
Optimized Decentralization of Composite Web

Services

Walid Fdhila

LORIA - INRIA Nancy - Grand Est

F-54500 Vandreuvre-Ies-Nancy, France

Email: fdhilawa@loria.fr

Marlon Dumas

University of Tartu

Tartu 50409, Estonia

Email: marlon.dumas@ut.ee

Claude Godart

LORIA - INRIA Nancy - Grand Est

F-54500 Vandreuvre-Ies-Nancy, France

Email: godart@loria.fr

Abstract-

Composite services are usually specified by means of or­
chestration models that capture control and data-flow rela­
tions between activities. Concrete services are then assigned to
each activity based on various criteria. In mainstream service
orchestration platforms, the orchestration model is executed
by a centralized orchestrator through which all interactions
are channeled. This architecture is not optimal in terms of
communication overhead and has the usual problems of a single
point of failure. In previous work, we proposed a method for
executing service orchestrations in a decentralized manner while
fulfilling collocation and separation constraints. However, this
and similar methods for decentralized orchestration do not
seek to optimize the communication overhead between services
participating in the orchestration. This paper presents a method
for optimizing the selection of services assigned to activities
in a service orchestration in terms of QoS properties and
communication overhead. The method takes into account the
communication cost between pairs of services, the amount of
data that these services need to exchange in the orchestration,
and the collocation and separation constraints imposed by the
service providers.

I. INTRODUCTION

Service-Oriented Architecture (SOA) is a proven collection

of principles for structuring large-scale systems in order

to improve manageability and to streamline change. One

of the pillars of SOA is the ability to rapidly compose

multiple services into an added-value business process, and

then to expose the resulting business process as a composite

service [3]. Composite services are generally captured by

means of an orchestration model: a process model in which

each activity represents either an intermediate step (e.g. a

data transformation) or an interaction with one of the services

participating in the composition (the component services).

The process model specifies the control-flow and data-flow

relations between activities, using a specialized language such

as the Business Process Execution Language (WS-BPEL) or

the Business Process Modeling Notation (BPMN).

In mainstream service composition platforms, the respon­

sibility for coordinating the execution of a composite service

lies on a single entity, namely the orchestrator. The orches­

trator handles incoming requests for the composite service

and interacts with the component services in order to fulfill

these requests. Every time a component service completes

an activity, it sends a message back to the orchestrator with

all its output data. The orchestrator then determines which

services need to be invoked next and forwards them the

required input data. This architecture is not optimal in terms

of communication overhead and has the usual problems of a

single point of failure [3].

In previous work, we proposed a method for executing ser­

vice orchestrations in a decentralized manner [8]. The idea is

to group activities into partitions and to assign each partition

to a separate orchestrator. Partitions are chosen manually by

service designers. Designers may opt, for example, to put

all activities invoking the same service into a partition, or to

put all activities invoking services in a given organizational

domain into a partition, or any other partitioning criterion

of their choice. Clearly, the performance and robustness of a

decentralized service orchestration would benefit from placing

each orchestration engine as close as possible to the compo­

nent services that it manages. But neither the above method

nor other similar decentralized orchestration methods [11],

[5], [18], [3] help designers to optimize the communication

overhead between component services.

This paper presents a method for partitioning activities in

an orchestration and assigning services to activities, in such

a way as to minimize the communication overhead, while

maximizing the QoS expressed in terms of combinations of

properties such as time, cost, reliability, etc. The method

also allows designers to keep control over the placement

of activities. Specifically, designers may specify collocation

and separation constraints between pairs of activities. A

collocation constraint states that two activities must be placed

in the same partition (e.g. because they are performed by ser­

vices from the same company), while a separation constraint

imposes that two activities must be in different partitions.

The proposed method needs to deal with an optimization

problem involving different types of constraints and inter­

related optimization variables: QoS variables, location vari­

ables, collocation and separation constraints. To cope with

this complexity, the proposal relies on heuristic optimization

techniques [4]. Specifically, we present and analyze a greedy

algorithm to build an initial solution, and we outline how Tabu

search [9] can be applied to improve the initial solution. The

crux of the heuristics is to place services that communicate

frequently in the same partition, while fulfilling the colloca­

tion and separation constraints given by the designer.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.1

Po Po P,

�
P,

�
P,

d, �
H P3

d3

P,
p

d.

P,
P,

(a) (b) (e)

Fig. 1. (a) centralized model (b) First decentralized model (c) Second decentralized model

The rest of this paper is structured as follows. Section 2

introduces a motivating example and uses it to illustrate the

importance of choosing the right partitioning for decentralized

orchestration. Section 3 describes the details of the proposed

method. Section 4 discusses related work and Section 5

summarizes the contribution and outlines future directions.

II. MOTIVATING EXAMPLE

To motivate and illustrate the method presented in this

paper, we make use of a sample orchestration taken from [19]

(cf. Figure 2). This orchestration is designed to automate

a claim handling process at an insurance company IC. The

corresponding process model is captured in the BPMN nota­

tion, and it includes both control and data dependencies. Task

nodes have labels of the form ai:S where the ai is the activity

identifier and S is the identifier of the invoked service. We

assume for the time being that each activity has already been

assigned to a component service. We will discuss later how

this assignment is done in an optimized manner.

Ie : Composite Service

.. {J ,

Fig. 2. Motivating example

Before this process starts, it is assumed that the policy­

holder has contacted the Emergency Service (ES) to report

an accident. ES provides emergency call answering service

to policyholders and liaises with the hospital (Hospital) and

the traffic patrol (Police). Some time after the accident,

the policyholder contacts IC for reimbursement. In order to

handle the claim, IC executes the orchestration depicted in

Figure 2. First, IC invokes ES to obtain details about the

incident (activity ao). ES provides the protocol numbers that

are required by Hospital (H) and Police (P) services, in order

to release the respective incident reports. These dependencies

are denoted d1 and d2. With the details provided by ES,

IC invokes P and H concurrently. Additionally, Delivery

Service (OS) is invoked in order to pick up the physical

claim documents from the customer (activity a2). Note that

a2 is executed after ao but it does not have a data dependency

with it, while there are data dependencies between ao and

al and ao and a3. IC uses the output obtained from P and

H in order to invoke the Inspection Service (Ins) (activity

a4). Again note that, there are data dependencies between al

and a4, a3 and a4 but not between a2 and a4. Service Ins

decides whether the claim must be reimbursed or not. If so,

the report provided by H (data dependency d5) and the results

of inspection (d6) are sent to the policyholder by invoking

OS (activity a5) ' Moreover, a Bank (B) service is invoked

for the reimbursement. If the claim is not reimbursable, B

is not invoked. This is why an OR-split/OR-join is used in

the last part of the process: sometimes both OS and Bare

invoked, and other times only OS is invoked.

In existing service orchestration platforms (e.g. BPMN or

BPEL engines), control and data dependencies between ser­

vices are managed centrally by IC. The resulting interactions

between IC and the component services are hence as depicted

in Figure lao The centralized orchestrator is a bottleneck and

may cause performance degradation and availability issues.

It also causes additional traffic of messages, since every ac-

Constrained actvities-(A={a a a am)-Non constrained activities

r'
1, 2,· .. , i,···

Services S

CA Constraints CTR

a, a2 Collocate(a, ,a.,) Collocate(a3,a,)
a3 a4 Collocate(a2,a9) Separate (a4,a,)
as a.

Collocate(ag,a") Coliocate(aS,alO) a, a8
ag a'D Separate(as,ag) Coliocate(a'O,a'2)
a" a'2 Seaparate(a"as)

... ...
CA, CTR, CA, CTR, CA,

a, Collocate(a"a8)
a2 Collocate(a2,a9) a3 Collocate<l(a9,a4) as as Collocate(a9,a11) a, a,o a8

Separate(as,ag) a7 Separate(a4,a,) a"
a9

a" Seaparate(a"a.)

� •

w lJliJ lJ lJ
(P', PP'2 pp')

,fp2, pp2)
I I

G, G,
GCTR,={Separate(PP

"
, PP

'
,), GCTR,={Separate(PP'" Pp',))

Separate(PP
'
,. PP

'
3))

+
CTR,

Collocate(as,a,o)

Coliocate(a'O,a'2)

+

Q
G3

GCTR3=O

NCA

813 a14
a'5 a,S
au a1B
a'9 a2D

FP3

Fig, 3, Partitioning process

tivity execution involves a back-and-forth message exchange

between IC and a service, which may be located arbitrarily

apart and in a different organizational domain. An alternative

is to execute the orchestration in a decentralized manner,

Figure 1 b depicts a possible decentralized execution set­

tings for the same process, where IC is partitioned into seven

partitions that are executed by seven distributed orchestrators.

Each partition Pi is responsible for all activities that are

delegated to a given service. The time needed to exchange

messages between a partition and its corresponding orches­

trator is assumed to be negligible, since orchestrators are

placed close to the services they manage. In this decentralized

architecture, the data produced by a service are routed directly

to the partitions of the services that consume these data. For

example, hospital and police protocols (dl and d2) generated

by ES are routed directly to H and P. If we consider the

data exchanged only between services, then the number of

data flow messages in figure la is 8 (cf. communication

links labelled with data items di). Meanwhile, in decentralized

orchestration depicted in Figure 1 b, the number of messages

is reduced to 6 since data are transferred directly from their

sources to their points of consumption.

Now consider the case where ES and H are geographically

close to each other, and the same holds for P and Ins. Then,

it is preferable to create a single partition for ES and H, and

same for P and Ins. This arrangement reduces the number of

data flows exchanged between partitions to only 3 messages.

The example shows that that the communication overhead

varies depending on the number of partitions, the placement

of activities into partItIOns, the distance between services,

and the number of message exchanges. This paper takes into

consideration all these facts in order to obtain optimized

partitions for decentralized orchestration.

In addition to seeking to minimize communication over­

head, the proposed method also take into account the QoS

of each service. Specifically, we consider the case where

there are multiple candidate services that can perform each

activity. Each of these services offers a QoS and has a

location. The method seeks to assign services to activities

and to place activities in partitions in such a way as to strike

a tradeoff between minimizing the communication overhead

and maximizing overall QoS. Relative weights are assigned

to each factor in order to capture their relative importance.

III. PARTITIONING ApPROACH

Given a centralized process specification, our decentralized

orchestration is composed of two parts. The first step consists

in determining an optimized partitioning of activities and an

optimized assignment of services to activities in order to

reduce communication overhead and maximize QoS. This is

the subject of this paper. The second part consists in wiring

the activities in the same partition and across partitions in

order to preserve the semantics of the process model. This

wiring means that data and control dependencies need to be

realized by means of message exchanges between services

and distributed orchestrators assigned to each partition. For

this part, we can use a technique we presented in previous

work [8], [7] or other techniques discussed in Section IV.

In order to compute an optimized partitioning of an or­
chestration, we proceed in two steps. First, we perform a
pre-partitioning in which activities that are related through
Collocate relations are put in the same partitions. In this pre­
partitioning phase (Section IILB), we also construct "groups
of partitions" such that activities across different groups are
not related neither by Separate nor by Collocate constraints.
This pre-partitioning is useful since we can then easily
identify which activities must be collocated, and which sets
of activities must be kept separated. In the second step, we
use this pre-partitioning in order to form final partitions using
a Greedy algorithm. We also sketch how the initial solution
computed by the Greedy algorithm can be improved using
Tabu search.

Before describing the partitioning method, we define the
notion of service orchestration and related notions (Section
lILA). Next, we introduce the pre-partitioning algorithm as
well as an algorithm for calculating the minimum and maxi­
mum amount of final partitions to be created (Section IILB).
We then show how the communication overhead between
pairs of activities is computed by analyzing the orchestration
models (Section IILC). Finally, using the pre-partitioning
and the function for computing communication overhead, we
show how the final partitioning is computed (Section IILD).

A. Inputs and Outputs

The method for optimized service selection takes as input
a service orchestration consisting of activities related by
control, data-flow and distribution constraints. In order to
precisely define the notion of service orchestration, we need to
adopt a model for representing control-flow relations between
activities. In this paper, we adopt a structured representation
of process models. In essence a process model is represented
as a tree whose leaves represent activities and whose internal
nodes represent either sequence (SEQ), parallel (PAR), choice
(CRC) or repeat loop (RPT) constructs. Structured process
models are very close to BPEL, and they have the advantage
of being simpler to analyze. And while it is possible to write
unstructured models both in BPEL and in BPMN, recent
work has shown that most unstructured process models can be
automatically translated into structured ones [16]. Note that
for the purpose of the proposed method, we do not need to
capture concrete branching expressions. Instead, it is sufficient
to know the probability of taking each conditional branch in a
choice and the probability of taking the "repeat" branch in a
loop. Also, we do not need to capture OR-split/OR-join pairs,
because when a process is structured, OR-split/OR-join can be
trivially translated into a combination of choice and parallel
blocks. For example, the OR-split/OR-join pair in Figure 2

can be transformed into a choice between executing a5 only
or executing both a5 and a6 in parallel. Formally, we capture
structured process models as follows.

Definition 1: (Structured) Process Model A process model
is a tree with the following structure (here we use the type

definition syntax of the ML language):

Process

ProcNode

Control Node

ProcNode

Activity I ControlNode

SEQ ([ProcN ode l)

I CHC([CondBranch]) I

I PAR({ProcNode})

I RPT(ProcNode x P)

CondBranch "- COND (P x ProcNode)

where P is the range of real numbers from 0.0 to 1.0, denoting
probabilities.

For example, the BPMN model in Figure 2 is represented
by the following expression: SEQ(ao, PAR(al, a2, a3), a4,
CRC(COND(Pl, a5), COND(P2, PAR(a5, a6)))).

An activity in a service orchestration represents a one­
way or a bidirectional interaction with a service via the
invocation of one of its operations. Each activity has a
non-empty set of candidate services that it can be bound
with. In addition, activities may be related by means of two
types of distribution constraints: collocation (activities must
be placed in the same partition), and separation (activities
must be placed in different partitions). Formally, a service
orchestration is defined as follows:

Definition 2: Service Orchestration A service orchestra­

tion is a tuple (Proc, Data. Cand, Col/ocate, Separate), where:

• Proc is a process model capturing control-flow depen­
dencies between a set of activities;

• Data is a ternary relation consisting of tuples of the form
Data(ai' aj,dk) stating that, upon completion of activity
ai, data item dk needs to be transferred to activity aj

• Cand is a function that maps each activity to a set of
candidate services that are able to perform that activity.

• Collocate is a relation consisting of facts of the form
Collocate(ai, aj) stating that the activities al and a2
must be placed together;

• Separate is a relation consisting of facts of the form
Separate(ai' aj) stating that the activities al and a2 must
be placed in different partitions.

For consistency, we impose that \fal, a2 -,(Collocate+ (aI,
a2) 1\ Separate(aI, a2)) where Collocate+ is the transitive
closure of relation Collocate. This means that if we declare
that two activities must be collocated, we cannot state addi­
tionally that these activities must be separated.

An activity that is not related with any other activity by
a collocate or separate constraint is called an unconstrained

activity. In the sequel, we write CT R to denote the set of all
distribution constraints defined in an orchestration (CT R =

Collocate U Separate). Also, we write Act(arc) to refer to
the set of activities of an orchestration, C A(arc) to denote
the set of constrained activities and NCA(Orc) to denote
the set of unconstrained activities. Unconstrained activities
are also called flexible activities since we can place them in
any partition. When it is clear to which orchestration we are
referring to, we will simply write Act, CA and NCA.

Given a service orchestration defined as above, the purpose
of the method is to construct:

• A binding, that is, is a function that maps each activity
in the orchestration model to a service;

• A partitioning of activities, that is, a function that maps
each activity in an orchestration to a partition. This
partition function is needed for decentralized service
orchestration.

Specifically, the method seeks to bind candidate services
to activities in such a way as to minimize the communication
overhead and to maximize the QoS of the services in the
binding. We do not impose a particular model for calculating
the QoS of a service. Instead, we assume that there is a
function QoS(s) that returns the QoS of a service s. For
example, we could use the QoS model presented in [20]

in order to calculate the QoS of each component service,
based on a weighted sum of the service's execution time,
cost, reliability and availability.

Composite service designers are able to influence the
relative importance given to the minimization of the com­
munication overhead versus the maximization of the quality
by setting two weights: We E [0 .. 1] is the weight given to the
communication overhead and Wq E [0 .. 1] is the weight given
to the quality of service.

B. Pre-partitioning of Constrained Activities

The purpose of the pre-partitioning phase is to partition the
set of constrained activities C A so that we can later easily
identify which activities should be collocated and which
activities should be separated. To this end, we decompose the
set of activities into groups {CAl", CAn}, so that elements
in two groups are not related neither by a Separate nor by a
Collocate constraint. In other words, if we view the relation
CTR = Separate U Collocate as a graph, a group consists
of all activities in one of the connected components of this
graph. Figure 3 shows an example involving 12 activities
CA = {aI, .. ,aI2} linked through Separate and Collocate
relations. Looking at the corresponding CT R relation, we can
see that there are three connected components in the induced
graph, and thus three groups are created, namely CAl, CA2
and CA3. If we restrict the relation CT R to the activities
in each of these groups, we obtain three restricted CT R re­
lations, namely CTRI, CTR2 and CTR3 respectively.] The
rationale for this initial grouping is that activities belonging to
different groups can be freely combined with one another in a
final partition (or they can be left in separate final partitions),
because no constraint links them.

Next, each group is further partitioned into a number of pre­
partitions by looking at the relation Collocate only. The idea
is that each of these partitions is a maximal set of activities
that must be collocated. In other words, if we view the relation
Collocate as a graph, a partition in a group C Ak consists of
all activities in CAk that belong to one of the connected
components of this graph. The pre-partitioning of each group

IWe note that Vi,j,i =I- j, CA; n CAj={0} and CTR; n CTRj={0}.

CAk is a set of pre-partitions such that Gk=UP pr For
example, in Figure 3, CAl is decomposed into three pre­
partitions: P Pf={ al,as}, P Pf={ a6} and P Pf={ ag,all,a2}'
After the pre-partitoning phase, we know that all activities in
a pre-partitions should be manipulated as a single package
and put together in one final partition.

This pre-partitioning is operationalized by algorithm 1.

This algorithm first computes the groups by calculating the
connected components CT Ri of CT R. Each CT Ri leads
to one group. Next, the algorithm computes the partitions
within each group by computing the connected components of
the Collocate relation restricted to the connected component
CT Ri. For convenience, we lift the relation Separate so that
it can be applied to partitions as follows:

Separate(Pi,Pj) {o} 3ai E Pi,aj E Pj : Separate(ai,aj)

For example, with respect to Figure 3, it holds that
Separate(P Pi, P Pi) A Separate(P Pi, P Pi). This implies
that P pi should not be combined neither with P pi nor with
P pi in the same final partition.

Algorithm 1: Constrained activities partitioning
Require: - CT R: set of all constraints
Init: Groups +- {}
begin

end

for each CT R; in ConnectedComponent(CT R) do
CurGroup +-{}
for Collocate; in
ConnectedComponent(CTR; n Collocate) do
l NewPartition +- {al:Ja' Collocate;(a, a')}

Cur Group +- CurGroup U {NewPartition}

Groups +- Groups U { CurGroup }
Return Groups

Result: groups of constrained partitions

The final partitioning algorithm presented later tries to
compute partitions of different sizes. To this end, we need
to know the approximate minimum and maximum number
of possible final partitions F Pj. Algorithm 2 describes how
to compute the minimum required final partitions that can
be obtained by merging pre-partitions from different groups,
while respecting the constraints that link pre-partitions of
the same group. However, this number does not take into
consideration non-constrained activities N C A. So, to have
the exact number, consider IActl the total number of activi­
ties, N Amax (N Amin) the maximum (minimum) number of
allowed activities by partition (fixed by user after constrained
activities partitioning), N P the output of algorithm 2, and
ICAI (INCAI) the number of constrained (Non-constrained)
activities. Then the minimum and maximum number of final
partitions N Pmin and N Pmax are computed by equations 1

and 2, respectively. In Section 3.4, we will vary the number
of partitions from N P min to N P max and try to distribute the
flexible activities FA and the groups Gk over those partitions
in such a way as to minimize the communication overhead
and maximize the QoS. We will then choose the partitioning

that leads to the best overall tradeoff between communication

overhead and QoS according to relative weights given by the

user.

NP if
IActl :::; NP NAmax

N P +
I Act I - (N P * N Amax)

NAmax
Otherwise

(1)
(2)

Algorithm 2: Computing approximative minimum num­

ber of partitions after groups merging

Require: - Groups = UGk II The set of all partition groups
- N Amax II The maximum number of activities by partition
Init: N g f-- I Groups I
Ngmaxf-- Max�Gk�, k E [LNg]
Recu rsive(Groups, N gmax)
begin

if (G k = n, V k#N gmax) then
return Groups
for (Gk in Groups, k#N gmax) do
l for (Pik in G k) do
l min f-- Min{lP. tg=ax I) l E [LIGNg=ax I]

if �pkl + IpNg=ax I > N A } then
Add(Pt, GN:t�x}

max

Delete(pik, Gk}

repeat
Pmaxf--Max(Pik} st --,constrained(Max(pik}, p!:'i�=ax}
Vk # Ngmax, Vi E [LIGkl}
Add(Pmax, P!:,Znmax}
Delete(Pmax}

until ((Gk = nVk # N gmax) V (IPmax 1+ IP!:,Zn=ax I >
NAmax)
Recu rsive(Groups, N gmax)

end
Result: N P=Size(Recursive(Groups, N gmax»

C. Communication Overhead

One of the aims of the optimized partitioning approach is

to produce partitions such that the communication overhead

(i.e. the amount of communication) between activities inside

a partition is as large as possible and, conversely, the com­

munication overhead across partitions is as small as possible.

To construct such optimized partitions, we need to estimate

the communication overhead between pairs of activities. Two

activities al and a2 need to communicate if:

• Activities al and a2 are consecutive. If we take the

representation of a process model as a graph consisting

of activities and gateways (as in Figure 2), two activities

are consecutive if there is a control-flow arc directly

from al to a2, or there is a path from al to a2 that

does not traverse any other activity (i.e. only gateways

are traversed). In this case, every time an instance of

activity al completes, if activity a2 needs to be executed

next, the service assigned to al must send a control-flow

notification to the service attached to a2.

• There exists a data-flow from activity al to activity a2

(aI, a2, d) E Data. The presence of such a data flow

implies that every time activity al completes, the service

assigned to al must send a message containing a datum

of type d to the service assigned to a2.

Without loss of generality, we measure communication

overhead in bytes. We assume that control-flow notification

has a size of one byte. We also assume that the average size

in bytes of a message of type d is known, and we write

size(d) to denote this size. In order to determine how many

bytes will be exchanged between the service assigned to al

and the service assigned to a2 during one execution of an

orchestration, we need to determine two things:

• How many times a given activity will be executed

(for a given execution of the orchestration)? We write

numExec(a) to denote this amount.

• Given two consecutive activities al and a2, what is

the probability that one execution of activity al is

immediately followed by an execution of activity a2. We

write probFollows (al, a2) to denote this probability.

To compute the number of times that a given activity

is executed we reason on the structured process model (as

defined in Definition 1), and make the following observations:

• If a process node P N is a direct child of a sequence

(SEQ) node, then each execution of the SEQ node entails

one execution of P N
• If a process node P N is a direct child of a parallel (PAR)

node, then each execution of the PAR node entails one

execution of P N
• If a process node P N is a direct child of a condition­

aLBranch (COND) node that has a branching probability

of p, then each evaluation of node COND entails p

executions of P N.
• If a process node P N is a direct child of a Repeat

(RPT) node that has a repeat probability of p, then each

execution of the node RPT entails 1/(1- p) executions

of PN.
Based on these observations, we conclude that the number

of times an activity a needs to be executed (for a given exe­

cution of an orchestration) is determined by the probabilities

of the conditional branch and repeat nodes that appear in the

path from the root of the process model to a. Starting from

one execution of the entire process, each time a COND node

with probability p is traversed, the number of executions of its

child node is mUltiplied by p, while every time a RPT node is

traversed the number of executions is multiplied by 1/(I-p) .

This observation leads us to Algorithm 3 that calculates the

average number of times that a given activity is executed for

each execution of an orchestration. In this algorithm, prob (cb)
and prob (rb) denote the probability attached to conditional

branch cb or a repeat block rb respectively.

Next, we have to compute probFollows (al, a2) : the proba­

bility that the completion of an instance of activity al triggers

the execution of another activity a2 - assuming that al and

a2 are consecutive activities. For this, it is more convenient

to take the representation of the process model as a graph

consisting of activities and gateways, and to retrieve the

conditional control-flow arcs traversed on the path from al to

a2. Here, a conditional control-flow arc is an arc in the process

graph whose source is an XOR gateway. For each traversed

conditional control-flow arc, the probFollows(al1 a2) is mul­

tiplied by the probability attached to the control-flow arc. This

leads to the Algorithm 4. In this algorithm, prob(ea) denotes

the probability associated to a conditional control-flow arc ca.
Having defined functions numExee and probFollows and

Algorithm 3: Algorithm numExee(a)
Input: ore II an Orchestration

a II an activity in Aet(ore)
path f- the path from the root of Proe(ore) to a
condBranches f- the list of COND nodes in path

repeatBlocks f- the list of RPT nodes in path

Output: (IIc bEcandBranchesprob(eb) x

(IIrbErepe atBlacks1/(1 - prob(rb)))

given the above observations, the communication overhead

between two activities al and a2 - namely eo(al1 a2) - is

computed as follows:

Cons(al1 a2) x numExee(ad x probFollows(a2)
(3)

... where Cons(al1 a2) is a function equal to one if al and a2
are consecutive activities, and zero otherwise. The first term

in this formula corresponds to the communication overhead

induced by control-flow notifications, while the second term

corresponds to the communication overhead induced by data­

flows. Note that probFollows does not appear in the second

term, because a data-flow dependency implies that the source

activity will send the corresponding datum to the target

activity, regardless of whether or not the target activity is

performed.

Algorithm 4: Algorithm probFollows(al, a2)
Input: ore II an Orchestration

al, a2 II two consecutive activities in Aet(ore)
path f- the path in the process graph from al to a2
condArcs f- the list of conditional control-flow arcs in

path

Output: IIc aEcandArcsprob(ea)

D. Optimized partitioning process

In the previous sections, we presented algorithms to par­

tition constrained activities into a set of independent parti­

tion groups Gk (pre-partitions), while respecting constraints

defined by user. we also introduced algorithms to compute

the minimal and maximum number of final partitions F Pj.

In the following, we will present our solution, to optimally

distribute the pre-partitions and unconstrained activities over
final partitions, and assign activities to web services. The

problem can be considered as a quadratic assignment prob­

lem (QAP) introduced by Koopmans and Beckmann [12] in

1957, as a mathematical model for the location of a set of

indivisible economical activities. Using the QAP formulation

of Koopmans-Beckman, we are given a cost matrix C =
[eOij], where eOij is the communication overhead between

activity ai and activity a j. We are also given a distance

matrix between partitions DP = [dfj]' where dfj represents

the distance between partition Pi and partition Pj, a distance

matrix between services DS = [dij] where dij represents

the distance between service Si and service Sj and a quality

matrix Q=[qij], where Qij is the contribution to overall QoS

obtained by assigning activity ai to service Sj.

Given the above matrices, if activity i is assigned to service

bind(i), the contribution of this assignment to the overall

QoS is equal to the QoS of service bind(i) multiplied by the

average number of times that ai is executed per execution

of the orchestration, i.e. numExee(ai) as defined above.

Meanwhile, if activity i is assigned to P(i), and activity j
is assigned to P(j), the inter-partition communication cost

associated with this assignment is eOij . d�(i) ,P(j)' Finally, if

activity i is assigned to bind(i), and activity j is assigned

to bind(j), the intra-partition distance cost associated with

this assignment is eOij . dbind(i),bind(j)' Note that bind(i) and

bind(j) are subject to the constraints bind(i) E Cand(i) and

bind(j) E Cand(j), meaning that an activity can only be

bound to one of its candidate services.

The optimization problem has three components: we have

to maximize the quality of service, minimize the inter­

partition communication cost - because it implies commu­

nication between orchestrators possibly located far from one

another - and we have to minimize the distance between

services placed in the same partition - given that such services

need to interact with a local orchestrator. Because we wish to

strike a tradeoff between three factors, we introduce three

parameters wq, Waut and Win, where Wq is the relative

weight given to maximizing QoS, Waut is the weight given

to minimizing inter-partition communication cost, and Win is

the weight given to minimizing the distance between services

assigned to activities in the same partition.

Given these weights, the total cost of a solution to this

assignment problem is given by equation 4. An optimal

solution to the problem consists of an assignment of activities

to partitions and a binding of activities to services such that

this total cost is minimal. Solutions are only admissible if they

respect the binding constraints (a service can only be assigned

to an activity if it is one of the candidates of this activity),

and the collocation and separation constraints for assigning

actiVItIes to partitions. In equation 4 we write 1 - QoSs
because we seek to maximize the sum of QoS, which is

equivalent to minimizing 1 - QoSs.
n

Wq L(1- QOSbind(i)) * numExec(i)
i=l

n m n
+Wout L L COijdp(i)P(j) + Win L dbind(i),bind(j)

i=l j=l i=l

(4)

For the sake of conciseness, we hereby assume that all

QoS attributes are additive, but the proposed method can be

extended to attributes of type "multiplicative" and "critical

path" [6]. The problem is quadratic because dp(i)P(j) depends

on the partitions to which ai is assigned and the one to which

aj is assigned. If we use a boolean (0-1) variable to encode to

which partition a given activity is assigned, this term would

involve a product of two variables. A similar remark applies

to dbind(i),bind(j)'
1) Heuristic optimization algorithms overview: Several

exact algorithms have been used for solving the QAP

problems, like branch and bound, cutting plane and branch

and cut algorithms [4]. Although substantial improvements

have been done in the development of exact algorithms for

the QAP, they remain inefficient to solve problems with size

n>20 in reasonable computational time (there are n! distinct

permutations). This makes the development of heuristic

algorithms essential to provide good quality solutions

in a reasonable time. Many research have been devoted

to the development of such approaches. We distinguish

the following heuristic algorithms [4]: Tabu search (TS),

Simulated annealing (SA), Genetic algorithms (GA), Greedy

randomized adaptive search procedures (GRASP), Ant

systems (AS), etc. These methods are also known as local

search algorithms. A local search procedure starts with an

initial feasible solution and iteratively tries to improve the

current solution. This is done by substituting the latter with a

(better) feasible solution from its neighborhood. This iterative

step is repeated until no further improvement can be found.

Improvement methods are local search algorithm which allow

only improvements of the current solution in each iteration.

For a comprehensive discussion of theoretical and practical

aspects of local search in combinatorial optimization the

reader is referred to [1]. In this paper we adopt the Tabu

search algorithm to look for an optimal solution to our

decentralization problem.

Tabu search [9] is a local search method where the basic

idea is to remember which solutions have been already visited

by the algorithm, in order to derive the promising directions

for further search. A generic procedure starts with an initial

feasible solution and selects a best-quality solution S among

(a part of) the neighbors of S obtained by non-tabu moves.

Then the current solution is updated by the selected solution.

If there are no improving moves, tabu search chooses one

that least degrades the objective function. The search stops

when a stop criterion (running time limit, limited number of

iterations) is fulfilled.

Algorithm 5: Greedy algorithm: initial elite solution

computation

Require: - NCA(Orc), NPmin, NPmax
- Pc: Constrained partitions (pre - partitions)
- {Cand(a;), Vai E Act(Orc)}
Init: Pc +- PcU{{a;}\ai E NCA(Orc) }
bestQuality +- +00, bestNumber +- NPmin
best Partition +- n, best Bind +- n
Begin
for (NP+-NPmin To NPmax) do

FinalPart +- a set of size N P of empty sets
for (each P P in Pc) do

Quality' +- +00
for (each F P E [1..N P] where -,Separate(P P,
FinalPart[F PlJ do

CurQual +- 0
for (each ai in P P) do

sa, +- argmin [Wq' (1 - QOS(Si»
s, ECand(a,)

L:a . EFinalPart[F PI cOa, ,aj .ds, ,bind(aj)
+wout·

.1
lFinaIPart[FP]I

L:a. EFinalPart[F PI ds.;,bind(aj)] +w . __
�.1� ____

�����

__

_
tn lFinalPart[F P]I

Cur Qual +- CurQual+ [wq.(l-QOS(si»

L:a . EFinalPart[F PI cOa, ,aj .ds, ,bind(aj)
+wout·

.1
lFinalPart[FP]I

L:a. EFinalPart[F PI ds"bind(aj)] +W . __
�.1� ____

�����

__

_
m lFinaIPart[FP]I

if CurQual < Quality' then
l FP' +- FP

Quality' +- Cur Qual
for (ai in PP) do bind(ai) +- sai

FinalPart[F P*] +- FinalPart[F P*] U P P
qual Solution +- qual Solution + Quality'

if (qual Solution < bestQuality) then
l bestQuality +- qual Solution

bestPartition +- FinalPart
bestBind +- bind

Return(bestPartition, bestBind, bestQuality»
End

2) Greedy algorithm: The first part of the Tabu Search

TS algorithm is the construction of a feasible initial solution

in order to find better solutions by stepwise transformations.

The simplest way to do this, is to generate a random solution

by randomly assigning activities to partitions and services

to activities. However, the obtained results proved to be

not sufficient. In this sense, many recent researches in TS

deals with various techniques for making the search more

effective. These include methods for creating better starting

points called elite solutions. For this purpose, we adopt

Greedy algorithm to generate a good initial solution. Greedy

algorithms are intuitive heuristics in which greedy choices

are made to achieve a certain goal [13]. Greedy heuristics are

constructive heuristics since they construct feasible solutions

for optimization problems from scratch by making the most

favorable choice in each step of construction. By adding an

element to the (partial) solution which promises to deliver the

highest gain, the heuristic acts as a greedy constructor.

Algorithm 5 presents a method that computes a good

feasible solution to activity placement and service selection.

It takes as input pre-partitions, unconstrained activities and

service candidates of each activity. Then, according to a fixed

final partitions number, try to place at each step an activity

(or pre-partition) to a final partition, and assign a service (or

a set of service) to it. Both assignment and placement are

based on cost estimation. The cost of assigning an activity to

a service among its candidate services depends of the latter

quality. Then the cost of placing an activity in each final

partition depends of the communication overhead as well as

the average distance between the activity to place and all

activities of the partition. The most favorable choice among

final partitions costs is selected. For pre-partitions placement,

the same procedure is used except the fact that we take into

consideration the constraints, and a global cost of assigning

it to a final partition since it includes a set of activities.

Once all activities and pre-partitions are assigned, we compute

the global cost, and then change final partitions number and

iterate. After each iteration we compare the quality of the

current solution to the previous one and save the best. The

output of the algorithm is an optimized feasible solution.

To analyze the complexity of Algorithm 5 , we first

analyze the complexity of one iteration of the outer loop.

In one such iteration, we consider every possible binding

of an activity (that has not yet been bound) to a service.

If we write MaxCand to denote the maximum number of

candidate services that any activity has, we have to consider

MaxCand possible bindings per activity and thus at most

M axCandx IActl bindings in total. Each such binding is then

compared against all activities that have already been bound in

order to compute the distances (again, there are at most IActl
such bound activities). We also have to evaluate the QoS of

each service binding, but we assume this is a constant-time

operation. Thus, the complexity of one iteration of the outer

loop is O(M axCand x IActI2). Also, during each iteration

of the outer loop, we have to test N P times whether or

not two partitions are linked through any Separate constraint.

Each such test takes at most IAI2 operations. Next, we note

that the outer loop is executed N P max - N P min times,

with N P ranging between these two values. Thus overall,

the complexity is O((NPmax - NPmin) x MaxCand x

IActI2+(N Pmax-N Pmin)2 X IAI2). Thus we can say that the

complexity of the algorithm is a polynomial of order four, but

one of the variables in this polynomial is N P max - N P min,
which can be made smaller if needed since we do not need

to consider all possible numbers of partitions.

3) Tabu search algorithm: In the following we will de­

scribe a solution that combine the greedy algorithm to the

Tabu search algorithm in order to optimize the previously

presented solution. As we mentioned before, the key idea is

to start the Tabu search with an initial good solution. For this

purpose we use the greedy solution. Then, for each iteration,

possible moves will be calculated and the move leading to

the highest benefit will be performed. If the highest benefit

is negative, the move will be performed anyway, unless this

move is forbidden by the tabu list. In order to guide the

moves, we utilize some heuristics that can be employed (in

conjunction with the tabu search algorithm) to improve the

solution. The heuristics are described as follows:

• Put together activities which exchange lot of data to

reduce inter-partitions interactions

• Put together activities whose invoked services are geo­

graphically close.

Algorithm 6 presents a pseudo code for the tabu search

where stop condition represents:

• after a fixed number of iteration

• after number of iterations without an improvement in the

objective function value

• when the objective reaches a pre-specified threshold

value.

The function quality is evaluated as described in equation

4. A move is described by an activity assignment to another

partition or service with respect to the constraints.

Algorithm 6: Tabu search

Require: - Sg: greedy solution
Init: So +- 8g
S +- So: current solution
S* +- So: the best-known solution
1* +- quaZity(So)
T +- {}: Tabu list
begin

while (-, StopCondidtionO) do

S +- argmin [quality(S)]
S'ENa(S)

if quality(S) < 1* then

l
1* +- quality(S)
S* +- S
record tabu for the current move in T (delete
oldest entry if necessary)

end
return S*

IV. RELATED WORK

In recent years, several methods and systems for decen­

tralized business process execution have been proposed. One

of the earliest work in the area is the Mentor project [18].

In Mentor, workflows are modeled using state-charts that are

partitioned so that each partition is delegated to a separate

processing entitiy (PE). Each PE-specific state-chart is exe­

cuted locally on the PE workstation. Their approach takes

into account both control and data-flow dependencies. Sadiq

et al. [17] present another method for decentralized workflow

execution based on partitions, but without considering data

dependencies. More recently, Khalaf et al [11][lO] present a

method for decentralized orchestration of BPEL processes,

focusing on the derivation of P2P interactions. Meanwhile,

Yildiz et al [19] consider the decentralization of processes

from an abstract perspective by extending the dead path elim­

ination algorithm used in BPEL process execution engines.

Their contribution focuses on preserving the control-flow

constraints in the centralized specification, while preventing

deadlocks when services interact with one another.

The above approaches do not consider communication

overhead when splitting the process into partitions. Instead,

they assume that the split is given by the designer or inferred

from the roles specified in the process model. Importantly,

our partitioning approach could be used on top of any of the

above decentralized orchestration approaches. Thus, our work

is complementary to the above ones.

Nanda et al. [5] present an approach to partition BPEL

processes using program partitioning techniques with the aim

of reducing the communication costs between the partitions.

However, they do not take into account distribution constraints

(Collocate and Separate) so the designer cannot control the

partitioning. Also, they do not take into account the possibility

of an activity having multiple candidate services, each with

a different location and a different QoS.

Other approaches to decentralized orchestration do not

require any partitioning. For instance, the Self-Serv sys­

tem [3][2] is able to execute web service compositions in

an entirely peer-to-peer fashion: services send messages to

one another after completing each activity in the orchestra­

tion. This approach is equivalent to assigning each activity

(service) to a separate partition (as illustrated in Figure 1 b).

Another method for decentralized execution without partition­

ing is presented in [14][15]. The authors developed a formal

approach that takes as input the existing services, the goal

service and the costs, and produces a set of decentralized

choreographers that optimally realize the goal service using

the existing services. However, the authors do not explain

how they deal with Repeat blocks (i.e. loops), which have a

significant impact on communication overhead.

V. CONCLUSION

This paper presented a method for optimized constrained

decentralization of composite web services. The method seeks

to create an activity partitioning and a binding of activities

to services that minimizes communication costs while maxi­

mizing QoS. In doing so, the method takes into account the

expected communication volume between partitions, the dis­

tance between partitions and the distance between services in

the same partition. The resulting model is richer than previous

models for optimizing decentralized service orchestrations.

The proposed method also complements existing methods for

decentralized orchestration of services that take as input a

predetermined partitioning.

Because of the nature of the objective function, we had

to formulate the problem as a quadratic assignment problem.

A greedy heuristic is used in order to construct an initial

solution. The paper also sketched how Tabu search could be

used to improve this initial solution. Future work will aim

at empirically assessing the quality of the solutions obtained

with the greedy algorithm, and the improvements obtained

using Tabu search or other meta-heuristics.

Acknowledgments This work was conducted while the sec­

ond author was Visiting Professor at LORIA - INRIA Nancy.

The second author was also supported by the ERDF through

the Estonian Centre of Excellence in Computer Science.

REFERENCES

[1] E. Aarts and e. J. K. Lenstra. In Local Search in Combinatorial

Optimization, Wiley, Chichester, 1997.
[2] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the rapid

development and scalable orchestration of composite web services. In
Distributed and Parallel Databases, 2005.

[3] B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment
for web services composition. IEEE Internet Computing, 7(1):40-48,
2003.

[4] R. E. Burkard, E. <;:ela, G. Rote, and G. 1. Woeginger. The quadratic
assignment problem with a monotone anti-monge and a symmetric
toeplitz matrix: Easy and hard cases. In IPCO, pages 204-218, 1996.

[5] G. Chaile, S. Chandra, V. Mann, and M. G. Nanda. Decentralized
orchestration of composite web services. In W W W (Alternate Track
Papers & Posters), pages 134-143, 2004.

[6] M. Dumas, 1. Garca-Bauelos, A. Polyvyanyy, Y. Yong, and L. Zhang.
Aggregate quality of service computation for composite services. In In
Proc. of 8th Int. Con! on Service-Oriented Computing, ICSOC 2010,
San Francisco, CA, Dec. 2010 (To appear).

[7] W. Fdhila and C. Godart. Toward synchronization between decen­
tralized orchestrations of composite web services. In CollaborateCom
2009, 5th International Conference on Collaborative Computing: Net­
working, Applications and Worksharing, pages 1 -10,11-14 2009.

[8] W. Fdhila, U. Yildiz, and C. Godart. A flexible approach for automatic
process decentralization using dependency tables. In ICWS '09: Pro­
ceedings of the 2009 IEEE International Conference on Web Services,
pages 847-855, Los Angeles, CA, USA, 2009. IEEE Computer Society.

[9] F. Glover and M. Laguna. Tabu search, 1997.
[10] R. Khalaf, O. Kopp, and F. Leymann. Maintaining data dependencies

across bpel process fragments. Int. J Cooperative In! Syst., 17(3):259-
282, 2008.

[II] R. Khalaf and F. Leymann. E role-based decomposition of business
processes using bpel. In /CWS, pages 770-780, 2006.

[12] Koopmans and M. J. Beckmann. In Assignment problems and the
location of economic activities, volume Econometrica, pages 53-76,
1957.

[13] P. Merz and B. Freisleben. Greedy and local search heuristics for
unconstrained binary quadratic programming. J Heuristics, 8(2):197-
213, 2002.

[14] S. Mitra, R. Kumar, and S. Basu. Optimum decentralized choreography
for web services composition. In IEEE SCC (2), pages 395-402, 2008.

[15] S. Mitra, R. Kumar, and S. Basu. A framework for optimal de­
centralized service-choreography. Web Services, IEEE International
Conference on, 0:493-500, 2009.

[16] A. Polyvyanyy, L. Garcia-Banuelos, and M. Dumas. Structuring acyclic
process models. In Proceedings of the 8th International Conference on

Business Process Management.
[17] W. Sadiq, S. W. Sadiq, and K. Schulz. Model driven distribution of

collaborative business processes. In IEEE SCC, pages 281-284, 2006.
[18] D. Wodtke, J. WeiBenfels, G. Weikum, and A. K. Dittrich. The mentor

project: Steps toward enterprise-wide workflow management. In ICDE,
pages 556-565, 1996.

[19] U. Yildiz and C. Godart. Information flow control with decentralized
service compositions. In /CWS, pages 9-17, 2007.

[20] 1. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering, 30(5):311-327, 2004.

