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Abstract-

Composite services are usually specified by means of or­
chestration models that capture control and data-flow rela­
tions between activities. Concrete services are then assigned to 
each activity based on various criteria. In mainstream service 
orchestration platforms, the orchestration model is executed 
by a centralized orchestrator through which all interactions 
are channeled. This architecture is not optimal in terms of 
communication overhead and has the usual problems of a single 
point of failure. In previous work, we proposed a method for 
executing service orchestrations in a decentralized manner while 
fulfilling collocation and separation constraints. However, this 
and similar methods for decentralized orchestration do not 
seek to optimize the communication overhead between services 
participating in the orchestration. This paper presents a method 
for optimizing the selection of services assigned to activities 
in a service orchestration in terms of QoS properties and 
communication overhead. The method takes into account the 
communication cost between pairs of services, the amount of 
data that these services need to exchange in the orchestration, 
and the collocation and separation constraints imposed by the 
service providers. 

I. INTRODUCTION 

Service-Oriented Architecture (SOA) is a proven collection 

of principles for structuring large-scale systems in order 

to improve manageability and to streamline change. One 

of the pillars of SOA is the ability to rapidly compose 

multiple services into an added-value business process, and 

then to expose the resulting business process as a composite 

service [3]. Composite services are generally captured by 

means of an orchestration model: a process model in which 

each activity represents either an intermediate step (e.g. a 

data transformation) or an interaction with one of the services 

participating in the composition (the component services). 

The process model specifies the control-flow and data-flow 

relations between activities, using a specialized language such 

as the Business Process Execution Language (WS-BPEL) or 

the Business Process Modeling Notation (BPMN). 

In mainstream service composition platforms, the respon­

sibility for coordinating the execution of a composite service 

lies on a single entity, namely the orchestrator. The orches­

trator handles incoming requests for the composite service 

and interacts with the component services in order to fulfill 

these requests. Every time a component service completes 

an activity, it sends a message back to the orchestrator with 

all its output data. The orchestrator then determines which 

services need to be invoked next and forwards them the 

required input data. This architecture is not optimal in terms 

of communication overhead and has the usual problems of a 

single point of failure [3]. 

In previous work, we proposed a method for executing ser­

vice orchestrations in a decentralized manner [8]. The idea is 

to group activities into partitions and to assign each partition 

to a separate orchestrator. Partitions are chosen manually by 

service designers. Designers may opt, for example, to put 

all activities invoking the same service into a partition, or to 

put all activities invoking services in a given organizational 

domain into a partition, or any other partitioning criterion 

of their choice. Clearly, the performance and robustness of a 

decentralized service orchestration would benefit from placing 

each orchestration engine as close as possible to the compo­

nent services that it manages. But neither the above method 

nor other similar decentralized orchestration methods [11], 

[5], [18], [3] help designers to optimize the communication 

overhead between component services. 

This paper presents a method for partitioning activities in 

an orchestration and assigning services to activities, in such 

a way as to minimize the communication overhead, while 

maximizing the QoS expressed in terms of combinations of 

properties such as time, cost, reliability, etc. The method 

also allows designers to keep control over the placement 

of activities. Specifically, designers may specify collocation 

and separation constraints between pairs of activities. A 

collocation constraint states that two activities must be placed 

in the same partition (e.g. because they are performed by ser­

vices from the same company), while a separation constraint 

imposes that two activities must be in different partitions. 

The proposed method needs to deal with an optimization 

problem involving different types of constraints and inter­

related optimization variables: QoS variables, location vari­

ables, collocation and separation constraints. To cope with 

this complexity, the proposal relies on heuristic optimization 

techniques [4]. Specifically, we present and analyze a greedy 

algorithm to build an initial solution, and we outline how Tabu 

search [9] can be applied to improve the initial solution. The 

crux of the heuristics is to place services that communicate 

frequently in the same partition, while fulfilling the colloca­

tion and separation constraints given by the designer. 
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Fig. 1. (a) centralized model (b) First decentralized model (c) Second decentralized model 

The rest of this paper is structured as follows. Section 2 

introduces a motivating example and uses it to illustrate the 

importance of choosing the right partitioning for decentralized 

orchestration. Section 3 describes the details of the proposed 

method. Section 4 discusses related work and Section 5 

summarizes the contribution and outlines future directions. 

II. MOTIVATING EXAMPLE 

To motivate and illustrate the method presented in this 

paper, we make use of a sample orchestration taken from [19] 

(cf. Figure 2). This orchestration is designed to automate 

a claim handling process at an insurance company IC. The 

corresponding process model is captured in the BPMN nota­

tion, and it includes both control and data dependencies. Task 

nodes have labels of the form ai:S where the ai is the activity 

identifier and S is the identifier of the invoked service. We 

assume for the time being that each activity has already been 

assigned to a component service. We will discuss later how 

this assignment is done in an optimized manner. 

Ie : Composite Service 

.. .. .. .. .. .. .. .. .. .. . {J .. .. .. .. . ....... ... , 

Fig. 2. Motivating example 

Before this process starts, it is assumed that the policy­

holder has contacted the Emergency Service (ES) to report 

an accident. ES provides emergency call answering service 

to policyholders and liaises with the hospital (Hospital) and 

the traffic patrol (Police). Some time after the accident, 

the policyholder contacts IC for reimbursement. In order to 

handle the claim, IC executes the orchestration depicted in 

Figure 2. First, IC invokes ES to obtain details about the 

incident (activity ao). ES provides the protocol numbers that 

are required by Hospital (H) and Police (P) services, in order 

to release the respective incident reports. These dependencies 

are denoted d1 and d2. With the details provided by ES, 

IC invokes P and H concurrently. Additionally, Delivery 

Service (OS) is invoked in order to pick up the physical 

claim documents from the customer (activity a2). Note that 

a2 is executed after ao but it does not have a data dependency 

with it, while there are data dependencies between ao and 

al and ao and a3. IC uses the output obtained from P and 

H in order to invoke the Inspection Service (Ins) (activity 

a4). Again note that, there are data dependencies between al 

and a4, a3 and a4 but not between a2 and a4. Service Ins 

decides whether the claim must be reimbursed or not. If so, 

the report provided by H (data dependency d5) and the results 

of inspection (d6) are sent to the policyholder by invoking 

OS (activity a5) ' Moreover, a Bank (B) service is invoked 

for the reimbursement. If the claim is not reimbursable, B 

is not invoked. This is why an OR-split/OR-join is used in 

the last part of the process: sometimes both OS and Bare 

invoked, and other times only OS is invoked. 

In existing service orchestration platforms (e.g. BPMN or 

BPEL engines), control and data dependencies between ser­

vices are managed centrally by IC. The resulting interactions 

between IC and the component services are hence as depicted 

in Figure lao The centralized orchestrator is a bottleneck and 

may cause performance degradation and availability issues. 

It also causes additional traffic of messages, since every ac-
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Fig, 3, Partitioning process 

tivity execution involves a back-and-forth message exchange 

between IC and a service, which may be located arbitrarily 

apart and in a different organizational domain. An alternative 

is to execute the orchestration in a decentralized manner, 

Figure 1 b depicts a possible decentralized execution set­

tings for the same process, where IC is partitioned into seven 

partitions that are executed by seven distributed orchestrators. 

Each partition Pi is responsible for all activities that are 

delegated to a given service. The time needed to exchange 

messages between a partition and its corresponding orches­

trator is assumed to be negligible, since orchestrators are 

placed close to the services they manage. In this decentralized 

architecture, the data produced by a service are routed directly 

to the partitions of the services that consume these data. For 

example, hospital and police protocols (dl and d2) generated 

by ES are routed directly to H and P. If we consider the 

data exchanged only between services, then the number of 

data flow messages in figure la is 8 (cf. communication 

links labelled with data items di). Meanwhile, in decentralized 

orchestration depicted in Figure 1 b, the number of messages 

is reduced to 6 since data are transferred directly from their 

sources to their points of consumption. 

Now consider the case where ES and H are geographically 

close to each other, and the same holds for P and Ins. Then, 

it is preferable to create a single partition for ES and H, and 

same for P and Ins. This arrangement reduces the number of 

data flows exchanged between partitions to only 3 messages. 

The example shows that that the communication overhead 

varies depending on the number of partitions, the placement 

of activities into partItIOns, the distance between services, 

and the number of message exchanges. This paper takes into 

consideration all these facts in order to obtain optimized 

partitions for decentralized orchestration. 

In addition to seeking to minimize communication over­

head, the proposed method also take into account the QoS 

of each service. Specifically, we consider the case where 

there are multiple candidate services that can perform each 

activity. Each of these services offers a QoS and has a 

location. The method seeks to assign services to activities 

and to place activities in partitions in such a way as to strike 

a tradeoff between minimizing the communication overhead 

and maximizing overall QoS. Relative weights are assigned 

to each factor in order to capture their relative importance. 

III. PARTITIONING ApPROACH 

Given a centralized process specification, our decentralized 

orchestration is composed of two parts. The first step consists 

in determining an optimized partitioning of activities and an 

optimized assignment of services to activities in order to 

reduce communication overhead and maximize QoS. This is 

the subject of this paper. The second part consists in wiring 

the activities in the same partition and across partitions in 

order to preserve the semantics of the process model. This 

wiring means that data and control dependencies need to be 

realized by means of message exchanges between services 

and distributed orchestrators assigned to each partition. For 

this part, we can use a technique we presented in previous 

work [8], [7] or other techniques discussed in Section IV. 



In order to compute an optimized partitioning of an or­
chestration, we proceed in two steps. First, we perform a 
pre-partitioning in which activities that are related through 
Collocate relations are put in the same partitions. In this pre­
partitioning phase (Section IILB), we also construct "groups 
of partitions" such that activities across different groups are 
not related neither by Separate nor by Collocate constraints. 
This pre-partitioning is useful since we can then easily 
identify which activities must be collocated, and which sets 
of activities must be kept separated. In the second step, we 
use this pre-partitioning in order to form final partitions using 
a Greedy algorithm. We also sketch how the initial solution 
computed by the Greedy algorithm can be improved using 
Tabu search. 

Before describing the partitioning method, we define the 
notion of service orchestration and related notions (Section 
lILA). Next, we introduce the pre-partitioning algorithm as 
well as an algorithm for calculating the minimum and maxi­
mum amount of final partitions to be created (Section IILB). 
We then show how the communication overhead between 
pairs of activities is computed by analyzing the orchestration 
models (Section IILC). Finally, using the pre-partitioning 
and the function for computing communication overhead, we 
show how the final partitioning is computed (Section IILD). 

A. Inputs and Outputs 

The method for optimized service selection takes as input 
a service orchestration consisting of activities related by 
control, data-flow and distribution constraints. In order to 
precisely define the notion of service orchestration, we need to 
adopt a model for representing control-flow relations between 
activities. In this paper, we adopt a structured representation 
of process models. In essence a process model is represented 
as a tree whose leaves represent activities and whose internal 
nodes represent either sequence (SEQ), parallel (PAR), choice 
(CRC) or repeat loop (RPT) constructs. Structured process 
models are very close to BPEL, and they have the advantage 
of being simpler to analyze. And while it is possible to write 
unstructured models both in BPEL and in BPMN, recent 
work has shown that most unstructured process models can be 
automatically translated into structured ones [16]. Note that 
for the purpose of the proposed method, we do not need to 
capture concrete branching expressions. Instead, it is sufficient 
to know the probability of taking each conditional branch in a 
choice and the probability of taking the "repeat" branch in a 
loop. Also, we do not need to capture OR-split/OR-join pairs, 
because when a process is structured, OR-split/OR-join can be 
trivially translated into a combination of choice and parallel 
blocks. For example, the OR-split/OR-join pair in Figure 2 

can be transformed into a choice between executing a5 only 
or executing both a5 and a6 in parallel. Formally, we capture 
structured process models as follows. 

Definition 1: (Structured) Process Model A process model 
is a tree with the following structure (here we use the type 

definition syntax of the ML language): 

Process 

ProcNode 

Control Node 

ProcNode 

Activity I ControlNode 

SEQ ([ ProcN ode l) 

I CHC([ CondBranch]) I 

I PAR({ProcNode}) 

I RPT(ProcNode x P) 

CondBranch "- COND (P x ProcNode) 

where P is the range of real numbers from 0.0 to 1.0, denoting 
probabilities. 

For example, the BPMN model in Figure 2 is represented 
by the following expression: SEQ(ao, PAR(al, a2, a3), a4, 
CRC(COND(Pl, a5), COND(P2, PAR(a5, a6))) ). 

An activity in a service orchestration represents a one­
way or a bidirectional interaction with a service via the 
invocation of one of its operations. Each activity has a 
non-empty set of candidate services that it can be bound 
with. In addition, activities may be related by means of two 
types of distribution constraints: collocation (activities must 
be placed in the same partition), and separation (activities 
must be placed in different partitions). Formally, a service 
orchestration is defined as follows: 

Definition 2: Service Orchestration A service orchestra­

tion is a tuple (Proc, Data. Cand, Col/ocate, Separate), where: 

• Proc is a process model capturing control-flow depen­
dencies between a set of activities; 

• Data is a ternary relation consisting of tuples of the form 
Data(ai' aj,dk) stating that, upon completion of activity 
ai, data item dk needs to be transferred to activity aj 

• Cand is a function that maps each activity to a set of 
candidate services that are able to perform that activity. 

• Collocate is a relation consisting of facts of the form 
Collocate( ai, aj) stating that the activities al and a2 
must be placed together; 

• Separate is a relation consisting of facts of the form 
Separate(ai' aj) stating that the activities al and a2 must 
be placed in different partitions. 

For consistency, we impose that \fal, a2 -,( Collocate+ (aI, 
a2) 1\ Separate( aI, a2)) where Collocate+ is the transitive 
closure of relation Collocate. This means that if we declare 
that two activities must be collocated, we cannot state addi­
tionally that these activities must be separated. 

An activity that is not related with any other activity by 
a collocate or separate constraint is called an unconstrained 

activity. In the sequel, we write CT R to denote the set of all 
distribution constraints defined in an orchestration (CT R = 

Collocate U Separate). Also, we write Act( arc) to refer to 
the set of activities of an orchestration, C A( arc) to denote 
the set of constrained activities and NCA(Orc) to denote 
the set of unconstrained activities. Unconstrained activities 
are also called flexible activities since we can place them in 
any partition. When it is clear to which orchestration we are 
referring to, we will simply write Act, CA and NCA. 



Given a service orchestration defined as above, the purpose 
of the method is to construct: 

• A binding, that is, is a function that maps each activity 
in the orchestration model to a service; 

• A partitioning of activities, that is, a function that maps 
each activity in an orchestration to a partition. This 
partition function is needed for decentralized service 
orchestration. 

Specifically, the method seeks to bind candidate services 
to activities in such a way as to minimize the communication 
overhead and to maximize the QoS of the services in the 
binding. We do not impose a particular model for calculating 
the QoS of a service. Instead, we assume that there is a 
function QoS( s) that returns the QoS of a service s. For 
example, we could use the QoS model presented in [20] 

in order to calculate the QoS of each component service, 
based on a weighted sum of the service's execution time, 
cost, reliability and availability. 

Composite service designers are able to influence the 
relative importance given to the minimization of the com­
munication overhead versus the maximization of the quality 
by setting two weights: We E [0 .. 1] is the weight given to the 
communication overhead and Wq E [0 .. 1] is the weight given 
to the quality of service. 

B. Pre-partitioning of Constrained Activities 

The purpose of the pre-partitioning phase is to partition the 
set of constrained activities C A so that we can later easily 
identify which activities should be collocated and which 
activities should be separated. To this end, we decompose the 
set of activities into groups {CAl", CAn}, so that elements 
in two groups are not related neither by a Separate nor by a 
Collocate constraint. In other words, if we view the relation 
CTR = Separate U Collocate as a graph, a group consists 
of all activities in one of the connected components of this 
graph. Figure 3 shows an example involving 12 activities 
CA = {aI, .. ,aI2} linked through Separate and Collocate 
relations. Looking at the corresponding CT R relation, we can 
see that there are three connected components in the induced 
graph, and thus three groups are created, namely CAl, CA2 
and CA3. If we restrict the relation CT R to the activities 
in each of these groups, we obtain three restricted CT R re­
lations, namely CTRI, CTR2 and CTR3 respectively.] The 
rationale for this initial grouping is that activities belonging to 
different groups can be freely combined with one another in a 
final partition (or they can be left in separate final partitions), 
because no constraint links them. 

Next, each group is further partitioned into a number of pre­
partitions by looking at the relation Collocate only. The idea 
is that each of these partitions is a maximal set of activities 
that must be collocated. In other words, if we view the relation 
Collocate as a graph, a partition in a group C Ak consists of 
all activities in CAk that belong to one of the connected 
components of this graph. The pre-partitioning of each group 

IWe note that Vi,j,i =I- j, CA; n CAj={0} and CTR; n CTRj={0}. 

CAk is a set of pre-partitions such that Gk=UP pr For 
example, in Figure 3, CAl is decomposed into three pre­
partitions: P Pf={ al,as}, P Pf={ a6} and P Pf={ ag,all,a2}' 
After the pre-partitoning phase, we know that all activities in 
a pre-partitions should be manipulated as a single package 
and put together in one final partition. 

This pre-partitioning is operationalized by algorithm 1. 

This algorithm first computes the groups by calculating the 
connected components CT Ri of CT R. Each CT Ri leads 
to one group. Next, the algorithm computes the partitions 
within each group by computing the connected components of 
the Collocate relation restricted to the connected component 
CT Ri. For convenience, we lift the relation Separate so that 
it can be applied to partitions as follows: 

Separate(Pi,Pj) {o} 3ai E Pi,aj E Pj : Separate(ai,aj) 

For example, with respect to Figure 3, it holds that 
Separate(P Pi, P Pi) A Separate(P Pi, P Pi). This implies 
that P pi should not be combined neither with P pi nor with 
P pi in the same final partition. 

Algorithm 1: Constrained activities partitioning 
Require: - CT R: set of all constraints 
Init: Groups +- {} 
begin 

end 

for each CT R; in ConnectedComponent(CT R) do 
CurGroup +-{} 
for Collocate; in 
ConnectedComponent(CTR; n Collocate) do 
l NewPartition +- {al:Ja' Collocate;(a, a')} 

Cur Group +- CurGroup U {NewPartition} 

Groups +- Groups U { CurGroup } 
Return Groups 

Result: groups of constrained partitions 

The final partitioning algorithm presented later tries to 
compute partitions of different sizes. To this end, we need 
to know the approximate minimum and maximum number 
of possible final partitions F Pj. Algorithm 2 describes how 
to compute the minimum required final partitions that can 
be obtained by merging pre-partitions from different groups, 
while respecting the constraints that link pre-partitions of 
the same group. However, this number does not take into 
consideration non-constrained activities N C A. So, to have 
the exact number, consider IActl the total number of activi­
ties, N Amax (N Amin) the maximum (minimum) number of 
allowed activities by partition (fixed by user after constrained 
activities partitioning), N P the output of algorithm 2, and 
ICAI (INCAI) the number of constrained (Non-constrained) 
activities. Then the minimum and maximum number of final 
partitions N Pmin and N Pmax are computed by equations 1 

and 2, respectively. In Section 3.4, we will vary the number 
of partitions from N P min to N P max and try to distribute the 
flexible activities FA and the groups Gk over those partitions 
in such a way as to minimize the communication overhead 
and maximize the QoS. We will then choose the partitioning 



that leads to the best overall tradeoff between communication 

overhead and QoS according to relative weights given by the 

user. 

NP if 
IActl :::; NP NAmax 

N P + 
I Act I - (N P * N Amax) 

NAmax 
Otherwise 

(1) 
(2) 

Algorithm 2: Computing approximative minimum num­

ber of partitions after groups merging 

Require: - Groups = UGk II The set of all partition groups 
- N Amax II The maximum number of activities by partition 
Init: N g f-- I Groups I 
Ngmaxf-- Max�Gk�, k E [LNg] 
Recu rsive( Groups, N gmax) 
begin 

if (G k = n, V k#N gmax) then 
return Groups 
for (Gk in Groups, k#N gmax) do 
l for (Pik in G k) do 
l min f-- Min{lP. tg=ax I) l E [LIGNg=ax I] 

if �pkl + IpNg=ax I > N A } then 
Add(Pt, GN:t�x} 

max 

Delete(pik, Gk} 

repeat 
Pmaxf--Max(Pik} st --,constrained(Max(pik}, p!:'i�=ax} 
Vk # Ngmax, Vi E [LIGkl} 
Add(Pmax, P!:,Znmax} 
Delete(Pmax} 

until ((Gk = nVk # N gmax) V (IPmax 1+ IP!:,Zn=ax I > 
NAmax) 
Recu rsive( Groups, N gmax) 

end 
Result: N P=Size(Recursive(Groups, N gmax» 

C. Communication Overhead 

One of the aims of the optimized partitioning approach is 

to produce partitions such that the communication overhead 

(i.e. the amount of communication) between activities inside 

a partition is as large as possible and, conversely, the com­

munication overhead across partitions is as small as possible. 

To construct such optimized partitions, we need to estimate 

the communication overhead between pairs of activities. Two 

activities al and a2 need to communicate if: 

• Activities al and a2 are consecutive. If we take the 

representation of a process model as a graph consisting 

of activities and gateways (as in Figure 2), two activities 

are consecutive if there is a control-flow arc directly 

from al to a2, or there is a path from al to a2 that 

does not traverse any other activity (i.e. only gateways 

are traversed). In this case, every time an instance of 

activity al completes, if activity a2 needs to be executed 

next, the service assigned to al must send a control-flow 

notification to the service attached to a2. 

• There exists a data-flow from activity al to activity a2 

(aI, a2, d) E Data. The presence of such a data flow 

implies that every time activity al completes, the service 

assigned to al must send a message containing a datum 

of type d to the service assigned to a2. 

Without loss of generality, we measure communication 

overhead in bytes. We assume that control-flow notification 

has a size of one byte. We also assume that the average size 

in bytes of a message of type d is known, and we write 

size(d) to denote this size. In order to determine how many 

bytes will be exchanged between the service assigned to al 

and the service assigned to a2 during one execution of an 

orchestration, we need to determine two things: 

• How many times a given activity will be executed 

(for a given execution of the orchestration)? We write 

numExec( a) to denote this amount. 

• Given two consecutive activities al and a2, what is 

the probability that one execution of activity al is 

immediately followed by an execution of activity a2. We 

write probFollows (al, a2) to denote this probability. 

To compute the number of times that a given activity 

is executed we reason on the structured process model (as 

defined in Definition 1), and make the following observations: 

• If a process node P N is a direct child of a sequence 

(SEQ) node, then each execution of the SEQ node entails 

one execution of P N 
• If a process node P N is a direct child of a parallel (PAR) 

node, then each execution of the PAR node entails one 

execution of P N 
• If a process node P N is a direct child of a condition­

aLBranch (COND) node that has a branching probability 

of p, then each evaluation of node COND entails p 

executions of P N. 
• If a process node P N is a direct child of a Repeat 

(RPT) node that has a repeat probability of p, then each 

execution of the node RPT entails 1/(1- p) executions 

of PN. 
Based on these observations, we conclude that the number 

of times an activity a needs to be executed (for a given exe­

cution of an orchestration) is determined by the probabilities 

of the conditional branch and repeat nodes that appear in the 

path from the root of the process model to a. Starting from 

one execution of the entire process, each time a COND node 

with probability p is traversed, the number of executions of its 

child node is mUltiplied by p, while every time a RPT node is 

traversed the number of executions is multiplied by 1/(I-p) . 

This observation leads us to Algorithm 3 that calculates the 

average number of times that a given activity is executed for 

each execution of an orchestration. In this algorithm, prob ( cb) 
and prob ( rb) denote the probability attached to conditional 

branch cb or a repeat block rb respectively. 

Next, we have to compute probFollows (al, a2) : the proba­

bility that the completion of an instance of activity al triggers 



the execution of another activity a2 - assuming that al and 

a2 are consecutive activities. For this, it is more convenient 

to take the representation of the process model as a graph 

consisting of activities and gateways, and to retrieve the 

conditional control-flow arcs traversed on the path from al to 

a2. Here, a conditional control-flow arc is an arc in the process 

graph whose source is an XOR gateway. For each traversed 

conditional control-flow arc, the probFollows(al1 a2) is mul­

tiplied by the probability attached to the control-flow arc. This 

leads to the Algorithm 4. In this algorithm, prob( ea) denotes 

the probability associated to a conditional control-flow arc ca. 
Having defined functions numExee and probFollows and 

Algorithm 3: Algorithm numExee( a) 
Input: ore II an Orchestration 

a II an activity in Aet(ore) 
path f- the path from the root of Proe( ore) to a 
condBranches f- the list of COND nodes in path 

repeatBlocks f- the list of RPT nodes in path 

Output: (IIc bEcandBranchesprob( eb) x 

(IIrbErepe atBlacks1/(1 - prob(rb))) 

given the above observations, the communication overhead 

between two activities al and a2 - namely eo(al1 a2) - is 

computed as follows: 

Cons(al1 a2) x numExee(ad x probFollows(a2) 
(3) 

... where Cons(al1 a2) is a function equal to one if al and a2 
are consecutive activities, and zero otherwise. The first term 

in this formula corresponds to the communication overhead 

induced by control-flow notifications, while the second term 

corresponds to the communication overhead induced by data­

flows. Note that probFollows does not appear in the second 

term, because a data-flow dependency implies that the source 

activity will send the corresponding datum to the target 

activity, regardless of whether or not the target activity is 

performed. 

Algorithm 4: Algorithm probFollows(al, a2) 
Input: ore II an Orchestration 

al, a2 II two consecutive activities in Aet( ore) 
path f- the path in the process graph from al to a2 
condArcs f- the list of conditional control-flow arcs in 

path 

Output: IIc aEcandArcsprob( ea) 

D. Optimized partitioning process 

In the previous sections, we presented algorithms to par­

tition constrained activities into a set of independent parti­

tion groups Gk (pre-partitions), while respecting constraints 

defined by user. we also introduced algorithms to compute 

the minimal and maximum number of final partitions F Pj. 

In the following, we will present our solution, to optimally 

distribute the pre-partitions and unconstrained activities over 
final partitions, and assign activities to web services. The 

problem can be considered as a quadratic assignment prob­

lem (QAP) introduced by Koopmans and Beckmann [ 12] in 

1957, as a mathematical model for the location of a set of 

indivisible economical activities. Using the QAP formulation 

of Koopmans-Beckman, we are given a cost matrix C = 
[eOij], where eOij is the communication overhead between 

activity ai and activity a j. We are also given a distance 

matrix between partitions DP = [dfj]' where dfj represents 

the distance between partition Pi and partition Pj, a distance 

matrix between services DS = [dij] where dij represents 

the distance between service Si and service Sj and a quality 

matrix Q=[ qij], where Qij is the contribution to overall QoS 

obtained by assigning activity ai to service Sj. 

Given the above matrices, if activity i is assigned to service 

bind( i), the contribution of this assignment to the overall 

QoS is equal to the QoS of service bind(i) multiplied by the 

average number of times that ai is executed per execution 

of the orchestration, i.e. numExee(ai) as defined above. 

Meanwhile, if activity i is assigned to P(i), and activity j 
is assigned to P(j), the inter-partition communication cost 

associated with this assignment is eOij . d�(i) ,P( j )' Finally, if 

activity i is assigned to bind( i), and activity j is assigned 

to bind(j), the intra-partition distance cost associated with 

this assignment is eOij . dbind(i),bind( j )' Note that bind( i) and 

bind(j) are subject to the constraints bind( i) E Cand( i) and 

bind(j) E Cand(j), meaning that an activity can only be 

bound to one of its candidate services. 

The optimization problem has three components: we have 

to maximize the quality of service, minimize the inter­

partition communication cost - because it implies commu­

nication between orchestrators possibly located far from one 

another - and we have to minimize the distance between 

services placed in the same partition - given that such services 

need to interact with a local orchestrator. Because we wish to 

strike a tradeoff between three factors, we introduce three 

parameters wq, Waut and Win, where Wq is the relative 

weight given to maximizing QoS, Waut is the weight given 

to minimizing inter-partition communication cost, and Win is 

the weight given to minimizing the distance between services 

assigned to activities in the same partition. 

Given these weights, the total cost of a solution to this 

assignment problem is given by equation 4. An optimal 

solution to the problem consists of an assignment of activities 

to partitions and a binding of activities to services such that 

this total cost is minimal. Solutions are only admissible if they 

respect the binding constraints (a service can only be assigned 

to an activity if it is one of the candidates of this activity), 

and the collocation and separation constraints for assigning 

actiVItIes to partitions. In equation 4 we write 1 - QoSs 
because we seek to maximize the sum of QoS, which is 



equivalent to minimizing 1 - QoSs. 
n 

Wq L(1- QOSbind(i)) * numExec(i) 
i=l 

n m n 
+Wout L L COijdp(i)P(j) + Win L dbind(i),bind(j) 

i=l j=l i=l 

(4) 

For the sake of conciseness, we hereby assume that all 

QoS attributes are additive, but the proposed method can be 

extended to attributes of type "multiplicative" and "critical 

path" [6]. The problem is quadratic because dp(i)P(j) depends 

on the partitions to which ai is assigned and the one to which 

aj is assigned. If we use a boolean (0-1) variable to encode to 

which partition a given activity is assigned, this term would 

involve a product of two variables. A similar remark applies 

to dbind(i),bind(j)' 
1) Heuristic optimization algorithms overview: Several 

exact algorithms have been used for solving the QAP 

problems, like branch and bound, cutting plane and branch 

and cut algorithms [4]. Although substantial improvements 

have been done in the development of exact algorithms for 

the QAP, they remain inefficient to solve problems with size 

n>20 in reasonable computational time (there are n! distinct 

permutations). This makes the development of heuristic 

algorithms essential to provide good quality solutions 

in a reasonable time. Many research have been devoted 

to the development of such approaches. We distinguish 

the following heuristic algorithms [4]: Tabu search (TS), 

Simulated annealing (SA), Genetic algorithms (GA), Greedy 

randomized adaptive search procedures (GRASP ), Ant 

systems (AS), etc. These methods are also known as local 

search algorithms. A local search procedure starts with an 

initial feasible solution and iteratively tries to improve the 

current solution. This is done by substituting the latter with a 

(better) feasible solution from its neighborhood. This iterative 

step is repeated until no further improvement can be found. 

Improvement methods are local search algorithm which allow 

only improvements of the current solution in each iteration. 

For a comprehensive discussion of theoretical and practical 

aspects of local search in combinatorial optimization the 

reader is referred to [1]. In this paper we adopt the Tabu 

search algorithm to look for an optimal solution to our 

decentralization problem. 

Tabu search [9] is a local search method where the basic 

idea is to remember which solutions have been already visited 

by the algorithm, in order to derive the promising directions 

for further search. A generic procedure starts with an initial 

feasible solution and selects a best-quality solution S among 

(a part of) the neighbors of S obtained by non-tabu moves. 

Then the current solution is updated by the selected solution. 

If there are no improving moves, tabu search chooses one 

that least degrades the objective function. The search stops 

when a stop criterion (running time limit, limited number of 

iterations) is fulfilled. 

Algorithm 5: Greedy algorithm: initial elite solution 

computation 

Require: - NCA(Orc), NPmin, NPmax 
- Pc: Constrained partitions (pre - partitions) 
- {Cand(a;), Vai E Act(Orc)} 
Init: Pc +- PcU{{a;}\ai E NCA(Orc) } 
bestQuality +- +00, bestNumber +- NPmin 
best Partition +- n, best Bind +- n 
Begin 
for (NP+-NPmin To NPmax) do 

FinalPart +- a set of size N P of empty sets 
for (each P P in Pc) do 

Quality' +- +00 
for (each F P E [1..N P] where -,Separate(P P, 
FinalPart[F PlJ do 

CurQual +- 0 
for (each ai in P P) do 

sa, +- argmin [Wq' (1 - QOS(Si» 
s, ECand(a,) 

L:a . EFinalPart[F PI cOa, ,aj .ds, ,bind(aj) 
+wout·

.1 
lFinaIPart[FP]I 

L:a. EFinalPart[F PI ds.;,bind(aj) ] +w . __ 
�.1� ____ 

����� 

__ 

_ 
tn lFinalPart[F P]I 

Cur Qual +- CurQual+ [wq.(l-QOS(si» 

L:a . EFinalPart[F PI cOa, ,aj .ds, ,bind(aj) 
+wout·

.1 
lFinalPart[FP]I 

L:a. EFinalPart[F PI ds"bind(aj) ] +W . __ 
�.1� ____ 

����� 

__ 

_ 
m lFinaIPart[FP]I 

if CurQual < Quality' then 
l FP' +- FP 

Quality' +- Cur Qual 
for (ai in PP) do bind(ai) +- sai 

FinalPart[F P*] +- FinalPart[F P*] U P  P 
qual Solution +- qual Solution + Quality' 

if (qual Solution < bestQuality) then 
l bestQuality +- qual Solution 

bestPartition +- FinalPart 
bestBind +- bind 

Return(bestPartition, bestBind, bestQuality» 
End 

2) Greedy algorithm: The first part of the Tabu Search 

TS algorithm is the construction of a feasible initial solution 

in order to find better solutions by stepwise transformations. 

The simplest way to do this, is to generate a random solution 

by randomly assigning activities to partitions and services 

to activities. However, the obtained results proved to be 

not sufficient. In this sense, many recent researches in TS 

deals with various techniques for making the search more 

effective. These include methods for creating better starting 

points called elite solutions. For this purpose, we adopt 

Greedy algorithm to generate a good initial solution. Greedy 

algorithms are intuitive heuristics in which greedy choices 



are made to achieve a certain goal [13]. Greedy heuristics are 

constructive heuristics since they construct feasible solutions 

for optimization problems from scratch by making the most 

favorable choice in each step of construction. By adding an 

element to the (partial) solution which promises to deliver the 

highest gain, the heuristic acts as a greedy constructor. 

Algorithm 5 presents a method that computes a good 

feasible solution to activity placement and service selection. 

It takes as input pre-partitions, unconstrained activities and 

service candidates of each activity. Then, according to a fixed 

final partitions number, try to place at each step an activity 

(or pre-partition) to a final partition, and assign a service (or 

a set of service) to it. Both assignment and placement are 

based on cost estimation. The cost of assigning an activity to 

a service among its candidate services depends of the latter 

quality. Then the cost of placing an activity in each final 

partition depends of the communication overhead as well as 

the average distance between the activity to place and all 

activities of the partition. The most favorable choice among 

final partitions costs is selected. For pre-partitions placement, 

the same procedure is used except the fact that we take into 

consideration the constraints, and a global cost of assigning 

it to a final partition since it includes a set of activities. 

Once all activities and pre-partitions are assigned, we compute 

the global cost, and then change final partitions number and 

iterate. After each iteration we compare the quality of the 

current solution to the previous one and save the best. The 

output of the algorithm is an optimized feasible solution. 

To analyze the complexity of Algorithm 5 , we first 

analyze the complexity of one iteration of the outer loop. 

In one such iteration, we consider every possible binding 

of an activity (that has not yet been bound) to a service. 

If we write MaxCand to denote the maximum number of 

candidate services that any activity has, we have to consider 

MaxCand possible bindings per activity and thus at most 

M axCandx IActl bindings in total. Each such binding is then 

compared against all activities that have already been bound in 

order to compute the distances (again, there are at most IActl 
such bound activities). We also have to evaluate the QoS of 

each service binding, but we assume this is a constant-time 

operation. Thus, the complexity of one iteration of the outer 

loop is O(M axCand x IActI2). Also, during each iteration 

of the outer loop, we have to test N P times whether or 

not two partitions are linked through any Separate constraint. 

Each such test takes at most IAI2 operations. Next, we note 

that the outer loop is executed N P max - N P min times, 

with N P ranging between these two values. Thus overall, 

the complexity is O((NPmax - NPmin) x MaxCand x 

IActI2+(N Pmax-N Pmin)2 X IAI2). Thus we can say that the 

complexity of the algorithm is a polynomial of order four, but 

one of the variables in this polynomial is N P max - N P min, 
which can be made smaller if needed since we do not need 

to consider all possible numbers of partitions. 

3) Tabu search algorithm: In the following we will de­

scribe a solution that combine the greedy algorithm to the 

Tabu search algorithm in order to optimize the previously 

presented solution. As we mentioned before, the key idea is 

to start the Tabu search with an initial good solution. For this 

purpose we use the greedy solution. Then, for each iteration, 

possible moves will be calculated and the move leading to 

the highest benefit will be performed. If the highest benefit 

is negative, the move will be performed anyway, unless this 

move is forbidden by the tabu list. In order to guide the 

moves, we utilize some heuristics that can be employed (in 

conjunction with the tabu search algorithm) to improve the 

solution. The heuristics are described as follows: 

• Put together activities which exchange lot of data to 

reduce inter-partitions interactions 

• Put together activities whose invoked services are geo­

graphically close. 

Algorithm 6 presents a pseudo code for the tabu search 

where stop condition represents: 

• after a fixed number of iteration 

• after number of iterations without an improvement in the 

objective function value 

• when the objective reaches a pre-specified threshold 

value. 

The function quality is evaluated as described in equation 

4. A move is described by an activity assignment to another 

partition or service with respect to the constraints. 

Algorithm 6: Tabu search 

Require: - Sg: greedy solution 
Init: So +- 8g 
S +- So: current solution 
S* +- So: the best-known solution 
1* +- quaZity(So) 
T +- {}: Tabu list 
begin 

while (-, StopCondidtionO) do 

S +- argmin [quality(S)] 
S'ENa(S) 

if quality(S) < 1* then 

l 
1* +- quality(S) 
S* +- S 
record tabu for the current move in T (delete 
oldest entry if necessary) 

end 
return S* 

IV. RELATED WORK 

In recent years, several methods and systems for decen­

tralized business process execution have been proposed. One 

of the earliest work in the area is the Mentor project [18]. 

In Mentor, workflows are modeled using state-charts that are 

partitioned so that each partition is delegated to a separate 

processing entitiy (PE). Each PE-specific state-chart is exe­

cuted locally on the PE workstation. Their approach takes 

into account both control and data-flow dependencies. Sadiq 

et al. [17] present another method for decentralized workflow 

execution based on partitions, but without considering data 



dependencies. More recently, Khalaf et al [11][lO] present a 

method for decentralized orchestration of BPEL processes, 

focusing on the derivation of P2P interactions. Meanwhile, 

Yildiz et al [19] consider the decentralization of processes 

from an abstract perspective by extending the dead path elim­

ination algorithm used in BPEL process execution engines. 

Their contribution focuses on preserving the control-flow 

constraints in the centralized specification, while preventing 

deadlocks when services interact with one another. 

The above approaches do not consider communication 

overhead when splitting the process into partitions. Instead, 

they assume that the split is given by the designer or inferred 

from the roles specified in the process model. Importantly, 

our partitioning approach could be used on top of any of the 

above decentralized orchestration approaches. Thus, our work 

is complementary to the above ones. 

Nanda et al. [5] present an approach to partition BPEL 

processes using program partitioning techniques with the aim 

of reducing the communication costs between the partitions. 

However, they do not take into account distribution constraints 

(Collocate and Separate) so the designer cannot control the 

partitioning. Also, they do not take into account the possibility 

of an activity having multiple candidate services, each with 

a different location and a different QoS. 

Other approaches to decentralized orchestration do not 

require any partitioning. For instance, the Self-Serv sys­

tem [3][2] is able to execute web service compositions in 

an entirely peer-to-peer fashion: services send messages to 

one another after completing each activity in the orchestra­

tion. This approach is equivalent to assigning each activity 

(service) to a separate partition (as illustrated in Figure 1 b). 

Another method for decentralized execution without partition­

ing is presented in [14][15]. The authors developed a formal 

approach that takes as input the existing services, the goal 

service and the costs, and produces a set of decentralized 

choreographers that optimally realize the goal service using 

the existing services. However, the authors do not explain 

how they deal with Repeat blocks (i.e. loops), which have a 

significant impact on communication overhead. 

V. CONCLUSION 

This paper presented a method for optimized constrained 

decentralization of composite web services. The method seeks 

to create an activity partitioning and a binding of activities 

to services that minimizes communication costs while maxi­

mizing QoS. In doing so, the method takes into account the 

expected communication volume between partitions, the dis­

tance between partitions and the distance between services in 

the same partition. The resulting model is richer than previous 

models for optimizing decentralized service orchestrations. 

The proposed method also complements existing methods for 

decentralized orchestration of services that take as input a 

predetermined partitioning. 

Because of the nature of the objective function, we had 

to formulate the problem as a quadratic assignment problem. 

A greedy heuristic is used in order to construct an initial 

solution. The paper also sketched how Tabu search could be 

used to improve this initial solution. Future work will aim 

at empirically assessing the quality of the solutions obtained 

with the greedy algorithm, and the improvements obtained 

using Tabu search or other meta-heuristics. 
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