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Abstract 

The ability to define domain names for resources in 

a collaborative virtual organization is usually reserved 

to network administrators through centralized domain 

name servers. We propose SocialDNS, a decentralized, 

naming service that gives individual collaborators the 

power to choose the domain names for their resources. 

Our approach is based on similar concepts of de­

centralized naming solutions available in local area 

networks. We enable short-names for resources by 

limiting the scope for uniqueness. We also employ a 

rank-based mechanism for dealing with name conflicts. 

We evaluate our design through graph level analysis 

to anticipate scope, bandwidth costs and latency. We 

also conducted experiments involving Amazon Ee2 

and PlanetLab to analyze the latencies in a real world 

environment. 
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1. Introduction 

The ability to define domain names for resources in 

collaborative virtual organizations is usually reserved 

for network administrators through centralized domain 

name servers. This restriction precludes effective col­

laboration especially in P2P VPN enabled virtual orga­

nizations with no central authority. Without a domain 

naming service, collaborators would have to resort to 

hard-to-remember IP addresses to refer to the location 

of services. This is further exacerbated in dynamic IP 

environments such as P2P VPNs and private networks 

where IP addresses can change frequently; hence mak­

ing it extremely difficult to keep track of the location 

of collaborative services. 

We propose SocialDNS, a decentralized, naming 

service for collaborative P2P VPNs. P2P VPNs provide 

collaborators IP access to each in a decentralized fash­

ion; however, there does not exist a decentralized solu­

tion which allows collaborators the freedom to choose 

fully qualified domain names for the services that they 

host. Decentralized solutions such as multicastDNS [1] 

and WINS [2] exist for private networks and LAN en­

vironments; however, these solutions cannot be applied 

to the P2P VPN environment unmodified. We address 

this need in SocialDNS by providing an alternative 

comparable to decentralized solutions such as multi­

castDNS but better suited for P2P VPNs. SocialDNS 

uses a simple broadcast mechanism for cOlmnunication 

which can be deployed on top of existing P2P VPN 

solutions such as Hamachi [3], or SocialVPN [4]. 

With SocialDNS, P2P VPN collaborators are able 

to select short-names among themselves for their re­

sources through social scope uniqueness instead of 

the global uniqueness enforced by the normal DNS 

system. Name conflicts can arise in the SocialDNS 

system if two peers decide to choose the same domain 

name for a resource. In such cases, we use a simple 

rank-based method to select the mapping with the 

highest popularity in the social circle. 

We provide a social graph analysis of our design 

where we estimate expected bandwidth costs, and 

latency. Our analysis is based on the assumption that 

P2P VPNs form a social graph with small world 

characteristics since each VPN link represents a social 

relationship. Although not all P2P VPNs possess this 

property, we are only focused on P2P VPNs that 

only created VPN links based on social relationships. 

Based on this assumption, we used a 100,000 social 

networking graph from Orkut to validate our design 

choices. Our analysis shows that a typical SocialVPN 

query can consume about 42 Kbytes of bandwidth. 

We also observed that by setting a timeout of 100 ms 

per query, we are able to get responses from 79% of 

our peers on average. We also conducted experiments 

involving Amazon EC2 and PlanetLab to analyze the 

latencies in a real world environment. 
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The rest of the paper is outlined as follows. Sec­

tion 2 provides motivating uses cases for SocialDNS. 

Section 3 explains some background on P2P VPNs 

and decentralized DNS solutions for private networks 

and LANs. In section 4, we present the design of 

SocialDNS, followed by its analysis in section 5. Sec­

tion 6 describes a prototype implementation and some 

experiments conducted with the prototype. Section 7 

covers related works in both decentralized naming 

and peer-to-peer reputation systems. We conclude in 

Section 8. 

2. Motivation 

The main motivation for SocialDNS is to provide 

end-users with the freedom to set their own domain 

names in P2P VPN environments. Domain names 

serve an important role in the user-friendliness of the 

Internet and are used in most TCPIIP connections. 

Here we provide a few use cases that demonstrate the 

importance of a decentralized, user-controlled, domain 

naming service for private networks. 

Naming for Self-Hosted Services. P2P VPNs make 

it possible for end users to host services on their 

personal resources and provide network level access 

to peers of interest. For example, an end-user, Alice, 

can host a blog from her laptop that only her P2P VPN 

friends can access, or share her desktop through a VNC 

session to do a PowerPoint presentation. An important 

requirement for hosting services is user-friendly do­

main names to these services so that Alice's colleagues 

can connect to her blog by typing aliceblog.sdns or 

view her presentation by typing alicepc.sdns in their 

remote desktop clients. Domain names also provide 

location transparency in dynamic IP environments such 

as private networks, and P2P VPNs; thus end-users are 

not required to re-discover the dynamic IP address to 

a service every time there is a change in the host's 

IP address. In the previous example, without a domain 

naming service, Alice's friends would have to discover 

Alice's IF address every time they want to access her 

blog or view her presentation. Hence, IF connectivity 

is not the only requirement for enabling users the 

freedom to host their own content, a domain naming 

system is also necessary so that end users can select 

the names used to refer to these services. 

Distributed Virtual Environments. A distributed 

virtual environment, such as OpenSim [5], comprises 

of a virtual world where different regions are hosted 

on separate host machines that may be geographically 

dispersed. A P2P VPN can facilitate the deployment of 

such an environment by providing a virtual private net­

work of collaborators where each collaborator adds to 

the virtual world by hosting their own region. Through 

this private network, collaborators can securely share 

information and data through the virtual environment 

without fear of information leakage to unauthorized 

third parties. Configuring this virtual world requires the 

use of configuration files containing pointers to the host 

machine of each region that make up the virtual world. 

Using IP addresses in the configuration file is not 

ideal because private networks typically use dynamic 

IP; hence, changes in IP addresses would require 

constant updates to configuration files. However, by 

extending the P2P VPN model to provide a domain 

naming service, the changes in IP address would be 

transparent to the application thus eliminating the need 

to constantly update configuration files. 

3. Background 

In this section, we provide a brief description on the 

use of P2P VPNs for collaborative environments, the 

social aspects of P2P VPNs, and current decentralized 

solutions for private networks and LANs. 

P2P VPNs for Collaboration. Virtual private net­

works (VPNs) allow remote users secure access to 

private organizational networks over the Internet. The 

basic concept is to tunnel IP traffic through encrypted 

TCPIIP links and therefore provide secure network 

access to private resources such as a company database, 

an intranet, a printer, or a computing cluster. In typi­

cal VPNs, enabling such a service requires dedicated 

resources such as a VPN gateway servers to serve as 

the traffic broker for these external access clients, as 

well as complex administration to guarantee privacy, 

access control, and quality of service. P2P VPNs, 

on the other hand, allows geographically dispersed 

collaborators to form their own VPNs by tunneling 

IP packets directly to each other without reliance on 

centralized relay gateways. P2P VPNs also provide 

firewall and NAT traversal thus making it feasible 

for users to communicate without access to public IP 

addresses. Various P2P VPN solutions currently exist 

such as Hamachi [3], SocialVPN [4], Wippien [6], 
just to name a few. P2P VPNs effectively facilitate 

collaboration by making it possible for individual users 

to privately share resources over VPN links without the 

typical infrastructural and administrative overheads of 

traditional VPNs. 

The P2P VPN Social Graph. Various P2P VPN 

solutions such as SocialVPN [4], or Wippien [6], have 

an interesting characteristic not found in traditional 

VPNs in that the encrypted tunnel links of the P2P 

VPN network represent the edges of a social graph 

with small world characteristics. As shown in Figure 1, 
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Figure 1. On left: MulticastDNS in LAN environment. AII-to-all connectivity among nodes allows multicast DNS to successfully detect duplicate 
names, hence host B chooses domain name fileserver2Jocal because host C's mapping of fileserver.local is discovered in through a probing phase. In middle: MulticastDNS in P2P VPN environment. Lack of all-to-all connectivity causes host B to be unaware of host C's mapping of fileserver.local 
and thus claims the same mapping. This creates a conflict for host A who now has two peer in her network with the domain name of fileserver.local. On right: SocialDNS in P2P VPN environment. SocialDNS uses a two-hop broadcast to search for duplicate names in the social circle. With the two-hop 
broadcast, host B discovers host C's mapping for fileserverJocal and chooses fileserver2.local instead. If host B still decides to pick the same domain 
name as host C, then the conflict resolution mechanism picks the most popular name in the social circle. 

even though both collaborators B and C are part of 
collaborator A's VPN, it does not imply that collabo­
rators B and C have a VPN link to each other. This 
is analogous to a social network where Alice can be 
friends with both Bob and Carol, but it does not mean 
that Bob and Carol are friends. For scalability and 
security, it is important to only have VPN connections 
with trusted peers; there is no point of having links 
with peers of no common interest. This is a departure 
from the common concept of private networks such 
as local area networks (LANs) and traditional VPNs 
where there is the expectancy of all-to-all connectivity 
among nodes in the same network. 

Decentralized naming in private networks. De­
centralized naming services are extremely useful and 
common in private networks (e.g. LANs) because they 
provide a zero-configuration solution to mapping user­
friendly names to resources. For example, in a typical 
home network, a decentralized naming service makes 
it possible to access a file using the following urI 
smb:\ \mom-pc\SharedDocs\familypic.jpg. The two 
commonly available decentralized naming solutions for 
private networks are the Windows Internet Name Ser­
vice (WINS) [2] by Microsoft and Apple's multicas­
tDNS [1] system called Bonjour. One approach would 
be to run one of these naming solutions on the P2P 
VPN unmodified. However as shown in Figure 1, these 
approaches were designed with the assumption of all­
to-all connectivity amongst all node within the same 
network through a common networking backbone (e.g. 
routers and switches). The lack of such all-to-all con­
nectivity in the P2P VPNs makes it impossible for 
WINS and Bonjour to properly detect name collisions 

in their probing phase. SocialDNS aims to address 
these limitations for the P2P VPN environment. 

4. SocialDNS Design 

The main design goals of SocialDNS are short­
names through social scope, decentralization, simple 
user management, and name conflict resolution through 
social popularity. The SocialDNS design is also based 
on the following assumptions: 1) a P2P VPN cre­
ates a social graph where links represent relationships 
between ends users, 2) each P2P VPN tunnel is an 
authenticated and encrypted end-to-end link similar 
to an IPSec connection, and 3) the previous two 
assumptions makes it harder for a malicious user to 
mount a Sybil attack. The third assumption is also 
corroborated by previous work [7] which have shown 
that Sybil attacks can be mitigated using social links 
instead of anonymous links. The authentication and 
encryption of the IP tunnels is discussed in previous 
work [4]. 

4.1. Enabling Short Domain Names 

One of SocialDNS's key roles is to enable short 
domain names to resources in the P2P VPN, for exam­
ple, Alice can set alicepc.sdns as the domain name for 
her personal computer. The first step in enabling short 
domain names is to choose an unallocated root-level 
domain zone to avoid conflicts with the global DNS. 
SocialDNS chooses an unassigned root-level domain 
zone; therefore preventing phishing attacks based on 
addresses used on the public Internet i.e. by creating 
a fake DNS mapping for www.bankojamerica.com. A 
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Figure 2. SocialDNS AJAX Web Interface. In this screenshot, Bob does a wildcard search for all DNS mappings with the *.alice.sdns search 
string. By clicking on the Search your friends' cache button, the search is sent to all friends through the P2P VPN. As the responses arrive from friends, 
the Web interface is updated along with a ranking for each mapping on the right. The ranking information is used to sort the mappings, the end user 
makes the final selection on the mapping to add to the local cache. Although IP addresses are shown in the interface, the user is not involved in the actual 
manipulation, when IP addresses are changed, mappings are updated automatically. Existing local cache mappings are shown on the left hand side. 

second requirement is to limit the scope for unique­

ness. The global DNS system provides naming for 

the whole world, potentially billions of hosts thus 

making short-names scare. In the P2P VPN setting, 

uniqueness is only required within a peer's social circle 

which is usually composed of a few hundred or at 

most a few thousand hosts. The reduced scope lessens 

the probability of collision for short-names such as 

alicepc.sdns. It is important to clarify that peers only 

have VPN connections with one-hop friends which 

is about 42 friends on average following a powerlaw 

distribution. 

4.2. Decentralization and Broadcasting 

We achieve decentralization in SociaIDNS by run­

ning a local DNS service on each peer's machine; 

hence there is no head node or central point of failure. 

We also leverage the unstructured peer-to-peer social 

graph created by P2P VPNs as the messaging substrate 

connecting these local DNS servers. The local DNS 

service provides users with an interface where they can 

easily add and remove DNS mappings. The SociaIDNS 

nodes use one or two-hop broadcast messages to com­

municate amongst each other thus allowing users to 

perform arbitrary searches on each other's SociaIDNS 

caches. Using broadcast greatly simplifies the design 

due to its stateless nature and topology independence. 

As users create new DNS mappings, they are able to 

freely share these mappings with social peers over the 

P2P VPNs. Therefore, a typical DNS query can search 

the local DNS cache as well as the DNS caches of 

friends in the social circle. This is analogous to the 

common Gnutella P2P file sharing paradigm where 

each peer runs a local file server, and other peers are 

able to broadcast queries to search for files. In the 

SocialDNS case, each peer runs a DNS server instead 

of a file server, broadcast queries are sent to social 

peers instead of random peers, and the results are DNS 

mappings instead of files. 

4.3. Simple User Interface and Management 

Managing a typical DNS server such as BIND is a 

serious undertaking, a task suited mainly for network 

administrators [8]. Our focus is to provide simple 

management to the user with minimal configuration 

and an intuitive Web interface for creating, deleting, 

searching, and sharing DNS mappings. The user ex­

perience for the SociaIDNS system involves just a 

few steps. First, by running the SocialDNS service 

on the local machine, startup scripts configures the 

operating system's settings and point to the local server 

as one of the DNS servers. The local DNS server only 

resolves requests under the .sdns root domain zone to 

avoid common DNS phishing attacks and to allow co­

existence with the global DNS. The user then uses 

their web browser access the SocialDNS interface (see 

Figure 2). 

4.3.1. Creating User-Defined Mappings. Users can 

add new mappings to their local SociaIDNS cache in 

one of two ways. The first method is for the user 

to manually create a SociaIDNS mapping through the 



Web interface: for example, Alice uses the input box to 

map the name alicepc.sdns to her local Pc. The newly 

created mapping will only be accepted if it follows 

the following criteria: 1) the mapping ends with .sdns, 

and 2) it points to a virtual IP address in the P2P VPN 

address range. SocialDNS gives the user the freedom 

to pick any DNS mapping under the .sdns root zone. 

4.3.2. Importing Mappings through Search. The 

second method is through a SocialDNS search which 

allows users to query each others' SocialDNS caches 

for mappings. The searching process resembles a typi­

cal Web search, and the results are presented to the user 

sorted by our ranking method described below. A user 

can choose to import a mapping to hislher SocialDNS 

cache by simply clicking on the mapping. 

Figure 2 shows a search for *.alice.sdns and the 

results of that search and the user can choose to import 

these mapping locally. Since this search is done as a 

typical flood-based broadcast in an unstructured P2P 

network, SocialDNS therefore supports various types 

of queries such as exact, nearest, and regular expres­

sion matching. The search is done by broadcasting the 

DNS query to all friends and maybe friends of friends 

depending on user settings. Using broadcast queries 

with greater hop counts gives the local user a more 

accurate view of the popularity of a DNS mapping at 

the cost of generating more traffic and higher latencies. 

4.3.3. Freedom to Redefine Domains. SocialDNS 

also gives users the option of redefining the domain 

name that point to a friend's resource in his/her local 

DNS cache. This is similar to creating a bookmark 

to a web page, but instead of using the page title 

provided by the website, the user can create hislher 

own reference to that web link. SocialDNS operates 

in a similar fashion because the user can import the 

existing mapping defined by a friend or create another 

mapping at his/her discretion. For example, let's say 

Bob chooses bobpc.sdns as the SocialDNS name for 

his machine, Alice can either import that domain 

mapping or define her own mapping such as bobby­

pc.sdns for Bob's machine. Consequently, SocialDNS 

allows a user to create map multiple domain names to 

the same IP address. 

Creating a different mapping for a peer's resource 

only makes that mapping available the local So­

cialDNS cache, however peer's have the option of 

importing that mapping in their own SocialDNS cache 

through search. Extending the previous example, as­

suming Carol has friendships with both Alice and Bob, 

through a SocialDNS search, Carol noticed that Bob 

the following mapping bobpc.sdns = 172.31.231.23 

while Alice has bobby-pc.sdns = 172.31.231.23 and 

both mappings point to the same IP address, Carol will 

have the option of choosing either Bob's mapping, or 

Alice's mapping, or both. Once again, DNS mappings 

can be thought of as bookmarks to webpages, and 

SocialDNS makes it easy to create any mappings and 

share it with friends. As a mapping is replicated across 

peer's SocialDNS cache, its popularity in the social 

circle and that creates the basis for our rank system 

described below. 

4.4. Name Resolution 

SocialDNS performs two types of name resolution: 

user-verified and automatic. Providing an automatic 

mode gives the end user the option of not having 

to manually import each mapping created by social 

peers, but supporting a user-verified mode is crucial 

for some secure services. The mode of operation is 

a configuration the user is able to set at startup or 

runtime. 

4.4.1. User-Verified Name Resolution. In user­

verified mode, SocialDNS only resolves mappings that 

have been explicitly created or imported by the user 

through the web interface. This is important because 

changing a DNS mapping from I PI to I P2, which can 

happen in automatic mode without user intervention, 

may cause information leakage due to web browser 

cookies. Hence, users should use the SocialDNS in 

user-verified resolution mode for information sensitive 

services. 

For a user-verified name resolution, the local DNS 

server utilizes its SocialDNS cache only to resolve 

incoming DNS queries from the operating system. In 

other words, when Bob types www.alice.sdns in his 

browser, the browser asks the operating system to 

resolve the DNS name, the request is forwarded the 

local SocialDNS service, the mapping is looked up in 

the local cache, if found, the IP address is returned, 

if not found an NXDOMAIN response is sent back 

to the application. In this mode, there are no name 

conflicts because they are resolved by the user through 

the web interface. For example, if Alice tries to create 

or import a mapping such as www.alice.sdns which 

already exists in her local SocialDNS cache, she will 

be informed of the collision and required to choose a 

different domain name for the resource. Also, in the 

web interface, if there can be multiple search results 

with the same ranking; in this case, the user makes 

a selection on the mapping they would like to import 

thus resolving the name conflict themselves. 



4.4.2. Automatic Name Resolution. In automatic 

mode, SocialDNS automatically searches the social 

circle for mappings that are not present in the local 

cache and picks the highest ranked mapping. This 

mode of operation is not as secure as the previous 

mode because it can lead to frequent changes in IP 

address that is transparent to the user, because the 

resolution is based on the most popular mapping at 

the time of the query. To perform this resolution, the 

SocialDNS system sends a search to all friends, waits 

for a predefined time interval to gather results, and the 

highest ranked mapping is chosen. In the case of a tie, 

the highest ranked SocialDNS mapping is selected. 

4.4.3. Ranking Domain Names. We do not enforce 

uniqueness during the creation of the DNS mappings 

because we believe in using social context to help with 

the DNS resolution; therefore, www.alice.sdns can map 

to one IP address in one social circle, and to a totally 

different IP address in another social circle. In the case 

where both mappings exist in the same social context, a 

ranking algorithm is used to provide preference to one 

mapping over another. So www.alice.sdns will map to 

the IP address with the highest ranking, and the local 

user will have to specify an alternate name for the 

conflicting mapping. 

Our current ranking algorithm is simple; when a 

DNS query is sent to all friends, the friends search their 

DNS cache for matching results and send the responses 

back to the requester, mappings are ranked based on 

an aggregation of the responses. For instance, if five 

friends return responses saying www.alice.sdns maps 

to 172.32.122.31, while two friends says that it maps 

to 172.15.223.112, then the first mapping will get a 

ranking of five, and the second a ranking of two. Once 

ranked, the mappings are presented to the local user for 

selection (see Figure 2). With this simple scheme, we 

use the presence of a SocialDNS mapping in a peer's 

local cache as a vote for that mapping, the more peers 

that have a mapping in their cache, the more votes that 

mapping gets. This is similar to the ranking system 

used by Delicious.com where a bookmark's popularity 

increases as more people add that bookmark to their 

accounts. 

4.5. Protection against DNS attacks 

Attacks such as phishing, session hijacking, cache 

poisoning have plagued DNS and it requires careful 

administration and robust software to protect against 

the DNS security flaws. Hence, it is important for 

the SocialDNS design to avoid these same flaws cur­

rently plaguing the current DNS system. SocialDNS, 
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Figure 3. Distribution of Number of Friends in 2-hop Radius 
of Social Circle. As shown in this distribution, a user has about 2000 

friends in a two-hop radius on average. 

however, benefits from inherent network level security 

provider by P2P VPNs. In a P2P VPN each tunnel is 

encrypted and authenticated either through the use of 

IPSec, or a TCP/IP level encryption such as TLS or 

DTLS. Therefore, every network packet can be bound 

to a peer's identity making it impossible to spoof an 

IP packet or a DNS response. This security primitive 

hence makes attacks such as phishing and cache poi­

soning futile because the culprit can be detected and 

banned for the P2P VPN. 

5. Analysis 

In our analysis, we explore the following aspects 

of our design: number of peers in the social scope, 

bandwidth cost, and latency. Due to our assumption 

that the P2P VPN create a social graph, we have used a 

100,000 node sample social data captured from Orkut. 

The dataset was provided by the authors of [9]. We 

then used NetworkX [10], a Python package for com­

plex network analysis, to study the different aspects of 

our design through the social graph. Our social graph 

contains the following small-world characteristics: 1) 

an average clustering coefficient of 0.27, 2) and a 

powerlaw degree distribution. 

5.1. Reduced Conflicts in the Social Scope 

A major strength of SocialDNS is the increased 

availability of short names through social scoping, 

meaning because we do not have to guarantee global 

uniqueness as in the case of regular DNS, uniqueness 

is only guaranteed within the social circle. Since the 

recommended social scope for uniqueness is two hops, 
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Figure 4. CDF of One, Two, and Three hop Queries. As the 
graph shows, increasing the hop count for SocialDNS Queries increases 
the bandwidth consumption by two orders of magnitude. 

we examined the distribution of the number of friends 

in a two-hop radius to get an idea for the number 

of peers that may be competing for the same domain 

name. Through our analysis, we observed that in a 

two-hop radius of the social circle the average number 

of friends are 1,832, and a median of 1,150. Therefore 

Alice would only have to compete with less than 2,000 

peers on average to claim the name alice.sdns instead 

of the billion of users on the Internet to guarantee 

uniqueness in a two-hop radius of the social circle. 

The reduced number of peers makes finding a short 

SocialDNS domain name much easier. Figure 3 shows 

the actual distribution of the number of host within a 

two-hop social circle. 

5.2. Expected Bandwidth Cost 

SocialDNS uses broadcasting as the primary method 

of communication, therefore understanding the ex­

pected bandwidth costs helps us predict the traffic 

generated by SocialDNS queries. Figure 4 shows us the 

cumulative distribution function (CDF) of the expected 

number packets generated when a user does a one, 

two, or three hop search for a SocialDNS mapping. 

We assume the maximum packet size allowed in the 

DNS RFCs [11] of 512 bytes. Hence, a one, two, 

and three hop SocialDNS search generates about 42 

Kbytes, 4.5 Mbytes, and 161 Mbytes of traffic on 

average, with a medians of 25 Kbytes, 1.7 Mbytes, 

and 90 Mbytes respectively. Therefore, a user is only 

allowed to perform a one or two hop broadcast in 

SocialDNS to avoid consuming to much bandwidth per 

DNS queries. Future work will look at efficient ways 

of caching the DNS mappings to minimize bandwidth 

consumption. 

5.3. Anticipated Latency 

Analyzing the latency helps us determine the proper 

timeout to set per SocialDNS query to gather adequate 

responses from social peers. The first step in our 

latency analysis is to examine the relationship between 

friendships and geography. According to Liben-Nowell 

et al. [12], friendships in a social network are based 

on a geographic preference given by formula P( d) = 

d;.2 + 5.0 x 10-6, where P( d) is the probability 

of friendship between two peers that are located at 

distance d kilometers away. Based on the works of 

Bassett et al. [13], one can derive latency from distance 

by approximating latency as � the speed of light. 

Another work by Dischinger et al. [14] also has shown 

that in residential ISPs, a packet may take up to 2.5 

milliseconds from the host machine to the ISP's router 

for a total round-trip time of 5 milliseconds. Using 

these previous works, the latency in milliseconds is 

approximated as: 

d X 103 
latency = 4 + 5 X 10-3 (1) 

gC 

where C is the speed of light at 299,792,458 m/s. 

Hence we used the probability function P( d) to assign 

distances between friends and the equation (1) to 

approximate the latencies of friendship links in the 

social graph created by the P2P VPN. 

Based on the aforementioned latency distribution, 

we measured the percentage of received responses 

based on timeouts of 100 ms, 200 ms, and 300 ms 

for one-hop queries, and 200 ms, 400 ms, and 600 ms 

for two-hop queries. For a timeout of 100 ms for a 

one-hop broadcast, we received responses from 79% 

of friends on average, 89% for 200 ms, and 99% 

for 300 ms. In the two-hop broadcast scenario with 

timeout of 200 ms, 400 ms, and 600 ms and received 

responses from 61%, 78%, and 98% of friends on 

average, respectively. Figure 5 plots CDF showing the 

distribution of the percentage of responding friends 

with the various timeouts for one and two hop queries. 

6. Implementation and Experiments 

We currently have a preliminary prototype of the 

SocialDNS system implemented in the SocialVPN [4] 

software stack. SocialVPN is a P2P VPN which uses 

social networking backends such as Facebook, or 

Google Chat to automatically create P2P VPN links 

with friends. The whole software suite is written in 

C# and is available on http://socialvpn.org. The Web­

based interface is implemented as a search engine-like 

interface written in AJAX (see Figure 2). 
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Figure 5. Impact of Query Timeouts. For one-hop queries, at 100 ms median is at about 75% and we hear back from all friends 10% of the time; 
the median at 200 ms is about 90% and we hit 100% results about 16% of the time; at 300 ms, our median is at 100%, and we get all results 75% of the 
time. For two-hop queries, at 200 ms, we obtain a median of 65%, but we obtain 100% less than 1 % of the time; at we achieve a better median of 80%, 
with barely any improvement at the 100% mark; at 300 ms, we get a much better median of 99%, and we hit 100% about 3% of the time. 

We conducted experiments to assess the functional­

ity and performance of our prototype. The experiments 

involved both PlanetLab [15] and Amazon Elastic 

Cloud [16] (EC2) infrastructures. PlanetLab, a global 

research testbed with nodes located around the world, 

was used to deploy 600 P2P nodes which formed our 

bootstrap P2P overlay. The P2P nodes on PlanetLab 

did not include the SocialDNS software stack. We de­

ployed SocialDNS nodes on Amazon EC2 because our 

system requires adding the local SocialDNS server to 

the operating system's DNS configurations. Modifying 

the DNS settings is not possible on PlanetLab nodes, 

but, this is possible on Amazon EC2 because we have 

total root access to the virtual machine. On the Amazon 

EC2 nodes, we added DNS mappings to the local 

caches, searched and imported DNS mappings from 

social peers, and resolved DNS mappings created by 

the local user and friends. Hence, our design proved 

feasible and all components integrated successfully. 

6.1. Experimental Latency 

We also wanted to explore the latencies of the DNS 

queries through the peer-to-peer overlay running on 

PlanetLab with nodes located around the globe. Three 

SocialDNS nodes were deployed on the various regions 

of the Amazon EC2 infrastructure located in Virgina, 

California, and Ireland; a fourth node was located in 

Florida from a residential ISP. Figure 6 shows the 

cumulative distribution function (CDF) of 3000 DNS 

queries conducted at each of the four nodes. The results 

show that more than 90% of the DNS requests take 

less than one second irrespective of the geographic 

locations. 

It is also desirable to see how long it takes to 

broadcast DNS queries simultaneously to all friends 

through the overlay. Assuming a private peer-to-peer 

overlay [17] consisting only of our social peers, we 

measured the time taken to broadcast queries to all 

peers with network sizes of 200, 400, and 600 nodes. 

Using only the PlanetLab nodes, we sent 100 broadcast 

queries to each of the different sized networks. Figure 7 

shows the 25th, 50th, 75th, and 95th percentile of time 

taken to broadcast to the whole network. The 95th 

percentile are 8, 12, and 16 seconds for network sizes 

of 200, 400, and 600 nodes, respectively. 

7. Related Works 

There have been various previous works aimed at 

improving the DNS experience. One of the first is by 

Cox et. al. [18] who discussed the implementation of a 

DNS system on top of the Chord DHT. Although such 

an approach was feasible, the latencies of a DHT-based 

DNS were much higher than conventional DNS. Our 

approach is not depend on a structured DHT and is 

deployed on top of an unstructured social peer-to-peer 

network through the use of P2P VPNs. 

Walfish et. al. [19] suggested using semantic free 

references (SFR) as a replacement for DNS-based 

URLs on the web. They also suggested using a struc­

tured DHT to store self-certifying o-records containing 

pointers to resources. Their focus was on decoupling 

the mnemonics names from the actual references which 
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Figure 6. CDF of User Request Times. Each of the four user sent 
3000 DNS requests (1000 to each friend). The four nodes were located 
in Virginia, California, Florida, and Ireland. We measured the round-trip 
latency of each DNS query. In each case, over 90% of requests takes 
less than one second. 

were 160-bit hash tags, and a whole separate mecha­

nism, maybe social, to map names to the complex tags. 

The SFR design therefore suggested a total redesign of 

referencing on the Internet. CoDNS [20] is a system 

which automatically forwards pending DNS requests to 

another local DNS server to a remote administrative 

domain. The rationale is that most DNS failures are 

associated with poorly configured local DNS server, 

by sending long pending requests to different local 

DNS server in another domain, it provides some redun­

dancy to local DNS failures. The SocialDNS system 

reuses the current DNS protocol without requiring any 

re-architecting and simply supplements current DNS 

systems. SociaIDNS.net [21] is a project similar to 

dynamic DNS which allows users to manage their 

own domains through the use of a browser-plugin that 

can redirect uris prefixed with go:// to a service that 

translate to a proper HTTP urI. This approach is based 

on a client-server architecture while we focus on a 

peer-to-peer design. 

Allman [22] introduced the concept of personal 

namespaces (pnames) to provide easier references to 

their email, blogs, links, and so on. Every user is given 

an NID which is a cryptographic hash of the public key. 

These NIDs are shared among friends through a one­

time exchange and are used to retrieve the mappings 

of a user's namespace from a DHT. The pnames 
system share many similarities with SocialDNS, but 

it is proposed as second level of indirection to name 

resolution and the resolution are not restricted to DNS 

records. For example, alice:email would resolve to 

alice@mailserver.com, a second resolution would then 

be required to resolvemailserver.com. Since NIDs are 

/ 
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Figu re 7. Time taken to broadcast varying size networks. 
100 broadcast queries were sent to each network size. 95% of 
the queries took less than 16 seconds for a network size of 600 
nodes. 

always unique, and the local user defines the mapping 

of names to NIDs, name conflicts are not an issue. 

SociaIDNS has to deal with name conflicts and uses a 

social conflict resolution to help rank various names. 

8. Conclusion and Future Work 

In this paper, we present a decentralized domain 

naming solution suited for P2P VPNs. We make the 

case that provide IP access is not enough to enable 

collaborative virtual organizations, give users the free­

dom to create short names to the services that they 

host is also necessary. We presented SocialDNS which 

provides that freedom and reused existing concepts 

from decentralized naming solutions for in local area 

networks. We also improve upon the current limita­

tions of LAN-based decentralized naming systems that 

makes them unsuited for a P2P VPN environment. 

The SocialDNS design makes it trivial to assign 

short domain names to resources through a P2P VPN 

through social scoping, meaning, a user only has to 

compete with less than 2,000 host on average for 

a domain name. For simple management, we have 

designed a minimal configuration, easy-to-use AJAX 

Web interface, where a user can search his/her friends's 

SociaIDNS cache and import mappings of interest 

For design simplicity, broadcast is used as the main 

method of communication among SociaIDNS nodes in 

the P2P VPN. In case of name collision due to the 

lack of a central authority, a popularity-based ranking 

mechanism is employed to pick the mapping that it 

present in the most caches in the social circle. 

We use social graph analysis to predict the band­

width cost and responsiveness by assuming a P2P 



VPN will form a social graph. Our current prototype 

only allow for one-hop broadcast, and we are working 

on support two-hop broadcasts, but nothing beyond 

that. For future work, we plan on exploring gossip 

techniques that can help propagate both SociaIDNS 

mappings and reputation information at a controlled 

rate. The hope is to minimize both bandwidth con­

sumption and latency through more intensive caching 

of social information. We also plan on investigating 

other potential reputation mechanisms that may also 

consume less bandwidth. 
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