-item competition into both the ranking 

score computation and the personalized user preference profile 

construction processes. 

The rest of the paper is organized as follows. Section II 

describes the problem formulation and illustrates the limita­

tions in existing ranking algorithms. We introduce MAPS in 

detail in Section III. We evaluate the performance of MAPS 

in Section IV and conclude in Section VI. 

II. PROBLEM DEFINITION 

A. Problem formulation 

The problem of personalized multi-attribute ranking focuses 

on providing a ranking list of items in response to a given user 

query. The goal is to ensure high accuracy in the sense that 

the user's best-choice item, which the user will choose after 

an exhaustive search over all items, should be ranked as high 

as possible on the ranking list. Existing multi-attribute ranking 

algorithms address the problem solely based on inter-attribute 

tradeoff through weight function design and differ from one 

another mainly in terms of concrete weight functions. In this 

paper we argue that the multi-attribute item ranking should be 

based upon a user's personal preferences on both inter-attribute 

tradeoff and inter-item competition. 

We formulate the multi-attribute ranking problem using the 

running example that Alice wants to buy an iPhone 80, and 

the e-market has n sellers selling it. These sellers form the 

seller set or the item set in general, denoted by sset = 

{ Sl, S2, ... , Sn}. Different products often have different seller 

sets. We refer to the different products as the different contexts 

or queries of our ranking problem. 

A seller has many attributes, such as name, location, spe­

cialty, product name, unit price, shipping cost, and reputa-
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tion. Typically only a subset of the attributes is used for 

ranking (e.g., unit price, shipping cost, and reputation). We 

call this subset of attributes the ranking attributes. These 

m ranking attributes form the attribute set, denoted by 

Aset = {A1, ... ,Am}. For example, in eBay, Alice selects 

the best iPhone seller based on two ranking attributes: price 

(sum of unit price and shipping cost) and reputation. 

In general, a user considers the tradeoff between the ranking 

attributes (Aset) of the items (sset) based on hislher personal 

preferences, and chooses the best one. We refer to this chosen 

one as the user's best choice, denoted by SB. The goal of 

the multi-attribute ranking algorithm is to rank the item set 

of a context for a given user, such that the user's best choice 

(SB) is ranked as high as possible in the top-down ranking 

list of items. For presentation convenience, we may simply 

use attributes to refer to ranking attributes in the rest of the 

paper when no confusion occurs. Similarly items and sellers 

may be used interchangeably. 

In the rest of the paper we will focus the discussion more 

on the original contributions of MAPS. Thus, we assume that 

the users considered in this paper are rational in the sense that 

they only choose the sellers that are not worse than any other 

one in the seller set. For example, if a seller offers higher 

price and lower reputation compared to another seller, none 

of the rational users will choose this obviously "worse" seller 

since none of its attributes is competitive compared to the 

other seller. Therefore, we assume that all sellers in sset are 

skyline sellers [1], so none of the sellers considered in our 

seller set will be worse than another seller. 

B. Ranking quality metric 

Let Vi denote the ranking score of item Si and VB denote 

the ranking score of the best choice. Since the items are 

ranked according to their ranking scores, which represent their 

likelihood of being the best choice within the item set sset, 
we evaluate multi-attribute ranking algorithms with ranking 

quality, which is the percentage of the items whose ranking 

scores are smaller than the ranking score of the best choice. 

. . I{Si E ssetlVi < VB}I 
Rankmg qualzty = 

Issetl _ 1 
. (1) 

We use Ri to denote the ranking position of the item Si, which 

means the position of this item on the ranking list of the n 

items in sset. We use RB to denote the ranking position of 

the best choice. The highest rank is 1 and the lowest rank is 

n. We can also formulate ranking quality as follows. 

. . n-RB 
Rankl.ng quall.ty = (2) 

n-l 

This ranking quality metric amounts to say that if the best 

choice has ranking position 1, the ranking quality is 1, so 

the ranking score of the best choice is the largest among all 

the items. When the best choice has ranking position n, the 

ranking quality is 0, so the ranking score of the best choice 

is the smallest among all the items. Thus, the higher is the 

ranking quality, the better accuracy is the ranking algorithm. 

C. Example 

To clearly state our formulation, we give an example used 

throughout this paper. In eBay, a user sends a query searching 



Seller lD Price Reputation 
Sl $480 49 
S2 $667 352 
S3 $685 1560 
S4 $778 5885 

TABLE T 
SKYLINE SELLERS OF IPHONE 8G IN EBAY 

for "iPhone 8G" sellers. This user judges the sellers based 

on two attributes: price and reputation. The reputation of a 

seller is calculated as the number of the seller's previous good 

transactions subtracted by the number of the seller's previous 

bad transactions. In general, a user prefers high reputation and 

low price. Among the seller set returned for this query, there 

are four skyline sellers, denoted by 51, 52, 53, and 54. The 

seller IDs (5i), price (Pi), and reputation (ri) are shown in 

Table I. Note that the data in Table I are real data collected 

from eBay. 

We explain the meaning of ranking quality with an example. 

Assume that Alice will choose 53 as her best choice from 

the four sellers. Algorithm1 rank the items as 51 > 52 > 

53 > 54 which means RB = 3, so the ranking quality is 

(4 - 3)/(4 - 1) = 0.33. Algorithm2 rank the items as 53 > 

54 > 52 > 51 which means RB = 1, so the ranking quality 

is (4 - 1)/(4 - 1) = 1. Algorithm3 rank the items as 52 > 

51 > 54 > 53 which means RB = 4, so the ranking quality 

is (4 - 4)/(4 - 1) = O. We can conclude that the ranking 

quality of Algorithm2 is the best and the ranking quality of 

Algor'ithm3 is the worst. 

D. Limitations in weight-based ranking approach 

The problem of ranking items with multiple attributes 

has been addressed in literature [2]-[4]. Different methods 

simply provide different weight functions in terms of how to 

combine the attributes of items for ranking. This weight-based 

multi-attribute ranking is currently used in some commercial 

systems, such as eBay [5]. 

In the weight-based multi-attribute ranking approach, utility 

scores are calculated by utility functions that combine multiple 

attributes with different weight values. The most widely used 

utility function is a linear combination of the transformed 

attribute values, as shown in equation (3). 

m m 

U(5) = L ai . Fi(ai) with 2:>l:i = 1. (3) 
i=l i=l 

U (5) is the utility score of seller 5, ai is the attribute value 

of Ai for seller 5, ai is the weight value assigned to attribute 

Ai, and Fi(X) is the transformation function for attribute Ai. 
The most widely used transformation functions are Fi (x) = x 
and Fi(x) = log(x). The sellers are ranked according to their 

utility scores. 

However, we find two limitations in the weight-based multi­

attribute ranking approach. First, by solely using weight to 

combine attributes, some sky line sellers have no chance to 

be ranked as the best choice. Second, existing weight-based 

multi-attribute ranking algorithms fail to capture the concept 

of inter-item competition. 

We demonstrate the first limitation through a case study. Let 

us use the following utility function: 

U(5i) = a· ri + (1 - a) . (-Pi) . (4) 

With the sellers in Table I, the utility scores are calculated 

as U(5I) = 529a - 480, U(52) = 1019a - 667, U(53) = 

2245a - 685, U(54) = 6663a - 778. 
From a survey with 30 real users, we find that most of 

them choose 53 as their best choice. So we examine what 

the parameter a should be to make 53 have the largest utility 

score among the four sellers. This means that U(53) should be 

larger than U(51), U(52), and U(54), as shown in equation 

(5), (6), and (7). 

U(53) 2 U(5I) =} a 2 0.119. 

U(53) 2 U(52) =} a 2 0.015. 

U(53) 2 U(54) =} a .-::: 0.021. 

(5) 

(6) 

(7) 

However, the condition on a in equation (5) conflicts with 

that in equation (7). It means that there is no valid choice of 

a for those users who choose 53 as their best choice. 

It is important to point out that this problem is the conse­

quence of the linear combination of multiple attributes in the 

utility functions. It does not depend on the specific form of the 

utility functions. We can prove that if a point (item) is a skyline 

point but not a convex hull point, it will never get the highest 

utility score among the point set. The proof is omitted due to 

page constraint. Therefore, some users' best choices cannot 

be described or captured by simply applying weight-based 

multi-attribute ranking approach. This is the first limitation 

of personalized ranking of items that only considers inter­

attribute tradeoff using weight-based multi-attribute ranking 

approach. 

Now we demonstrate the second limitation of weight-based 

multi-attribute ranking using the same real-user study. We 

asked 30 real users to rank the items according to the items' 

probabilities to be their best choice in two scenarios. In the 

first scenario, there are only three sellers in the seller set: 

{51, 52, 54}; In the second scenario, there are four sellers in 

the seller set: {51, 52, 53, 54}. 
For the first scenario, 22 of the users ranked the items as 

52 > 51 > 54 or 52 > 54 > 51. However for the second 
scenario, all of these 22 users switched their ranking list to 

53 > 51 > 54 > 52 or 53 > 54 > 51 > 52. It means that 

when 53 is not in the seller set, the probability of 52 is larger 

than the probability of 51; when 53 is added into the seller 

set, the probability of 52 is smaller than the probability of 51. 
So on the ranking lists produced for these users, the order of 

52 and 51 is affected by whether 53 exists. 

The reason behind this phenomenon is that after 53 is added 

into the seller set, it competes with the other sellers to be the 

best choice. Since the attribute values of 53 is the closest to the 

attribute values of 52 (see Table I), it will greatly reduce the 

probability of 52 and make the probability of 52 smaller than 

all the other items. From further interviews with these users, 

we find that inter-item competition mostly happens between 

the sellers with similar attribute values. There is significant 

competition between 53 and 52, some competition between 

53 and 54, but nearly no competition between 53 and 51. 



The above case study demonstrates that the ranking score 

of a multi-attribute item should depend on not only its own 

attributes (inter-attribute tradeofi), but also the attributes of 

other similar items (inter-item competition). In fact, inter-item 

competition is the reason of why adding or removing an item 

may change the ranking order of other items. In contrast, 

weight-based ranking algorithms consider only inter-attribute 

tradeoff and compute the utility score of an item only based 

on its own attributes. Thus, they fail to take into account of 

inter-item competition introduced by those items with similar 

attributes. As a result, whenever the inter-item competition 

plays a critical role or inter-item competition changes, such as 

adding or removing an item, the weight-based multi-attribute 

ranking algorithms will fail miserably. 

The above limitations in weight-based approach to per­

sonalized ranking of items motivate us to design MAPS, a 

Multi-Attribute Probabilistic Selection framework for person­

alized multi-attribute ranking. A unique feature of MAPS 

is its capability to produce a ranking of items by carefully 

combining three critical factors: inter-attribute tradeoff, inter­

item competition, and personalized user preferences. 

III. THE MAPS FRAMEwORK 

In this section we describe the MAPS framework by 

focusing on the design and development of the three key 

components of MAPS: the visual angle model, the dominating 

area, and the density function. We will illustrate these concepts 

with the example shown in Section II.C. Further detail on 

the MAPS framework and its high dimensional model can be 

found in our technical report [6]. 

A. Visual angle model 

In MAPS, a visual angle model is designed for the eBay 

case in two steps. In the first step, given a set of items with 

two attributes, we map all items into points (stars) in a two 

dimensional space with each dimension representing one of 

the attributes. The goal of such mapping is two folds. First, 

we want to utilize the two dimensional space to devise a visual 

angle model to capture the intrinsic relationship among the two 

attributes of each item (inter-attribute tradeofi). Second, we 

want to build a foundation for capturing inter-item competition 

by comparing items in terms of the relative angle distance 

between their multiple attributes. With these objectives in 

mind, we need to normalize all attributes into the same value 

range, say the range of [0,1], and make sure that a larger 

normalized attribute value indicates a higher preference of a 

user. 

In general, we can divide all types of attributes into two 

classes. The first class of attributes carries the semantics of 

the-Iarger-the-better within the range of [0, +(0), such as the 

reputation attribute of eBay sellers. For an attribute value in 

the first class, say ai, function (8) is used to perform the 

normalization: 

(8) 

The second class of attributes carries the ordering semantics 

of the-smaller-the-better within the range of [0, +(0), such 

as the price attribute of eBay sellers. Function (9) is used 
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Fig. 1. Starry sky of iPhone 8G sellers 
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to perform the normalization of an attribute value aj in the 

second class: 

(9) 

There are three remarks on the normalization step. First, in 

both normalization function (8) and function (9), f3 is the only 

parameter that is system-defined. Once it is set, all the users 

will use the same value. We will evaluate the effect of different 

settings of f3 in Section IV-C. Second, we have evaluated a 

number of popular normalization functions and found that 

the performance of MAPS is not sensitive to the choice 

of the normalization function. Third, for the attributes with 

other properties, we can also design normalization functions 

accordingly [7]. 

After normalization, an seller Si with two attributes can be 

normalized into a point in a two dimensional space, denoted 

as (Xi, Yi), where Xi and Yi represent the normalized price and 

the normalized reputation of seller Si. 
Based on the eBay example in Section II-C, Figure 1 

shows the four sellers in Table I marked as four stars, each 

representing one of them. We set f3 as 106 in this example. 

In the second step, a preference space is constructed by a 

visual angle model with two objectives: to capture the inter­

attribute tradeoff and to establish the foundation for modeling 

inter-item competition. First, we represent each item as the 

angle of the ray from the origin to the point of the item in 

space. 

In our eBay example, the sellers are mapped into 2D space 

with normalized price as x-axis and normalized reputation as 

y-axis (Figure 1). For each seller Si, we choose the angle 

between the ray -from the origin to the corresponding star 

of Si in the 2D space- and the x-axis to represent this seller. 

This angle is calculated as: 

Zi = arctan(y;/xi). (10) 

In Figure I, the solid lines show the rays from the ongm 

marked by an eye symbol to the four stars. Using the visual 

angle model to represent the items gives two useful properties. 

First, the visual angle can uniquely represent an item in the 

item set. If two items in the item set have the same visual 

angle, they will be directly comparable. One of them will be 

clearly worse and thus never be chosen by any rational user. 



As we discussed in Section II-A, to simplify the presentation, 

we assume that all items in the item set are skyline items such 

that none of the items is worse than another. Thus we focus 

on the challenging case to compare and rank the items with 

different visual angles. 

Second, the visual angle representation of an item can 

describe the inter-attribute tradeoff. For example, in Figure 1, 

a seller with a large visual angle (e.g., seller 54) means that 

the seller has high reputation but relatively worse price. In 

contrast, a seller with a small visual angle (e.g., seller 5d 
means that it has low reputation but relatively better price. 

In addition, the angle value could be used to capture a user's 

personal preferences. For example, a user, say Alice, is looking 

at the starry sky of iPhone sellers (Figure 1). If Alice prefers 

the sellers with high reputation and moderate price, she is more 

likely to look at the sky with a large visual angle. So she may 

find that 54 has the smallest angle distance to her own visual 

angle, and choose 54 as her best choice. However, if Alice 

prefers the sellers with low price and moderate reputation, she 

is more likely to look at the sky with a small visual angle. This 

time, 51 may have the smallest angle distance to Alice's visual 

angle and be chosen as Alice's best choice. This motivates us 

to define a preference space base on the angle model for our 

eBay case: The whole preference space is the angle value of 

[0°,90°]. A user's preferences are described by the user's taste 

on visual angles over the preference space. 

B. Dominating areas of items 

In MAPS, dominating area is introduced to capture inter­

item competition. The motivation of defining the dominating 

area of an item comes from the following observation. When a 

user looks at the multidimensional space with a specific visual 

angle, say zu, this user will select the item with the smallest 

angle distance to hislher visual angle as the best choice. We 

refer to this selected item as the dominating item of this special 

visual angle. 

Let Zi denote the angle of item 5i and Zu denote the visual 

angle of a specific user U. The angle distance between Zu and 

Zi is calculated as: 

AngleDist(pu,Pi) = Izu - zil (II) 

We define the dominating area for item 5i as the angle 

range that satisfies the following condition: If a user looks 

at the sky within the dominating area of item 5i, the angle 

distance between Zu and Zi is the smallest compared to the 

angle distance from any other items to Zu. Formally, the 

dominating item 5i for Zu should satisfy the follows: 

AngleDist(zu, Zi ) .-:; AngleDist(zu, Zj ) , \11 .-:; j .-:; n (12) 

This property ensures that increasing the dominating area of 

an item for a given user will increase its probability of being 

the user's best choice. Since a user can only look at the sky 

with the visual angle within the preference space, the inter­

item competition can be captured by the competition among 

different items in partitioning the preference space into their 

dominating areas. 

For our eBay case, we introduce a concrete approach to 

define the dominating area of item 5i (1 '-:;i .-:; n). Recall 
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Fig. 2. The change of dominating areas when adding or removing an item 

that each seller 5i is represented by an angle value Zi in 

the eBay example. Assume that all n items are ordered 

according to their visual angles from low to high. Let 1Jt(5i) = 
[loweri, upperi] denote the dominating area of item 5i, where 

loweri and upperi denote the lower boundary and the upper 

boundary of the angle range of the dominating area 1Jt(5i). 
Then 1Jt(5i) is defined as follows: { [a, ZltZ2] if i = 1, 

1Jt(5i) = [Zi-t+Zi, Zi+;i+l] if 1 <i < n, 
[Zn-t+Zn,90] if i=n. 

(13) 

We use the sellers in Table I to compute their dominating 

areas. Recall Figure 1, the visual angles of the four sellers are 

Zl = 5°, Z2 = 37°, Z3 = 63°, and Z4 = 69°. Their dominating 

areas are calculated as 1Jt(5I) = [0°,21°], 1Jt(52) = [21°,50°]' 
1Jt(53) = [50°,66°], and 1Jt(54) = [66°,90°]. In fact, we can 

see from Figure 1 that the entire preference space from 0° 
to 90° is divided by three angle bisectors, L1 = z] tZ) = 
21 ° L = Z2+Z', = 50° and L = Z',+Z4 = 66° into four , 2 2 ' 3 2 ' 
dominating areas 1Jt(5I), 1Jt(52), 1Jt(53), and 1Jt(54). 

Both equation (13) and the example above show that during 

the calculation of the dominating area of an item, we consider 

not only the attributes of this seller but also the competing 

neighborhood sellers. Inter-item competition happens when 

two items have adjacent dominating areas. Thus we define the 

neighbors of an item as the items whose dominating areas 

are adjacent to the dominating area of this item. For example, 

the neighbors of 52 are 51 and 53. 
Obviously, the dominating areas will change if an item is 

removed from or added to the item set. Figure 2 shows the 

dominating areas of three scenarios for the eBay example; the 

x-axis means different scenarios and the y-axis is the whole 

preference space. In the first scenario (column 1), there are 

four sellers as shown in Figure 1. In the second scenario 

(column 2), 53 is removed from Figure 1. Thus the dominating 

areas of its neighbors, 52 and 54, will increase. In the third 

scenario (column 3), a new seller 55 with price $500 and 

reputation 200 is added; this new seller will compete with its 

neighbors, 51 and 52, and their dominating areas will reduce. 

C. Density functions of users 
Beside inter-attribute tradeoff and inter-item competItIOn, 

the third key factor that plays a critical role in achieving high 

accuracy for multi-attribute ranking is to capture the diversity 

and uncertainty in users' preferences. Naturally, different users 



may have different preferences over the same set of multi­

attribute items. For instance, Alice and Bob may not choose 

the same iPhone seller as their best choices. Such preferences 

may depend on the life styles and income levels of the 

users and may change over time. Second, even the same 

user may have different preferences under different contexts. 

For example, by analyzing the past selection behaviors of a 

user, we observe that this user prefers the sellers with high 

reputations and moderate prices sometimes, but prefers the 

sellers with low prices and moderate reputations at some other 

times. 

In order to capture such uncertainty and diversity, we 

propose to use a probability density function to capture a 

user's personal preferences based on his/her past item selection 

behaviors. Concretely, Let D(z) denote the probability that 

this user looks at the space with the visual angle z. As 

z varies, D(z) changes. Different probabilities on different 

visual angles reflect this user's personal preferences. In the 

eBay example, the density function of Alice could look like 

the one shown in Figure 3(a). In this figure, the x-axis means 

the preference space ranging from 0° to 90°. The y-axis means 

the probability of Alice to look at the sky with a specific visual 

angle. 

In the remainder of this section, we will answer two 

questions: (1) how to estimate the probability of an item being 

the best choice given a user's density function, and (2) how 

to estimate a user's density function from this user's past 

selection behaviors. 

First, we will discuss how to estimate the probability of 

an item being the best choice. Given the dominating area of 

item 5i and the density function of a user, we can calculate 

the probability that the user chooses this item as his/her best 

choice by accumulating the density function within this item's 

dominating area: 

Vi 
= 1 D(z)dz. (14) 

zEeR(S;) 

Recall that 
Vi 

is the ranking score of 5i. We can then rank 

all items {51,52, ... ,5n} according to 
Vi 

(l-S:i -s: n) from 

high to low. 

In the eBay example, based on Alice's density function 

shown in Figure 3(a) and the dominating areas shown in Fig­

ure 2 (the first scenario), we calculate VI = 39%, V2 = 11 %, 
V3 = 31%, and V4 = 19%. (The dashed lines in Figure 

3(a) divide the density function for the four sellers based on 

their dominating areas.) Thus, for Alice, the four sellers will 

be ranked in the order of 51 > 53 > 54 > 52. However, 

in the second scenario where 53 is removed from Figure 2, 
the probabilities for sellers 51,52,54 become VI = 39%, 
V2 = 14%, and V3 = 47%, which yields the ranking 

order of 54 > 51 > 52. Similarly, in the third scenario 

where 55 is added to Figure 2, the ranking order becomes 

53 > 55 > 51 > 54 > 52. 
The equation (14) and the above discussion on the running 

eBay example show that both a user's density function and the 

inter-item competition between neighboring items influence 

the probability of an item being the best choice of the user. 

To the best of our knowledge, MAPS is the first work that 
addresses inter-item competition. 

0.06 L 1 =21: L2=50: 

:>.0.04 
:!: 
:c 

�0.02 
a: 

, , 

(a) One density function 

-- Density block 1 
-+- Density block 2 0.06 

Visual angle 

(b) Two density blocks 

Fig. 3. Example of density function and density blocks 
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Now we answer the second question of how to infer a 

preference density function from a user's past selection 

behaviors. Assume that we have a set of past selection 

behaviors, denoted by H set = {HI, H 2, . .. , H L}, for a given 

user and the size of the past selection behaviors is L. Each past 

selection behavior (Hj E Hset) records an item set (5rt), and 

the best choice (5s) of this user within this item set. 

Recall our eBay case, we construct one density function 

over the preference space from the past selection behaviors in 

two steps: (1) We represent each past selection behavior as a 

density block. (2) We accumulate these density blocks into a 

density function D (z) for the user. 

First, we use kernel density estimation [8] to construct one 

density block from the lh past selection behavior. We use 

dj(z) to denote the density block for the lh past selection 

behavior. Let 5 Bj denote the user's best choice and 5rt 
denote the item set in this past selection behavior. Let ZSj 
denote the angle value of 5B . . Note that this angle descries 

the user's preference in the lh past selection behavior. 

The density block dj (z) is a shape of Gaussian distribu­

tion. We choose Gaussian distribution since its mathematics 

foundation in kernel density estimation [8]. However, MAPS 

framework can use other probability distributions to generate 

density blocks. Formally, we construct dj(z) in our eBay case 

as follows. 

(15) 

The mean of dj(z), denoted by j.Lj, is the visual angle of the 

user's best choice in the lh past selection behavior. 

j.Lj=ZBj· (16) 

The variance of dj(z), denoted by 5j, is the average angle 

distance from 5 Bj to its neighbors. If we assume that all the 

items in the item set are ranked by their angles from small to 

large, we know the two neighbors of 5sj is 5Sj-1 and 5Bj+1 ' 
The exception happens only when 5Bj is the first item or the 

last item in the item set since it will only have one neighbor. 

Therefore, we can calculate the variance as follows. 

{ZBj+1 - ZBj+1 if Bj = 1, 

5· = 
(Zllj+l-ZIl)-(Zllj-Zllj-l) 'f 1 B· 15setl J 2 1 < J< J ' 

ZBj - ZBj-l if Bj = 15rtl. 
(17) 

The choice of the mean and the variance ensures two 

properties. First, the density block constructed from the lh 
past selection behavior mainly resides in the dominating area 

of the best choice in that selection. Second, there is non­

zero probability that the density block resides in other items' 



dominating areas to capture the uncertainty and diversity 

inherent in the user's selection behaviors. 

Figure 3(b) shows the example of two density blocks for the 

eBay scenario. One is marked by the red circle curve and the 

other is marked by the black rectangle curve. If Alice chose 53 
as her best choice previously and we know that the angle value 

of 53 is 63° from Figure 1, then this past selection behavior 

introduces a Gaussian shape density block with IL = 63°. In 

the 2D space of Figure 1, we calculate the variance as the 

average angle distance from the user's best choice to its two 

neighbors. For 53, its neighbors are 52 with visual angle 37° 

and 54 with visual angle 69°. The variance is calculated as 
5 = (6

9-63)!(63-37) = 16°. This density block is represented 

as the black rectangle curve in Figure 3(b). 

In MAPS, when the system knows a user's best choices in 

the past L selection behaviors, the system constructs L density 

blocks as dj(z) for 1 :::; j :::; L. The overall density function of 

a given user is constructed by normalizing the corresponding 

L density blocks as: 

LL d(z) D(z) = 90 JZl J (18) fo Lj=l dj(z)dz 
The density function in Figure 3(a) is normalized from the 

two density blocks in Figure 3(b). 

We now discuss how to estimate the probability of the 

item being the best choice of the user based on the density 

function constructed from function (18). In the first prototype 

implementation of MAPS, we use function (19) to cumulate 

the dense function of Gaussian distribution with mean hI" and 

variance ho from - 00 to x. I x - L 

F(x,hl",ho)=(l+e1'j( M 1"))/2, (19) 
v2· ho 

where e1' j(x) = 0r fox e-t2 dt is the well-known error func­

tion encountered in integrating Gaussian distribution [8]. 
We can prove that the computation complexity of MAPS for 

the eBay case is 0 (n . L). For storage, MAPS only needs to 

store the mean and variance values (i.e., /Li and 5i) for each 

past selection behavior. This yields low storage complexity 

since the storage cost depends only on the length of the history 

(L). From our later experiment, we know that L = 32 is 

enough for accurate prediction. 

IV. EXPERIMENT 

We evaluate MAPS through both synthetic simulations and 

real-user experiments. In synthetic simulations, we concentrate 

on the comparison between MAPS and existing weight-based 

multi-attribute ranking algorithms. The factors that affect the 

accuracy of MAPS are also examined. In real-user experi­

ments, we evaluate MAPS using the first prototype system 

of MAPS [9] with 50 real users. The experiments reported in 

this section concentrate on the eBay scenarios used throughout 

the paper. The experiments on high dimensions and with real 

users are given in our technical report [6]. 

A. Simulation configuration 
We simulate the scenario that a user selects his/her favorite 

seller for a particular product in e-market, such as Amazon and 

eBay. The simulation environment is composed by five parts: 

(1) generating seller sets, (2) simulating a user's selection 
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behaviors, (3) implementation of MAPS, (4) implementation 

of weight-based multi-attribute ranking algorithms, and (5) 

performance evaluation criteria. 

Generating seller sets. To generate the seller set for a query, 

we need to determine the number of sellers (n) as well as 

their prices and reputations. Based on real data collected from 

Amazon and eBay, we obtain the following observations. The 

price is mostly within [10, 1000]; the reputation is mostly 

within [0,106]; the number of sellers for a query is mostly 

within [20,100]; and both price and reputation follow power­

law distributions. Based on these observations, we generate 

the seller set for each query as follows. 

First, the size of seller set, denoted by n, is randomly chosen 

within [20, 100]. We will evaluate larger item set in Section 

IV-C. 

Second, the minimum price and maximum price are ran­

domly chosen within [10, 1000]. Then, n different price 

values are generated according to the power-law distribution, 

within the range of minimum price and maximum price. Let 

{PI, P2, ... ,Pn} denote these price values, ordered from low 

to high. 

Third, the minimum reputation and maximum reputation are 

randomly chosen within [0, 106]. Then, n different reputation 

values are generated according to the power-law distribution, 

within the range of minimum reputation and maximum rep­

utation. Let {1'l' 1'2, ... ,1' n} denote these reputation values, 

ordered from low to high. 

Finally, combine reputations and prices to generate n items 

where item 5i has reputation 1'i and price Pi. By doing so, all 

items are skyline items. 

Simulating users' selection behaviors To our best knowl­

edge, none of the existing work provides usable models to 

simulate the users' uncertain and diverse selection behaviors. 

Therefore, we interviewed 30 people to understand their selec­

tion principles when choosing eBay sellers, and summarized 

their behaviors into four categories. Although this approach 

may not cover all possible user behaviors, it provides good 

guidance to generate synthetic but representative users in our 

simulations. The categories of synthetic users are summarized 

as follows: 

Behavior category I: price threshold. Users in this cat­

egory first filter out the sellers whose price is larger than 

a price threshold. Their best choice is the remaining seller 

with the highest reputation. The price thresholds are often 

highly correlated to the price of the items in the seller set. 

In this category, we construct one synthetic user, denoted as 

U1, whose price threshold is the average price of the sellers 

in the seller set. 

Behavior category II: dynamic reputation threshold. 

Users in this category first filter out the sellers whose rep­

utation is lower than a reputation threshold. Their best choice 

is the remaining seller with the lowest price. The reputation 

threshold is related to the price which means that the more 

expensive of the item, the higher of the reputation threshold. 

In this category, we construct one synthetic user, denoted as 

U2, whose reputation threshold is 50x average price. 
Behavior category III: fixed reputation threshold. Users 
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Fig. 4. Ranking quality of diJferent algorithms for the users in four categories 

in this category have similar behaviors as the users in category 

II, except that the reputation threshold is fixed. We construct 

one synthetic user, denoted as U3, whose reputation threshold 

is 1000. 

Behavior category IV: extreme selection. Users in this cat­

egory consider only one attribute and neglect other attributes. 

We construct two synthetic users. U4 selects the seller with 

the highest reputation and Us selects the seller with the lowest 

price. 

We would like to point out that after conducting simulations 

for many synthetic users with different threshold values, we 

observe that the performance of MAPS is insensitive to the 

threshold settings in the four behavior categories. In this 

section we show the results for the five representative users. 

Implementation of MAPS We set the MAPS parameters 

as (3 = 108 and L = 32 in Section TV-B, and evaluate 

the performance of MAPS when varying these parameters in 

Section IV-C. 

Implementation of weight-based multi-attribute ranking 

algorithms For these algorithms, we implement three typical 

utility functions. The first is a linear combination of price and 

reputation as 

Recall that U(Si), ri, and Pi denote the utility score, reputa­

tion, and price for seller Si, respectively. 

The second utility function adopts the log function [10], 

[I I]. 

U(Si) = a ·log(l + ri) + (1 -a) . (-log(l + Pi)) (21) 

The constant value 1 is added to avoid negative logarithm 

values when reputation or price is smaller than 1. 

The third utility function adopts the normalization functions 

(8) and (9) used in MAPS. 

r p. U(S;) = a· 2 +(l-a)·(l- ' ). (22) 
Vri . ri + (3 VPi . Pi + (3 

Performance evaluation criteria We use ranking quality 
defined in equation (1) in our evaluation. The example used 

to explain it is given in Section II-C. 

For each configuration, we run simulations for 1,000 times 

to obtain the average result. 

B. Comparing MAPS with weight-based multi-attribute rank­
ing algorithms 

To facilitate the understanding of our experiments, we 

discuss the evaluation method used to compare MAPS and 

weight-based multi-attribute ranking algorithms before pre­

senting the results. 

Evaluation method The performance of weight-based multi­

attribute algorithms is very sensitive to the selection of the 

weight value a. It requires to learn the best a value setting 

for each individual user in a given context, which is considered 

one of the difficult tuning parameter for them. Instead of 

investigating specific ways to obtain the best settings of a 
value in our experiments, we compare MAPS with the upper 

bound performance of weight-based multi-attribute algorithms 

by measuring the performance with varying a values within 

the a range. The upper bound performance of weight-based 

multi-attribute algorithm is represented by the highest points 

on the curves of the algorithm. Since the curves for MAPS 

are constant as it does not depend on a, we will compare the 

MAPS line with the highest points of the curves for weight­

based multi-attribute algorithms. 

We would like to point out that this comparison method is 

fair since it uses the best possible settings of a to compare the 

weight-based multi-attribute ranking algorithms with MAPS. 

In fact none of the existing weight-based multi-attribute rank­

ing algorithms can yield the best choice of a for different types 

of users in a given context, especially when there is diversity 

and uncertainty in users' selection behaviors. 

Comparison in terms of ranking quality Figure 4 shows 

the comparison between MAPS and the weight-based multi­

attribute ranking algorithms with three most popular utility 

functions (recall Section IV-A). The x-axis represents the 

various settings of a for the weight-based multi-attribute 

ranking algorithms and the y-axis shows the measured ranking 

quality of MAPS and the measured ranking quality of the 

weight-based multi-attribute algorithms. 

Figure 4(a) shows the result for synthetic users (e.g., Ud 
in Category I. The ranking quality of MAPS for this category 

of users is 0.83. This means that the best choice for users 

of U1 type is ranked higher than 83% of items in the item 

set. The performance upper bounds of weight-based multi­

attribute approach with linear, log, and normalization utility 

functions are at best 0.57 when a is around 1. This experiment 

shows that MAPS improves ranking quality by 26% over the 

weight-based multi-attribute approach, no matter which utility 

function is used and what a value is set. Clearly, this is a 
significant performance improvement for users of U1 type. 

Figure 4(b) measures the ranking quality for the synthetic 

users (e.g., U2) in Category II with varying a values. Similarly, 

MAPS improves the ranking quality over the weight-based 

multi-attribute algorithms by 20% comparing to the highest 

ranking quality of the weight-based multi-attribute algorithm 

with normalization based utility function. Similar observation 

is shown in Figure 4( c) for the synthetic users (e.g., U3) in 



Category III. MAPS improves the ranking quality of weight­

based multi-attribute approach by 43% over log based utility 

function, 46% over normalization based utility function, and 

50% over linear based utility function no matter what Q value 

is used. 

Finally, we run the performance comparison for Category 

[V users with simplified selection behaviors (i.e., U4 and U5) 
in Figure 4( d) and Figure 4( e). [n these extreme cases users 

simply prefer those items (sellers) based only on one attribute. 

That is, U4 always chooses the highest reputation and U5 
always chooses the lowest price. It is obvious that both MAPS 

and weight-based multi-attribute algorithms can achieve the 

best ranking quality. It is worth to point out that the weight­

based multi-attribute approach can only achieve good results 

for Category [V users when Q is properly chosen, which is 

known to be a hard problem for weight-based multi-attribute 

algorithms. 

The group of experiments in Figure 4 also shows that the 

performance of weight-based multi-attribute approach not only 

depends on the choice of Q but also depends on the choice of 

utility function. For instance, the weight-based multi-attribute 

with normalization function can achieve the best results for 

users of type U2 (Figure 4(b )), but the log function is the 

best for users of type U3 (Figure 4(c)). In comparison, we 

evaluate the performance of MAPS for different normalization 

functions and the results are similar, which shows that the 

choice of normalization function does not have any significant 

impact on the MAPS performance. 

This group of experiments shows that MAPS achieves much 

better performance than the upper bound performance of 

weight-based multi-attribute ranking algorithms. The advan­

tage of MAPS comes from its unique features: the visual angle 

representation of items and user preferences, the computation 

of best-choice probability based on inter-attribute tradeoff 

and inter-item competition, and its modeling of diversity 

and uncertainty of users' selection behaviors through density 

functions. Also MAPS does not rely on setting certain spe­

cific parameters for different users (see the next section for 

detail), whereas existing weight-based multi-attribute ranking 

algorithms are sensitive to the choice of utility function and 

the proper setting of weight value Q. 

C. Factors affecting MAPS performance 
[n this section, we investigate how the performance of 

MAPS is affected by three factors: the seller set size (71), the 

history length (L), and the f3 value in equation (8) and (9). 

Since the ranking quality for extreme users in Category IV 

will not change much with respect to 71, L, f3, we only show 

the results for users in the first three categories, represented 

by U1, U2, and U3. 

Effect of seller set size [n the previous simulations, the 

size of seller set (71) is randomly chosen between 20 and 100. 

Now we run different tests by changing n from 50 to 500. 

In Figure 5(a), the x-axis represents the various values of n 

and the y-axis measures the ranking quality for each 71 value. 

We can see that even in such a wide range of 71, the ranking 

quality of MAPS is still larger than 0.8. Namely, the ranking 

score of the best-choice item is larger than 80% of the other 
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Fig. 5. Performances of MAPS with different parameters 
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items. This indicates that MAPS is not sensitive to the size of 

item set being ranked. 

Effect of history length In the previous simulations, 

the density functions are estimated from 32 past selection 

behaviors, i.e., L = 32. In Figure 5(b), we vary the history 

length L from 1 to [28 (x-axis), and measure the ranking 

quality (y-axis). We see that increasing the length of the history 

can increase the ranking quality. However, after L reaches 

32, the ranking quality does not change much. Therefore, 

MAPS in most cases would need no more than 32 past 

selection behaviors to accurately predict a user's best choice. 

More importantly, even when only a couple of past selection 

behaviors are known (when L = 1,2,4), MAPS achieves good 

results (about 0.7",-,0.78 for Category I users, 0.78",-,0.85 for 

Category II users, and 0.98",-,l.0 for Category III users). This 

shows that MAPS can reach high ranking quality with a very 

short learning curve. 

Effect of parameter f3 The parameter f3 is used in the 

normalization equation (8) and (9). In Figure 5( c), the x-axis 

is the f3 value varying from 10° to lOlD, and the y-axis is 

the ranking quality. We can see that ([) the ranking quality 

increases with the increase of f3 and (2) the ranking quality 

does not change much after f3 reaches 108. This is because f3 is 

simply a system-level parameter used in the normalization, and 

the setting of its value only depends on the value range of the 

attributes. For the experimental datasets, MAPS can achieve 

the best results when the f3 value is comparable to the square 

of reputation and price. Since most of the reputation and price 

values is within [0, 104] due to power-law distributions, we 

only need to set f3 = 108 in our experiments. In MAPS, f3 is 

a system-defined parameter applied to all users once it is set. 

V. RELATED WORK 
The personalized multi-attribute ranking problem and the 

proposed solution are related to many research topics, includ­

ing recommender systems [12], web search [[3], and database 

queries [14]. [n this section, we review related work according 

to the challenges in our problem: ([) modeling inter-attribute 

tradeoff, (2) modeling inter-item competition, (3) inferring 

a user's personal preferences, and (4) fundamental ranking 

methodology. 

Modeling inter-attribute tradeoff: There are two types of 

existing approaches that address the tradeoff among multiple 

attributes. The first type focuses on identifying the attributes 

that are important for ranking. The goal is to provide a 

personalized set of attributes to determine skyline points [[ 5]. 

Some work further organize these attributes into an importance 

hierarchy [[6], [17]. The work may reduce the number of 

skyline items but they cannot rank them. In the second type, 



weight values are used to describe the relative importance of 

multiple attributes. The representative schemes [2], [3] are 

solely based on attribute-weighting [18], whose limitations 

have been discussed in Sec II-D. 

Modeling inter-item competition: To our best knowledge, 

this paper is the first work that formally addresses inter­

item competition. Previously, some researchers realized the 

consequence of inter-item competition from different views, 

such as increasing the diversity of top-k set to improve the 

quality of recommendation [14], [19]. However no solid study 

on the cause, i.e. inter-item competition, is available. 

Inferring user preferences: The user preferences can be ob­

tained through either explicit or implicit ways. Many existing 

systems use explicit methods, such as asking the users to 

input their preferences directly [4] or through answering a set 

of interactive questions [3], [20]. Explicit methods obviously 

add burden to the user side, and the implicit methods are 

more desirable. However, the implicit methods in the current 

literature [18] cannot be used to solve the problem in this 

paper for two reasons. First, they highly depend on the specific 

representation of user preferences. Second, when there is 

uncertainty in a user's behaviors, they would need a lot of 

historical data to construct the user preference model. But 

MAPS works when only a few historical data are available. 

Fundamental ranking methodology: In most of the existing 

ranking algorithms, the ranking score of an item describes this 

item's relevance to the query [14], importance [13], match 

to a user's taste [3], [12], and so on. Similar to the weight­

based multi-attribute approach, they do not address inter-item 

competition, which is a critical factor in personalized multi­

attribute ranking problem. In addition, their ranking scores 

often do not have clear physical meanings. In MAPS, however, 

the ranking score is the probability of an item being a user's 

best choice. This is another advantage of MAPS. With a clear 

physical meaning, the ranking scores in MAPS can be used 

by other algorithms that would need to know the probabilities 

of users selecting certain items. 

VI. CONCLUSION 

Social computing and social networking are one of the 

emerging forms of collaborative computing. Personalized 

ranking is a fundamental capability of collaborative computing 

in social networks and eCommerce today. We have presented 

MAPS, a novel multi-attribute probabilistic selection frame­

work for personalized multi-attribute ranking. MAPS presents 

a number of unique features: the invention of visual angle 

model to depict inter-attribute tradeoff, the introduction of 

dominating area to model inter-item competition, and the 

utilization of density function to capture uncertainty and diver­

sity in a user's preferences. In addition, MAPS computes the 

ranking of an item using the probability of this item being the 

best choice for a given user in terms of inter-attribute tradeoff, 

inter-item competition, and personalized user preferences. The 

effectiveness of MAPS is evaluated with extensive simulations 

through fair comparisons with existing multi-attribute ranking 

algorithms. We show that MAPS significantly outperforms 

them in terms of ranking quality. 
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