
SociaIDNS: A Decentralized Naming Service for Collaborative P2P VPNs

P ierre St Juste, David Wolinsky, Kyungyong Lee, P. Oscar Boykin, Renato J. Figueiredo

Advanced Computing and Information Systems Lab, University of Florida, Gainesville, FL 3261 I

Email: {pstjuste,davidiw,klee,boykin,renato}@acis.ujl.edu

Abstract

The ability to define domain names for resources in

a collaborative virtual organization is usually reserved

to network administrators through centralized domain

name servers. We propose SocialDNS, a decentralized,

naming service that gives individual collaborators the

power to choose the domain names for their resources.

Our approach is based on similar concepts of de­

centralized naming solutions available in local area

networks. We enable short-names for resources by

limiting the scope for uniqueness. We also employ a

rank-based mechanism for dealing with name conflicts.

We evaluate our design through graph level analysis

to anticipate scope, bandwidth costs and latency. We

also conducted experiments involving Amazon Ee2

and PlanetLab to analyze the latencies in a real world

environment.

Index Terms

Social Networks, Rank, Naming

1. Introduction

The ability to define domain names for resources in

collaborative virtual organizations is usually reserved

for network administrators through centralized domain

name servers. This restriction precludes effective col­

laboration especially in P2P VPN enabled virtual orga­

nizations with no central authority. Without a domain

naming service, collaborators would have to resort to

hard-to-remember IP addresses to refer to the location

of services. This is further exacerbated in dynamic IP

environments such as P2P VPNs and private networks

where IP addresses can change frequently; hence mak­

ing it extremely difficult to keep track of the location

of collaborative services.

We propose SocialDNS, a decentralized, naming

service for collaborative P2P VPNs. P2P VPNs provide

collaborators IP access to each in a decentralized fash­

ion; however, there does not exist a decentralized solu­

tion which allows collaborators the freedom to choose

fully qualified domain names for the services that they

host. Decentralized solutions such as multicastDNS [1]

and WINS [2] exist for private networks and LAN en­

vironments; however, these solutions cannot be applied

to the P2P VPN environment unmodified. We address

this need in SocialDNS by providing an alternative

comparable to decentralized solutions such as multi­

castDNS but better suited for P2P VPNs. SocialDNS

uses a simple broadcast mechanism for cOlmnunication

which can be deployed on top of existing P2P VPN

solutions such as Hamachi [3], or SocialVPN [4].

With SocialDNS, P2P VPN collaborators are able

to select short-names among themselves for their re­

sources through social scope uniqueness instead of

the global uniqueness enforced by the normal DNS

system. Name conflicts can arise in the SocialDNS

system if two peers decide to choose the same domain

name for a resource. In such cases, we use a simple

rank-based method to select the mapping with the

highest popularity in the social circle.

We provide a social graph analysis of our design

where we estimate expected bandwidth costs, and

latency. Our analysis is based on the assumption that

P2P VPNs form a social graph with small world

characteristics since each VPN link represents a social

relationship. Although not all P2P VPNs possess this

property, we are only focused on P2P VPNs that

only created VPN links based on social relationships.

Based on this assumption, we used a 100,000 social

networking graph from Orkut to validate our design

choices. Our analysis shows that a typical SocialVPN

query can consume about 42 Kbytes of bandwidth.

We also observed that by setting a timeout of 100 ms

per query, we are able to get responses from 79% of

our peers on average. We also conducted experiments

involving Amazon EC2 and PlanetLab to analyze the

latencies in a real world environment.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.12

The rest of the paper is outlined as follows. Sec­

tion 2 provides motivating uses cases for SocialDNS.

Section 3 explains some background on P2P VPNs

and decentralized DNS solutions for private networks

and LANs. In section 4, we present the design of

SocialDNS, followed by its analysis in section 5. Sec­

tion 6 describes a prototype implementation and some

experiments conducted with the prototype. Section 7

covers related works in both decentralized naming

and peer-to-peer reputation systems. We conclude in

Section 8.

2. Motivation

The main motivation for SocialDNS is to provide

end-users with the freedom to set their own domain

names in P2P VPN environments. Domain names

serve an important role in the user-friendliness of the

Internet and are used in most TCPIIP connections.

Here we provide a few use cases that demonstrate the

importance of a decentralized, user-controlled, domain

naming service for private networks.

Naming for Self-Hosted Services. P2P VPNs make

it possible for end users to host services on their

personal resources and provide network level access

to peers of interest. For example, an end-user, Alice,

can host a blog from her laptop that only her P2P VPN

friends can access, or share her desktop through a VNC

session to do a PowerPoint presentation. An important

requirement for hosting services is user-friendly do­

main names to these services so that Alice's colleagues

can connect to her blog by typing aliceblog.sdns or

view her presentation by typing alicepc.sdns in their

remote desktop clients. Domain names also provide

location transparency in dynamic IP environments such

as private networks, and P2P VPNs; thus end-users are

not required to re-discover the dynamic IP address to

a service every time there is a change in the host's

IP address. In the previous example, without a domain

naming service, Alice's friends would have to discover

Alice's IF address every time they want to access her

blog or view her presentation. Hence, IF connectivity

is not the only requirement for enabling users the

freedom to host their own content, a domain naming

system is also necessary so that end users can select

the names used to refer to these services.

Distributed Virtual Environments. A distributed

virtual environment, such as OpenSim [5], comprises

of a virtual world where different regions are hosted

on separate host machines that may be geographically

dispersed. A P2P VPN can facilitate the deployment of

such an environment by providing a virtual private net­

work of collaborators where each collaborator adds to

the virtual world by hosting their own region. Through

this private network, collaborators can securely share

information and data through the virtual environment

without fear of information leakage to unauthorized

third parties. Configuring this virtual world requires the

use of configuration files containing pointers to the host

machine of each region that make up the virtual world.

Using IP addresses in the configuration file is not

ideal because private networks typically use dynamic

IP; hence, changes in IP addresses would require

constant updates to configuration files. However, by

extending the P2P VPN model to provide a domain

naming service, the changes in IP address would be

transparent to the application thus eliminating the need

to constantly update configuration files.

3. Background

In this section, we provide a brief description on the

use of P2P VPNs for collaborative environments, the

social aspects of P2P VPNs, and current decentralized

solutions for private networks and LANs.

P2P VPNs for Collaboration. Virtual private net­

works (VPNs) allow remote users secure access to

private organizational networks over the Internet. The

basic concept is to tunnel IP traffic through encrypted

TCPIIP links and therefore provide secure network

access to private resources such as a company database,

an intranet, a printer, or a computing cluster. In typi­

cal VPNs, enabling such a service requires dedicated

resources such as a VPN gateway servers to serve as

the traffic broker for these external access clients, as

well as complex administration to guarantee privacy,

access control, and quality of service. P2P VPNs,

on the other hand, allows geographically dispersed

collaborators to form their own VPNs by tunneling

IP packets directly to each other without reliance on

centralized relay gateways. P2P VPNs also provide

firewall and NAT traversal thus making it feasible

for users to communicate without access to public IP

addresses. Various P2P VPN solutions currently exist

such as Hamachi [3], SocialVPN [4], Wippien [6],
just to name a few. P2P VPNs effectively facilitate

collaboration by making it possible for individual users

to privately share resources over VPN links without the

typical infrastructural and administrative overheads of

traditional VPNs.

The P2P VPN Social Graph. Various P2P VPN

solutions such as SocialVPN [4], or Wippien [6], have

an interesting characteristic not found in traditional

VPNs in that the encrypted tunnel links of the P2P

VPN network represent the edges of a social graph

with small world characteristics. As shown in Figure 1,

Probe messages ----� MONS queries -----.

""� . . , - -
"""-- ... _-

fileserver.local fileserver.sdns

Qc
v �

alice.sdns .� �

A rT 1) �o//�
... t:' /

.-B �

D

A B c D E fileserver2.local fileserver.local
.... � fileserver.local" �

� E

fileserver2.s��
t:' � � E

Figure 1. On left: MulticastDNS in LAN environment. AII-to-all connectivity among nodes allows multicast DNS to successfully detect duplicate
names, hence host B chooses domain name fileserver2Jocal because host C's mapping of fileserver.local is discovered in through a probing phase. In middle: MulticastDNS in P2P VPN environment. Lack of all-to-all connectivity causes host B to be unaware of host C's mapping of fileserver.local
and thus claims the same mapping. This creates a conflict for host A who now has two peer in her network with the domain name of fileserver.local. On right: SocialDNS in P2P VPN environment. SocialDNS uses a two-hop broadcast to search for duplicate names in the social circle. With the two-hop
broadcast, host B discovers host C's mapping for fileserverJocal and chooses fileserver2.local instead. If host B still decides to pick the same domain
name as host C, then the conflict resolution mechanism picks the most popular name in the social circle.

even though both collaborators B and C are part of
collaborator A's VPN, it does not imply that collabo­
rators B and C have a VPN link to each other. This
is analogous to a social network where Alice can be
friends with both Bob and Carol, but it does not mean
that Bob and Carol are friends. For scalability and
security, it is important to only have VPN connections
with trusted peers; there is no point of having links
with peers of no common interest. This is a departure
from the common concept of private networks such
as local area networks (LANs) and traditional VPNs
where there is the expectancy of all-to-all connectivity
among nodes in the same network.

Decentralized naming in private networks. De­
centralized naming services are extremely useful and
common in private networks (e.g. LANs) because they
provide a zero-configuration solution to mapping user­
friendly names to resources. For example, in a typical
home network, a decentralized naming service makes
it possible to access a file using the following urI
smb:\ \mom-pc\SharedDocs\familypic.jpg. The two
commonly available decentralized naming solutions for
private networks are the Windows Internet Name Ser­
vice (WINS) [2] by Microsoft and Apple's multicas­
tDNS [1] system called Bonjour. One approach would
be to run one of these naming solutions on the P2P
VPN unmodified. However as shown in Figure 1, these
approaches were designed with the assumption of all­
to-all connectivity amongst all node within the same
network through a common networking backbone (e.g.
routers and switches). The lack of such all-to-all con­
nectivity in the P2P VPNs makes it impossible for
WINS and Bonjour to properly detect name collisions

in their probing phase. SocialDNS aims to address
these limitations for the P2P VPN environment.

4. SocialDNS Design

The main design goals of SocialDNS are short­
names through social scope, decentralization, simple
user management, and name conflict resolution through
social popularity. The SocialDNS design is also based
on the following assumptions: 1) a P2P VPN cre­
ates a social graph where links represent relationships
between ends users, 2) each P2P VPN tunnel is an
authenticated and encrypted end-to-end link similar
to an IPSec connection, and 3) the previous two
assumptions makes it harder for a malicious user to
mount a Sybil attack. The third assumption is also
corroborated by previous work [7] which have shown
that Sybil attacks can be mitigated using social links
instead of anonymous links. The authentication and
encryption of the IP tunnels is discussed in previous
work [4].

4.1. Enabling Short Domain Names

One of SocialDNS's key roles is to enable short
domain names to resources in the P2P VPN, for exam­
ple, Alice can set alicepc.sdns as the domain name for
her personal computer. The first step in enabling short
domain names is to choose an unallocated root-level
domain zone to avoid conflicts with the global DNS.
SocialDNS chooses an unassigned root-level domain
zone; therefore preventing phishing attacks based on
addresses used on the public Internet i.e. by creating
a fake DNS mapping for www.bankojamerica.com. A

file .Edit lIiew Hi.,tory llookmarks Iools Help

v 2 [� I http://127. 0.0.1:58888/sdns v I [�tv I Google

F,��S�· �I D�N S���������--�

�I

SocialDNS Web Management Interface

[*.alice.sdns

[Search your friends' cache II Add mapping to your cache I

Local Mappings

work.bob.sdns

server.carol.sdns

www.alice.sdns

Search Resulls (Click on mapping 10 add 10 your DNS cache)

www.alice.sdns . 172.31.231.14
Created by Alice Wonderland

laplop.alice.sdns·172.31.85.31
Created by Alice Wonderland

ftp.alice.sdns . 172.31.22.10
Created by Alice Wonderland

3

2

1

Figure 2. SocialDNS AJAX Web Interface. In this screenshot, Bob does a wildcard search for all DNS mappings with the *.alice.sdns search
string. By clicking on the Search your friends' cache button, the search is sent to all friends through the P2P VPN. As the responses arrive from friends,
the Web interface is updated along with a ranking for each mapping on the right. The ranking information is used to sort the mappings, the end user
makes the final selection on the mapping to add to the local cache. Although IP addresses are shown in the interface, the user is not involved in the actual
manipulation, when IP addresses are changed, mappings are updated automatically. Existing local cache mappings are shown on the left hand side.

second requirement is to limit the scope for unique­

ness. The global DNS system provides naming for

the whole world, potentially billions of hosts thus

making short-names scare. In the P2P VPN setting,

uniqueness is only required within a peer's social circle

which is usually composed of a few hundred or at

most a few thousand hosts. The reduced scope lessens

the probability of collision for short-names such as

alicepc.sdns. It is important to clarify that peers only

have VPN connections with one-hop friends which

is about 42 friends on average following a powerlaw

distribution.

4.2. Decentralization and Broadcasting

We achieve decentralization in SociaIDNS by run­

ning a local DNS service on each peer's machine;

hence there is no head node or central point of failure.

We also leverage the unstructured peer-to-peer social

graph created by P2P VPNs as the messaging substrate

connecting these local DNS servers. The local DNS

service provides users with an interface where they can

easily add and remove DNS mappings. The SociaIDNS

nodes use one or two-hop broadcast messages to com­

municate amongst each other thus allowing users to

perform arbitrary searches on each other's SociaIDNS

caches. Using broadcast greatly simplifies the design

due to its stateless nature and topology independence.

As users create new DNS mappings, they are able to

freely share these mappings with social peers over the

P2P VPNs. Therefore, a typical DNS query can search

the local DNS cache as well as the DNS caches of

friends in the social circle. This is analogous to the

common Gnutella P2P file sharing paradigm where

each peer runs a local file server, and other peers are

able to broadcast queries to search for files. In the

SocialDNS case, each peer runs a DNS server instead

of a file server, broadcast queries are sent to social

peers instead of random peers, and the results are DNS

mappings instead of files.

4.3. Simple User Interface and Management

Managing a typical DNS server such as BIND is a

serious undertaking, a task suited mainly for network

administrators [8]. Our focus is to provide simple

management to the user with minimal configuration

and an intuitive Web interface for creating, deleting,

searching, and sharing DNS mappings. The user ex­

perience for the SociaIDNS system involves just a

few steps. First, by running the SocialDNS service

on the local machine, startup scripts configures the

operating system's settings and point to the local server

as one of the DNS servers. The local DNS server only

resolves requests under the .sdns root domain zone to

avoid common DNS phishing attacks and to allow co­

existence with the global DNS. The user then uses

their web browser access the SocialDNS interface (see

Figure 2).

4.3.1. Creating User-Defined Mappings. Users can

add new mappings to their local SociaIDNS cache in

one of two ways. The first method is for the user

to manually create a SociaIDNS mapping through the

Web interface: for example, Alice uses the input box to

map the name alicepc.sdns to her local Pc. The newly

created mapping will only be accepted if it follows

the following criteria: 1) the mapping ends with .sdns,

and 2) it points to a virtual IP address in the P2P VPN

address range. SocialDNS gives the user the freedom

to pick any DNS mapping under the .sdns root zone.

4.3.2. Importing Mappings through Search. The

second method is through a SocialDNS search which

allows users to query each others' SocialDNS caches

for mappings. The searching process resembles a typi­

cal Web search, and the results are presented to the user

sorted by our ranking method described below. A user

can choose to import a mapping to hislher SocialDNS

cache by simply clicking on the mapping.

Figure 2 shows a search for *.alice.sdns and the

results of that search and the user can choose to import

these mapping locally. Since this search is done as a

typical flood-based broadcast in an unstructured P2P

network, SocialDNS therefore supports various types

of queries such as exact, nearest, and regular expres­

sion matching. The search is done by broadcasting the

DNS query to all friends and maybe friends of friends

depending on user settings. Using broadcast queries

with greater hop counts gives the local user a more

accurate view of the popularity of a DNS mapping at

the cost of generating more traffic and higher latencies.

4.3.3. Freedom to Redefine Domains. SocialDNS

also gives users the option of redefining the domain

name that point to a friend's resource in his/her local

DNS cache. This is similar to creating a bookmark

to a web page, but instead of using the page title

provided by the website, the user can create hislher

own reference to that web link. SocialDNS operates

in a similar fashion because the user can import the

existing mapping defined by a friend or create another

mapping at his/her discretion. For example, let's say

Bob chooses bobpc.sdns as the SocialDNS name for

his machine, Alice can either import that domain

mapping or define her own mapping such as bobby­

pc.sdns for Bob's machine. Consequently, SocialDNS

allows a user to create map multiple domain names to

the same IP address.

Creating a different mapping for a peer's resource

only makes that mapping available the local So­

cialDNS cache, however peer's have the option of

importing that mapping in their own SocialDNS cache

through search. Extending the previous example, as­

suming Carol has friendships with both Alice and Bob,

through a SocialDNS search, Carol noticed that Bob

the following mapping bobpc.sdns = 172.31.231.23

while Alice has bobby-pc.sdns = 172.31.231.23 and

both mappings point to the same IP address, Carol will

have the option of choosing either Bob's mapping, or

Alice's mapping, or both. Once again, DNS mappings

can be thought of as bookmarks to webpages, and

SocialDNS makes it easy to create any mappings and

share it with friends. As a mapping is replicated across

peer's SocialDNS cache, its popularity in the social

circle and that creates the basis for our rank system

described below.

4.4. Name Resolution

SocialDNS performs two types of name resolution:

user-verified and automatic. Providing an automatic

mode gives the end user the option of not having

to manually import each mapping created by social

peers, but supporting a user-verified mode is crucial

for some secure services. The mode of operation is

a configuration the user is able to set at startup or

runtime.

4.4.1. User-Verified Name Resolution. In user­

verified mode, SocialDNS only resolves mappings that

have been explicitly created or imported by the user

through the web interface. This is important because

changing a DNS mapping from I PI to I P2, which can

happen in automatic mode without user intervention,

may cause information leakage due to web browser

cookies. Hence, users should use the SocialDNS in

user-verified resolution mode for information sensitive

services.

For a user-verified name resolution, the local DNS

server utilizes its SocialDNS cache only to resolve

incoming DNS queries from the operating system. In

other words, when Bob types www.alice.sdns in his

browser, the browser asks the operating system to

resolve the DNS name, the request is forwarded the

local SocialDNS service, the mapping is looked up in

the local cache, if found, the IP address is returned,

if not found an NXDOMAIN response is sent back

to the application. In this mode, there are no name

conflicts because they are resolved by the user through

the web interface. For example, if Alice tries to create

or import a mapping such as www.alice.sdns which

already exists in her local SocialDNS cache, she will

be informed of the collision and required to choose a

different domain name for the resource. Also, in the

web interface, if there can be multiple search results

with the same ranking; in this case, the user makes

a selection on the mapping they would like to import

thus resolving the name conflict themselves.

4.4.2. Automatic Name Resolution. In automatic

mode, SocialDNS automatically searches the social

circle for mappings that are not present in the local

cache and picks the highest ranked mapping. This

mode of operation is not as secure as the previous

mode because it can lead to frequent changes in IP

address that is transparent to the user, because the

resolution is based on the most popular mapping at

the time of the query. To perform this resolution, the

SocialDNS system sends a search to all friends, waits

for a predefined time interval to gather results, and the

highest ranked mapping is chosen. In the case of a tie,

the highest ranked SocialDNS mapping is selected.

4.4.3. Ranking Domain Names. We do not enforce

uniqueness during the creation of the DNS mappings

because we believe in using social context to help with

the DNS resolution; therefore, www.alice.sdns can map

to one IP address in one social circle, and to a totally

different IP address in another social circle. In the case

where both mappings exist in the same social context, a

ranking algorithm is used to provide preference to one

mapping over another. So www.alice.sdns will map to

the IP address with the highest ranking, and the local

user will have to specify an alternate name for the

conflicting mapping.

Our current ranking algorithm is simple; when a

DNS query is sent to all friends, the friends search their

DNS cache for matching results and send the responses

back to the requester, mappings are ranked based on

an aggregation of the responses. For instance, if five

friends return responses saying www.alice.sdns maps

to 172.32.122.31, while two friends says that it maps

to 172.15.223.112, then the first mapping will get a

ranking of five, and the second a ranking of two. Once

ranked, the mappings are presented to the local user for

selection (see Figure 2). With this simple scheme, we

use the presence of a SocialDNS mapping in a peer's

local cache as a vote for that mapping, the more peers

that have a mapping in their cache, the more votes that

mapping gets. This is similar to the ranking system

used by Delicious.com where a bookmark's popularity

increases as more people add that bookmark to their

accounts.

4.5. Protection against DNS attacks

Attacks such as phishing, session hijacking, cache

poisoning have plagued DNS and it requires careful

administration and robust software to protect against

the DNS security flaws. Hence, it is important for

the SocialDNS design to avoid these same flaws cur­

rently plaguing the current DNS system. SocialDNS,

10'

10'

10' · t · · · · · · · · ·

Z
·

.
-!+If: -

10' '::------'-:------'-:-------'
� � � �

Number of Friends

Figure 3. Distribution of Number of Friends in 2-hop Radius
of Social Circle. As shown in this distribution, a user has about 2000

friends in a two-hop radius on average.

however, benefits from inherent network level security

provider by P2P VPNs. In a P2P VPN each tunnel is

encrypted and authenticated either through the use of

IPSec, or a TCP/IP level encryption such as TLS or

DTLS. Therefore, every network packet can be bound

to a peer's identity making it impossible to spoof an

IP packet or a DNS response. This security primitive

hence makes attacks such as phishing and cache poi­

soning futile because the culprit can be detected and

banned for the P2P VPN.

5. Analysis

In our analysis, we explore the following aspects

of our design: number of peers in the social scope,

bandwidth cost, and latency. Due to our assumption

that the P2P VPN create a social graph, we have used a

100,000 node sample social data captured from Orkut.

The dataset was provided by the authors of [9]. We

then used NetworkX [10], a Python package for com­

plex network analysis, to study the different aspects of

our design through the social graph. Our social graph

contains the following small-world characteristics: 1)

an average clustering coefficient of 0.27, 2) and a

powerlaw degree distribution.

5.1. Reduced Conflicts in the Social Scope

A major strength of SocialDNS is the increased

availability of short names through social scoping,

meaning because we do not have to guarantee global

uniqueness as in the case of regular DNS, uniqueness

is only guaranteed within the social circle. Since the

recommended social scope for uniqueness is two hops,

Number of Kilobytes

Figure 4. CDF of One, Two, and Three hop Queries. As the
graph shows, increasing the hop count for SocialDNS Queries increases
the bandwidth consumption by two orders of magnitude.

we examined the distribution of the number of friends

in a two-hop radius to get an idea for the number

of peers that may be competing for the same domain

name. Through our analysis, we observed that in a

two-hop radius of the social circle the average number

of friends are 1,832, and a median of 1,150. Therefore

Alice would only have to compete with less than 2,000

peers on average to claim the name alice.sdns instead

of the billion of users on the Internet to guarantee

uniqueness in a two-hop radius of the social circle.

The reduced number of peers makes finding a short

SocialDNS domain name much easier. Figure 3 shows

the actual distribution of the number of host within a

two-hop social circle.

5.2. Expected Bandwidth Cost

SocialDNS uses broadcasting as the primary method

of communication, therefore understanding the ex­

pected bandwidth costs helps us predict the traffic

generated by SocialDNS queries. Figure 4 shows us the

cumulative distribution function (CDF) of the expected

number packets generated when a user does a one,

two, or three hop search for a SocialDNS mapping.

We assume the maximum packet size allowed in the

DNS RFCs [11] of 512 bytes. Hence, a one, two,

and three hop SocialDNS search generates about 42

Kbytes, 4.5 Mbytes, and 161 Mbytes of traffic on

average, with a medians of 25 Kbytes, 1.7 Mbytes,

and 90 Mbytes respectively. Therefore, a user is only

allowed to perform a one or two hop broadcast in

SocialDNS to avoid consuming to much bandwidth per

DNS queries. Future work will look at efficient ways

of caching the DNS mappings to minimize bandwidth

consumption.

5.3. Anticipated Latency

Analyzing the latency helps us determine the proper

timeout to set per SocialDNS query to gather adequate

responses from social peers. The first step in our

latency analysis is to examine the relationship between

friendships and geography. According to Liben-Nowell

et al. [12], friendships in a social network are based

on a geographic preference given by formula P(d) =

d;.2 + 5.0 x 10-6, where P(d) is the probability

of friendship between two peers that are located at

distance d kilometers away. Based on the works of

Bassett et al. [13], one can derive latency from distance

by approximating latency as � the speed of light.

Another work by Dischinger et al. [14] also has shown

that in residential ISPs, a packet may take up to 2.5

milliseconds from the host machine to the ISP's router

for a total round-trip time of 5 milliseconds. Using

these previous works, the latency in milliseconds is

approximated as:

d X 103
latency = 4 + 5 X 10-3 (1)

gC

where C is the speed of light at 299,792,458 m/s.

Hence we used the probability function P(d) to assign

distances between friends and the equation (1) to

approximate the latencies of friendship links in the

social graph created by the P2P VPN.

Based on the aforementioned latency distribution,

we measured the percentage of received responses

based on timeouts of 100 ms, 200 ms, and 300 ms

for one-hop queries, and 200 ms, 400 ms, and 600 ms

for two-hop queries. For a timeout of 100 ms for a

one-hop broadcast, we received responses from 79%

of friends on average, 89% for 200 ms, and 99%

for 300 ms. In the two-hop broadcast scenario with

timeout of 200 ms, 400 ms, and 600 ms and received

responses from 61%, 78%, and 98% of friends on

average, respectively. Figure 5 plots CDF showing the

distribution of the percentage of responding friends

with the various timeouts for one and two hop queries.

6. Implementation and Experiments

We currently have a preliminary prototype of the

SocialDNS system implemented in the SocialVPN [4]

software stack. SocialVPN is a P2P VPN which uses

social networking backends such as Facebook, or

Google Chat to automatically create P2P VPN links

with friends. The whole software suite is written in

C# and is available on http://socialvpn.org. The Web­

based interface is implemented as a search engine-like

interface written in AJAX (see Figure 2).

o·�!;;-o ----4�O-..... =�;='''O''::'----;;;;-�=::.�
Percentage of Responding Friends

(a) Timeout Latencies for One-hop Broadcast

,
,

O.OO�==��:"::"::':'4f;;o':':":=------;;;;---�=c::::...-;-!
Percentage of Responding Friends

(b) Timeout Latencies for Two-hop Broadcast

Figure 5. Impact of Query Timeouts. For one-hop queries, at 100 ms median is at about 75% and we hear back from all friends 10% of the time;
the median at 200 ms is about 90% and we hit 100% results about 16% of the time; at 300 ms, our median is at 100%, and we get all results 75% of the
time. For two-hop queries, at 200 ms, we obtain a median of 65%, but we obtain 100% less than 1 % of the time; at we achieve a better median of 80%,
with barely any improvement at the 100% mark; at 300 ms, we get a much better median of 99%, and we hit 100% about 3% of the time.

We conducted experiments to assess the functional­

ity and performance of our prototype. The experiments

involved both PlanetLab [15] and Amazon Elastic

Cloud [16] (EC2) infrastructures. PlanetLab, a global

research testbed with nodes located around the world,

was used to deploy 600 P2P nodes which formed our

bootstrap P2P overlay. The P2P nodes on PlanetLab

did not include the SocialDNS software stack. We de­

ployed SocialDNS nodes on Amazon EC2 because our

system requires adding the local SocialDNS server to

the operating system's DNS configurations. Modifying

the DNS settings is not possible on PlanetLab nodes,

but, this is possible on Amazon EC2 because we have

total root access to the virtual machine. On the Amazon

EC2 nodes, we added DNS mappings to the local

caches, searched and imported DNS mappings from

social peers, and resolved DNS mappings created by

the local user and friends. Hence, our design proved

feasible and all components integrated successfully.

6.1. Experimental Latency

We also wanted to explore the latencies of the DNS

queries through the peer-to-peer overlay running on

PlanetLab with nodes located around the globe. Three

SocialDNS nodes were deployed on the various regions

of the Amazon EC2 infrastructure located in Virgina,

California, and Ireland; a fourth node was located in

Florida from a residential ISP. Figure 6 shows the

cumulative distribution function (CDF) of 3000 DNS

queries conducted at each of the four nodes. The results

show that more than 90% of the DNS requests take

less than one second irrespective of the geographic

locations.

It is also desirable to see how long it takes to

broadcast DNS queries simultaneously to all friends

through the overlay. Assuming a private peer-to-peer

overlay [17] consisting only of our social peers, we

measured the time taken to broadcast queries to all

peers with network sizes of 200, 400, and 600 nodes.

Using only the PlanetLab nodes, we sent 100 broadcast

queries to each of the different sized networks. Figure 7

shows the 25th, 50th, 75th, and 95th percentile of time

taken to broadcast to the whole network. The 95th

percentile are 8, 12, and 16 seconds for network sizes

of 200, 400, and 600 nodes, respectively.

7. Related Works

There have been various previous works aimed at

improving the DNS experience. One of the first is by

Cox et. al. [18] who discussed the implementation of a

DNS system on top of the Chord DHT. Although such

an approach was feasible, the latencies of a DHT-based

DNS were much higher than conventional DNS. Our

approach is not depend on a structured DHT and is

deployed on top of an unstructured social peer-to-peer

network through the use of P2P VPNs.

Walfish et. al. [19] suggested using semantic free

references (SFR) as a replacement for DNS-based

URLs on the web. They also suggested using a struc­

tured DHT to store self-certifying o-records containing

pointers to resources. Their focus was on decoupling

the mnemonics names from the actual references which

Friend 1

Friend 2

Friend 3

Friend 4

10' 10'

Time in seconds

Figure 6. CDF of User Request Times. Each of the four user sent
3000 DNS requests (1000 to each friend). The four nodes were located
in Virginia, California, Florida, and Ireland. We measured the round-trip
latency of each DNS query. In each case, over 90% of requests takes
less than one second.

were 160-bit hash tags, and a whole separate mecha­

nism, maybe social, to map names to the complex tags.

The SFR design therefore suggested a total redesign of

referencing on the Internet. CoDNS [20] is a system

which automatically forwards pending DNS requests to

another local DNS server to a remote administrative

domain. The rationale is that most DNS failures are

associated with poorly configured local DNS server,

by sending long pending requests to different local

DNS server in another domain, it provides some redun­

dancy to local DNS failures. The SocialDNS system

reuses the current DNS protocol without requiring any

re-architecting and simply supplements current DNS

systems. SociaIDNS.net [21] is a project similar to

dynamic DNS which allows users to manage their

own domains through the use of a browser-plugin that

can redirect uris prefixed with go:// to a service that

translate to a proper HTTP urI. This approach is based

on a client-server architecture while we focus on a

peer-to-peer design.

Allman [22] introduced the concept of personal

namespaces (pnames) to provide easier references to

their email, blogs, links, and so on. Every user is given

an NID which is a cryptographic hash of the public key.

These NIDs are shared among friends through a one­

time exchange and are used to retrieve the mappings

of a user's namespace from a DHT. The pnames
system share many similarities with SocialDNS, but

it is proposed as second level of indirection to name

resolution and the resolution are not restricted to DNS

records. For example, alice:email would resolve to

alice@mailserver.com, a second resolution would then

be required to resolvemailserver.com. Since NIDs are

/

6 _ _ -'l�

25th 5O<h 75th 95th

Percentile

Figu re 7. Time taken to broadcast varying size networks.
100 broadcast queries were sent to each network size. 95% of
the queries took less than 16 seconds for a network size of 600
nodes.

always unique, and the local user defines the mapping

of names to NIDs, name conflicts are not an issue.

SociaIDNS has to deal with name conflicts and uses a

social conflict resolution to help rank various names.

8. Conclusion and Future Work

In this paper, we present a decentralized domain

naming solution suited for P2P VPNs. We make the

case that provide IP access is not enough to enable

collaborative virtual organizations, give users the free­

dom to create short names to the services that they

host is also necessary. We presented SocialDNS which

provides that freedom and reused existing concepts

from decentralized naming solutions for in local area

networks. We also improve upon the current limita­

tions of LAN-based decentralized naming systems that

makes them unsuited for a P2P VPN environment.

The SocialDNS design makes it trivial to assign

short domain names to resources through a P2P VPN

through social scoping, meaning, a user only has to

compete with less than 2,000 host on average for

a domain name. For simple management, we have

designed a minimal configuration, easy-to-use AJAX

Web interface, where a user can search his/her friends's

SociaIDNS cache and import mappings of interest

For design simplicity, broadcast is used as the main

method of communication among SociaIDNS nodes in

the P2P VPN. In case of name collision due to the

lack of a central authority, a popularity-based ranking

mechanism is employed to pick the mapping that it

present in the most caches in the social circle.

We use social graph analysis to predict the band­

width cost and responsiveness by assuming a P2P

VPN will form a social graph. Our current prototype

only allow for one-hop broadcast, and we are working

on support two-hop broadcasts, but nothing beyond

that. For future work, we plan on exploring gossip

techniques that can help propagate both SociaIDNS

mappings and reputation information at a controlled

rate. The hope is to minimize both bandwidth con­

sumption and latency through more intensive caching

of social information. We also plan on investigating

other potential reputation mechanisms that may also

consume less bandwidth.

9. Acknowledgements

This research is sponsored by the National Science

Foundation under grant IIP-0758596, CCF-0622 106,

the Amazon Web Services Academic Resource Credits,

the South East Alliance for Graduate Education and the

Professoriate, the Florida Education Fund under the

McKnight Doctoral Program. Any opinions, findings

and conclusions or recOlmnendations expressed in this

material are those of the authors and do not necessarily

reflect the views of the sponsors.

References

[1] M. Krochmal, "Multicast dns internet draft," http://files.
multicastdns.org/draft -cheshire-dnsext -mul ticastdns.
txt!.

[2] "Multicast dns internet draft," http://technet.microsoft.
com/en-usllibrary/cc784180(WS.l O).aspx.

[3] "Hamachi instant, zero configuration vpn."
https:llsecure.logmein.com/products/hamachi/vpn.
asp?lang=en.

[4] P. St. Juste, D. Wolinsky, P. Oscar Boykin, M. J.
Covington, and R. J. Figueiredo, "SociaIVP N: Enabling
wide-area collaboration with integrated social and
overlay networks," Computer Networks, January 2010.
[Online]. Available: http://dx.doi.org/l0.1016/j.comnet.
2009.11.019

[5] "Opensimulator," http://opensimulator.org, 2010. [On­
line]. Available: http://opensimulator.org

[6] "Wippien p2p vpn," http://wippien.com/. 2010.
[Online]. Available: http://wippien.com/

[7]

[8] M. D. Bauer, "Securing dns and bind," Lima J., p. 2,
2000.

[9] A. Mislove, M. Marcon, K. P. Gummadi, P. Dr­
uschel, and B. Bhattacharjee, "Measurement and anal­
ysis of online social networks," in Proceedings of the
5th ACMIUSENIX Internet Measurement Conference
(IMC'07), October 2007.

[10] "Networkx - high productivity software for complex
networks," http://networkx.lanl.gov/, 2010. [Online].
Available: http://networkx.lanl.gov/

[11] P. Mockapetris, "Domain names - implementation and
specification," http://tools.ietf.org/html/rfcI035, 1987.

[12] D. Liben-NoweU, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins, "Geographic routing in social
networks." Proceedings of the National Academy of
Sciences of the United States of America, vol. 102,
no. 33, pp. 11 623-11 628, August 2005. [Online].
Available: http://dx.doi.orgIl0.l073/pnas.0503018102

[13] E. K. Bassett, J. P. John, A. Krishnamurthy,
D. Wetherall, T. Anderson, and Y. Chawathe,
"Towards ip geolocation using delay and topology
measurements," in IMC '06: Proceedings of the 6th

ACM SIGCOMM conference on Internet measurement.
New York, NY, USA: ACM, 2006, pp. 71-84. [Online].
Available: http://dx.doi.orgIl0.1145/1177080.1177090

[14] M. Dischinger, A. Haeberlen, K. P. Gummadi,
and S. Saroiu, "Characterizing residential broadband
networks," in IMC '07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement. New
York, NY, USA: ACM, 2007, pp. 43-56. [Online].
Available: http://dx.doi.orgIl0.1145/1298306.1298313

[15] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. P eterson,
M. Wawrzoniak, and M. Bowman, "P lanetlab: an over­
lay testbed for broad-coverage services," SIGCOMM
Comput. Commun. Rev., vol. 33, no. 3, pp. 3-12, 2003.

[16] "Amazon elastic compute cloud," http://aws.amazon.
com/ec2/, 2008.

[17] D. I. Wolinsky, P. St. Juste, P. O. Boykin, and
R. Figueiredo, "Towards social profile based overlays,"
University of Floriday, Tech. Rep., Feb 2010. [Online].
Available: http://arxiv.org/abs/1002.0865vl

[18] R. Cox, A. Muthitacharoen, and R. T. Morris, "Serving
dns using a peer-to-peer lookup service," in In IPTPS,
2002. [Online]. Available: http://citeseerx.ist.psu.edul
viewdoc/summary?doi=10.1.1.12.620

[19] M. Walfish, H. Balakrishnan, and S. Shenker, "Un­
tangling the web from dns," in NSDI'04: Proceedings
of the 1st conference on Symposium on Networked
Systems Design and Implementation. Berkeley, CA,
USA: USENIX Association, 2004, pp. 17-17.

[20] K. P ark, Y. S. P ai, L. P eterson, and Z. Wang, "Codns:
improving dns performance and reliability via coop­
erative lookups," in OSDI'04: Proceedings of the 6th
conference on Symposium on Opearting Systems De­
sign & Implementation. Berkeley, CA, USA: USENIX
Association, 2004, pp. 14-14.

[21] "Socialdns.net project," http://socialdns.net!, 2010.

[22] M. Allman, "P ersonal namespaces." ACM SIGCOMM
Hotnets 2007, November 2007.

