
Modelling correlations for Body Sensor Network
information

Pedro Brandão
∗ †

Instituto de Telecomunicações, Faculdade Ciências,Universidade do Porto
R Campo Alegre 1021/1055, 4169-007 Porto, Portugal

pbrandao@dcc.fc.up.pt

ABSTRACT
Body Sensor Networks (BSNs) are the natural candidates
to provide multi-parameter patient monitoring. Tapping
into multiple inputs and correlating them to infer new in-
formation, cleaning received data and inferring state should
be objectives of BSNs. These systems will need to deduce
information from a variety of raw sensor data and accuracy
in their results will be paramount. Apart from having several
different types of sensors (producing different types of data),
BSNs will also have several applications wanting to access in-
formation. Not all of the information will be directly sensed,
but some can be inferred from the raw sensor data. We pro-
pose a framework that enables modularization of information
and its correlation. This enables re-use by different applica-
tions and optimization of the collection and calculation of
the requested information by the system (the BSN). The
framework also allows defining dependencies between mod-
ules for information production. Our architecture provides
an abstraction on the way information is assessed and its
processing flow. Applications issue requests to the middle-
ware with requirements to be met. So we will discuss the
optimization of resources, while honouring requirements.

Categories and Subject Descriptors
H.1 [Information Systems Applications]: Models and
Principles; D.2.11 [Software Engineering]: Software Ar-
chitecture—data abstraction; C.2.11 [Computer - Com-
munication Networks]: Distributed Systems

1. INTRODUCTION
The concept of multi-parameter patient monitoring is re-

gaining momentum [1], as the possibilities for enabling it
are getting more mobile, user-friendly and ubiquitous. The

∗The work presented was done in the course of a PhD disser-
tation at the Computer Laboratory, University of Cambridge.
†This work was partially funded by the VitalResponder pro-
ject CMU- PT/CPS/0046/2008

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BodyNets ’12 Oslo, Norway
Copyright 2012 ACM 0-89791-88-6/97/05 ...$10.00.

research for digital computerized systems that are able to
assess different inputs can be tracked back a few decades. The
experiment by Shubin and Weil in 1965/6 of using a computer
to monitor and produce records for seriously ill patients
(in a shock unit) [2] is one such example. Using several
different inputs to assess physiological parameters has been
a growing effort: devices that monitor several parameters [3];
correlating data to clean information [4]; deriving new state
based on qualitative models [5] and enabling formula-based
calculations of physiological parameters [6].

BSNs are a very good (if not perfect) fit for multi-parameter
systems. BSNs need to be able to tap into several sens-
ory information sources and correlate the information from
them. Applications can then use the sources more efficiently,
with more confidence, accessing more information than that
provided by raw data from the sensors. This is the ulterior
goal of our work.

We follow a middleware approach. The aim is (as expec-
ted in middleware architectures [7]) to provide applications
with an abstraction of the underlying complexity; be it hard-
ware (what type of node, what temperature sensor, etc.),
Operating System (OS) (TinyOS, SunSpot Squawk, etc.),
communication layers (ZigBee/802.15.4, Bluetooth, etc.),
Service Discovery (SD) (Bluetooth, ZigBee, SensorML, etc.).

In our case, adding to the previous responsibilities we state
that the middleware should: A) collect data from sensor
nodes; B) convert these data to relevant information in a
human body model; C) collect metadata on the data received
and correlate it with the information in the model; D) answer
requests from applications based on the information in the
model while providing the related metadata; E) optimize
resource usage (turn on/off, increase/decrease frequencies of
collection, etc) while complying to requirements set by the
applications.

For this an information abstraction layer is also needed. In
this layer a model of information correlation would describe
how to derive information from other information. A inform-
ation flow framework would direct the information to the
components that need it, either to derive new information
or consume it.

Figure 1 illustrates possible correlations of different types
of information. In the diagram blue boxes represent produ-
cers of information; they use the information from the yellow
circles to infer new information. As an example we can pro-
duce Cardiac Output (CO) from Heart Rate (HR) and Stroke
Volume (SV), using the formula CO = SV × HR from [8].
Moreover, the figure shows that CO can also be produced by
the ImpCard Reader CO (impedance cardiograph reader) or

BODYNETS 2012, September 24-26, Oslo, Norway
Copyright © 2012 ICST
DOI 10.4108/icst.bodynets.2012.249972

METs
model 3

M0

V

Pulse
Oximeter

Temp

HR

SpO2

Optic Hb
reader

Hb

Temp

CO
FormulaV

ImpCard
Reader SV

SV

CO

ImpCard
Reader CO

ElectCard
Reader CO

ElectCard
Reader SV

V

V

O2 Del
Formula

O2 Del

V

Hip Accel
Counter

Wrist
Accel

Counter

Hip
Count

Wrist
Count

METs
model 1

METs
model 2V

METs

V

Physical Act App

Physical Act App

Monitoring App

Hip Accell
Wrist
Accell

Hip
Accel

Wrist
Accel

Accell1 Accell2

Accell

V

Activity
Model

Act
Index

Physical Act App +
Monitoring App

Monitoring App

Module n

Iα Information type α

mn

Figure 1: Correlation diagram example

ElectCard Reader CO (electrical cardiograph reader).

1.1 Problem statement
Our scenario involves a BSN based on a star topology

centred on a more powerful node (a Base Station (BS)), as
defined in IEEE 802.15.6’s standard for Body Area Networks
(BANs) [9]1. In this scenario several applications running on
the BS request information in order to function (providing
it to the user, for monitoring purposes, etc.). In figure 1
ellipses represent applications requesting information. These
needs may have requirements “attached”, e.g. frequency of
input, maximum error of the information, latency on getting
it. There are costs associated with this retrieval, energy
spent by a Hardware (HW) node, processing power, error
introduced by the sensor or correlation, etc.

To answer applications requests, the middleware uses a
model that defines how different inputs correlate to produce
new information. There may be several ways to produce
the same information. The objective is to allow applica-
tions to access not only raw information from the sensors,
but also information combined or inferred from the “raw”
sensor information. This means accessing any yellow circle.
The middleware’s objective is to optimize resource usage
(the sensor system) while providing applications with the
requested information. Our approach is to try to discover
commonality between requests from the different applica-
tions. To improve the chances of finding it, we seek to have
correlation modules in the middleware to enable “intersec-
tions” between requests. All requests’ requirements must be
met, so the most stringent of the intersecting requests is the
one that must prevail.

From figure 1, if MonitoringApp requested O2 Del with a
frequency of update of 5 Hz and Physical Act App requested
CO with a frequency of update of 10 Hz, the middleware

1The IEEE group also supports two multi-hp connections
to the BS on the star. Our model works on a single hop
connection, but this does not affect the work described herein.
See also [10] for a discussion of BSNs network topologies.

should calculate CO with a frequency of 10 Hz. This would
satisfy the strictest requirement.

We propose an approach to: a) compartmentalize the cor-
relation between information in reusable software compon-
ents; b) define how components depend on other components
(information needed as input) using a graph analogy; c) op-
timize component usage by discovering intersecting needs;
d) aggregate different requests so as to optimize according to
a defined cost; e) define an infrastructure for the information
flow using a Publish/Subscribe (pub/sub) architecture.

2. RELATED WORK
To the best of our knowledge, there is no BSN middleware

providing data correlation capabilities. They usually address
communication to the sensors, such as [11] or processing data
on the sensor such as [12]. They do not address information
abstraction. As such we discuss two approaches for data
correlation in BSN and then discuss middleware for Wireless
Sensor Network (WSN) that tries to address correlation of
different data.

Signal Interpretation and MONitoring (SIMON) [5] by
Dawant et al. bases its work on the premise that “alarms are
too numerous to be correctly interpreted by humans, however
highly trained”. To that end a system was built, capable of ad-
apting its monitoring according to changes in the environment
and on the patient’s physiological state and its predicted
evolution. The filtering, artifact removal and, especially,
fault detection is also part of the framework’s objectives.
The project developed software components for a UNIX sys-
tem based on Inter Process Communication (IPC) between
modules for data acquisition from external medical devices.
Data collection is based on either data acquired from sensors,
where there is the possibility of acquiring data from several
sources, or computed from different input types. These data
can have associated thresholds and clinical medical ranges,
which are user-friendly interval qualifiers. This is used as
input to a model-based qualitative/quantitative reasoning
framework. This model defines a hierarchy of objects that
represent different levels of data abstraction, with defined
boundaries, and artefact and fault models for data corruption
detection. As such, the data abstraction component is used
to: process and abstract the data; monitor/report according
to the model; detect and react to possible errors in the data;
adapt in real-time its behaviour according to context. The
framework has a scheduler component, a modified earliest
deadline first heuristic, to adjust tasks’ frequency. Clearly
we share objectives, but provide different functionalities, ap-
proaches and systems. We dwell in BSNs with the central
component being the BS. We also aim to provide a hierarch-
ical abstraction of the data, by defining software components
that process their inputs, producing new information. Our
added flexibility (the HW abstraction and information ab-
straction is more modular and transparent) is counterposed
with the qualitative reasoning capability [13] of SIMON.

Fusion of multi-sensor data is used by Li et al. [4] to estim-
ate HR. The idea is to use different sources for estimating
HR, namely beat detection from ElectroCardioGram (ECG)
and Arterial Blood Pressure (ABP) waveforms. The authors
state that their main innovation is using signal quality as-
sessments to characterize both estimates. They define how
to assess signal quality of ECG and ABP and use this in
a Kalman filter. This allows them to use the result of the
Kalman innovation of the signal in a weighted fusion of both

estimates. The objective is to use the better signal in the
estimation, more precisely, to have a quality weighted “use”
of the signals. This reduced artefacts and noise induced
estimation errors in the resulting estimation.

The work from Heinzelman et al. in Middleware Linking
Applications and Networks (MiLAN) [14], although related
to WSNs, influenced what we propose. They address require-
ments of applications (that they call Quality of Service (QoS)
demands), resource limitations and cooperative applications
(i.e. different applications using the same network to achieve
different objectives). MiLAN uses the applications’ data re-
quests with the requirements as inputs. Each sensor or group
of sensors has a level of QoS that it can provide for each data
requested, which is expressed in a sensor QoS graph. They
define a State-based Variable Requirement Graph (SVRG),
which determines the requirements, the quality needed in the
measurement and what data to be sensed from the applica-
tions. This graph is based on the current application’s state.
The state influences the quality needed from sensed data.
All the state is calculated by the application using the raw
sensor data, although the SVRG indicates some relationship
between the information. The intersection of the sensor QoS
set and the SVRG defines the sensors to use. In MiLAN the
notion of information correlation is left to the application,
whereas in our approach the middleware knows the correl-
ation model, allowing for reuse. The metrics defined are
the quality of the values, network bandwidth and energy of
the system. It is not mentioned how to re-use information
for different states. Optimization is seen from a single ap-
plication’s point of view, however extrapolation for several
applications could be achieved as an extra intersection of
the different application solution sets. In our proposal we
address optimization of several application requests from the
start and derive intersecting requests/requirements.

In Semantic Streams [15], Whitehouse et al. use a model of
“composable inference” for WSN data. They use a Constraint
Language Programming (Real) (CLP(R)) framework to de-
clare how different streams of data can be composed to
produce new streams. Constraints can be defined for a query:
confidence, relationship between streams (co-temporal, co-
spatial). The “facts”, for the streams of sensors, and “rules”
for composing, including unit transformation, are defined on
a Prolog engine. Optimization is supported for the defined
metrics. When a query enters the system, the existing infer-
ence units can be composed to generate new interpretations
of sensor data. It allows multiple applications, users in their
nomenclature, to share the same resources on the network,
while resolving conflicts. The easiness of expression, CLP(R)
rules, mandates that a CLP(R) engine be available (SICStus
Prolog in the paper’s case) with minutes or less for a one
time (per query) composition time. From the details on the
article the proposed architecture does not seem to support
composition of the same type of data streams (Accell from
Accell1 and Accell2 in our example) so as to improve the
quality/properties of a stream (e.g. minimize error). Com-
position rules are easy to express, an advantage of the logic
programming language used, but modularity and the lack of
different layers of abstraction may impair re-usability and
flexibility. Moreover, processing time may be a deterrent.

In WSNs, declarative language approaches, as Cougar [16]
and TinyDB [17], deal with query optimization using correla-
tion between different sources of information in the network.
The sensor network is seen as a distributed database. The

reasoning follows from the highly correlated nature of WSNs,
where values being sensed are usually of the same type and
cross several nodes in their multi-hop trail to the sink. Sensor
nodes have query proxies that are able to process queries and
decrease power consumption in nodes on two avenues: aggreg-
ation of results and selective sensing. These approaches aim
to optimize queries on correlated data as our proposal. The
differences between BSNs and WSNs lead to different solu-
tions. WSNs use several similar, if not identical, sensors to
collect the same data types, which is of fundamental value for
the declarative queries, specifically for aggregation purposes.
Correlation is mostly done on the same data type. BSNs have
different sensors collecting different types of data, making
them less viable for these optimizations. This is accrued by
the models being distributed through the sensor nodes, that
either are all alike or will need to know about data types
that they do not sense. The likely network star-topology
for BSNs makes them single-hop, leading to fewer (if any)
places to do aggregation. Correlation of different inputs is a
driving point for our framework. The declarative language
approach was aimed at other objectives and only with later
work [18] was this accounted for. Another initial goal of our
architecture is the possibility to optimize for multiple queries,
so to allow several applications requesting different types of
information. This is currently not done in the declarative
language framework, as the optimization is done for a single
query. Again, this may be a reflex of WSNs versus BSNs, the
latter are more likely to have different applications running
on top of its sensor network, as sensor information is more
varied. The former, in most cases, has a single purpose and
collects less varied information. Nonetheless, in TinyDB
optimization of multiple queries is mentioned as future work.

3. MODEL
As mentioned, applications impose requirements for their

requests. The middleware uses metrics to check if the re-
quirements are being met. These metrics are also used for
calculating the cost of using a specific configuration. This
cost is the metric to optimize the system for. Examples of
these metrics are frequency of updates, error, delay, energy
consumption, processing.

The control that is available to the middleware is which
modules to use (the decision variables) for the correlations.
The end result is a configuration of modules to use to meet
the requests while minimizing the cost.

From figure 1 the middleware would need to compute the
modules to use so that MonitoringApp and Physical Act App
would get the information that they are requesting, taking
into account their requirements. Monitoring App needs activ-
ity index (a measure of a subject’s activity), acceleration,
ECG, and oxygen delivery (the quantity of oxygen that is
transported to cells). The Physical Act App needs: accel-
eration, CO (measures the blood output of the heart) and
Metabolic Equivalent (MET)2.

3.1 Framework description
We represent information correlation in modules; they use

information as an input to produce different information.
In figure 1, blue boxes represent these software modules.

2MET is a measure to compare the metabolic expenditure of
physical activities. It is a ratio to the resting activity, which
has MET =1.

The yellow circles represent information. All of a module’s
inputs must be available for it to be able to produce its unique
output. This is represented by the arrows leading to the boxes
(to a ∧ indicating the conjunction). The output produced by
a module is represented by the “slash–dot” line directed to an
information circle. The same information may be produced
by different modules. This is represented by the lines leading
to the information circle (to the ∨ indicating the disjunction).
The diagram is a Directed Acyclic Graph (DAG) (no cycles
are allowed by design) with two types of nodes. The direction
is indicated by the arrows and the circles at the end of the
“slash–dot” lines, which is bottom to top in figure 1.

We use the text notation of overline to represent informa-
tion nodes and underline for module nodes. Although both
information and modules are nodes in the graph we refer to
information nodes and just modules from this point forward.
When we want to address both we use nodes.

As an example, the O2Del information node can be pro-
duced by the O2Del Formula module. This module needs

CO , SpO2 and Hb to produce O2Del . The top module, M0 ,
represents the information requests made by the different
applications to the middleware. As such it does not produce
anything, but it needs all of its inputs, as it needs to answer
all applications.

These correlations embedded in the modules are either
defined by a particular application or globally accepted by
the community, the latter improves reuse. In figure 1, METs
calculation from activity counts models 1, 2 and 3 and are
from [19]. The estimation of activity indices in Activity Model
is from [20]. CO is derived from SV and HR using the
Windkessel model described in [8]. The oxygen delivery
model is discussed in [6].

As can be seen in the figure, some modules do not need
any data input (e.g. Accell1). These modules represent the
sensors, which produce their outputs from the physical world.

Some other observations: (a) there is only one information
node per information type in the model; (b) some modules
and information present in the system might not be needed
(e.g. Temp) (c) the same physical sensor may have different
modules associated with it (e.g. Hip Accell and Accell1 are
provided by an acceleration sensor on the hip); (d) different
applications may request the same information with different
requirements (for example Accell) and different requirements
may also occur for information that is commonly needed
(e.g. HR); (e) different modules producing the same output
may have different requirements, cost and output quality
(e.g. for the METs information there are three available
modules with different accuracy on their outputs).

Application requirements mandate modules’ requirements.
A maximum error of 2% for the O2 Del Formula may impose
a maximum error of 1% on CO , 2% on SpO2 and 0.5% on
Hb. The influence of the inputs on the output of a module
are defined by the module based on its correlation function.

3.2 Optimization algorithm
Information nodes can be produced by any capable module.

Furthermore, information nodes can use more than one mod-
ule for production in order to improve the metrics and meet
the requirements. For example, Accel1 and Accel2 could be
used for lower error or greater frequency. Any combination
of one to all the modules is possible.

Some examples of metrics are frequency of output pro-
duction, latency to output production, Energy, CPU and

IO usage and Error associated with every node. We note
that requirements (metrics) have inter-dependencies. Some
of the metrics are merely cumulative (latency), but others
may have a more complex influence on the nodes that are
using the lower nodes (e.g. error propagation between input
and output depends on the function utilized).

This complexity in metric correlation led us to look at
modules as black boxes that can be queried regarding their
performance (metrics and cost). Based on this we defined
an algorithm to search all possibilities, discarding, as we
search, the ones that do not meet the requirements. This is
an improved “brute force” search, where we cut branches that
do not satisfy requirements and use a cache for re-visited
information nodes.

Our approach uses the model as portrayed in figure 1
searching from top to bottom. Part of the algorithm is
defined in algorithm 1 where every set of possibilities of each
node’s descendants is combined with all others. Combina-
tions depend on the node type. For modules, as every input
is needed, we have a Cartesian product of the possibilities.
For information nodes we can have any combination of the
modules producing the information, ranging from a single
one to all of them, i.e.

⋃#desc
i=1

(
descOf (infoNode)

i

)
, where desc

is descendants. Each of these combinations is then tested for
requirements. If it satisfies the requirements the possibility is
added to the set of possible solutions and cached for re-use.

Algorithm 1 checkPossibleSources(possListOfSets,
node, requirements)

possComboSetOfSets ←
combinePossibilities(possListOfSets,

typeOf(node))
possForNodeSet ← {}
for each possComboSet in possComboSetOfSets

(newPossibilityId, newMetric, newCost,
nodesOfPossibleTree) ←
aggregateNodes(possComboSet, node)

if satisfies(newMetric, requirements) then
possibility ← (newPossibilityId, node,
newMetric, newCost, nodesOfPossibleTree)

addToTable(possibility)
addTo(possForNodeSet, possibility)

return possForNodeSet

From a worst-case analysis [21] we have that the limiting
part of our optimization is algorithm 1. Taking the number of
modules (M) in the system as the input, without considering
how they correlate, we have a O

(
M2 · 2M

)
.

It is easily seen that this is a very bad worst case scenario,
however it is very unlikely to happen, if at all possible.
It would imply models where information nodes would be
produced by M modules, leading to 2M possible combinations
for producing the information. Note that the algorithm
discards possibilities that do not meet the requirements.
However, in the worst case analysis all possibilities meet the
requirements.

Worst case space analysis leads us to a similar pessimistic
result of O(M · 2M). In this case the cache table is the
hogging factor where we have 2M possibilities (thus table
entries) each having M modules as data (which in a real
scenario would not happen for every entry).

As an anecdotal example of performance from a model
similar to figure 1, with 22 modules, we have 282 operation

calls performed to find 135 possibilities (worst case with
M = 22 is 222 × 222 = 2030043136). This took an average of
0.4 ms in a laptop with an Intel 2.66 GHz CPU and 4 GB of
memory, using an implementation in Java3.

4. INFORMATION FLOW
The model pictured in figure 1 lends itself to a pub/sub

architecture [22] so as to disseminate the information through
the different modules. Modules subscribe to a type of event
and publish in the system the information they produce.
To accomplish this the middleware has a specific compon-
ent that acts as the broker (RegistrarProduction) and a
Policy component is responsible for finding the best mod-
ule configuration (i.e. the set of modules that will produce
the information requested while satisfying requirements) for
the current applications’ requests, using the model provided.
A HW abstraction layer enables requesting and receiving
the “raw” sensor data. As such our pub/sub system has:
a) software modules that correlate information by publishing
their outputs and subscribing to their required inputs; b) a
framework to allow optimization of resource usage, taking
into account modules’ “costs”; c) different types of modules
providing different functionalities.

4.1 Modules
Modules are the components that process information.

They embed the principles for correlating inputs to produce
a specific output. They may use several inputs, but only
produce one output. Module production is published in the
central RegistrarProduction that sends it to the modules
that subscribed to that information.

This structure enables the composition of results by “chain-
ing” modules together (connecting their outputs with inputs)
to produce complex calculations/dependencies between data.
As expected, outputs can be sent to different modules (multic-
ast), enabling different interpretations of the same produced
value in different contexts. Associated with the data pro-
duced, there are metadata fields that describe the accuracy
and the time of production. These can be used by modules
or applications for more detail about the data.

A module has some capabilities and a cost that describes
how it is capable of producing a specific output. Modules can
(and should) be implemented by the application developer if
a specific correlation or functionality is not present.

Figure 2 illustrates the components of the information
flow system on the BS, where some modules with different
responsibilities are pictured. The HW abstraction layer is
the middleware layer that hides the specificities of the HW
and communications being used.

A ModuleSensor represents a sensor from the BSN. New
sensors are discovered through a SD protocol [23]. This
notification reaches the DaemonGWRegistrar that creates as
many sensor modules as the sensors the node advertised.
Data structures are used to keep the node and the sensor
characteristics in the middleware on the BS.

The ModuleSensor maps the requests made to it to com-
mands for the sensor. When the sensor produces data it
flows to the BS using the specific communication system. A
component in the HW abstraction layer de-multiplexes the
messages received by the network, in this case a message
with a measurement. This is sent to the MeasurementTo-

3Confidence interval of 95% leads to a top value of 3.8 ms.

Policy

ModuleSensor

Module
Generic

Application

newValue

Policy
Registrar

Production

Measurement
ToRegistrar

Application

ModuleApp

HW Abstraction Layer

measurements

Module
Generic

ModuleSensor

reading

newValue

newInput

newInput

new Node

RegistrarInfo

find optimal solution

pull value

store/retrieve pub/sub data

request data
DaemonGW

Registrar

interaction

events

Figure 2: Information layer data flow (on the BS)

Registrar component that directs it to the module that is
responsible for this sensor. The module then publishes the
data on the RegistrarProduction.

The ModuleGeneric is a generic module that encompasses
the functionalities and state that all modules have. As such
it can publish new values and receive new inputs with in-
formation it subscribed to. Some other modules are already
implemented to ease the development/usage of the architec-
ture: ModuleFormula for formula-based calculations (e.g. for
implementing O2DelFormula), ModuleStorage for storing
produced information and ModuleAlarm that checks the value
of the information subscribed to and sees if it is within some
specified limits. The ModuleApplication is used by the ap-
plication to interact with the architecture, subscribing to the
information requested.

4.2 Brokerage
The RegistrarProduction component from figure 2 is the

central component that controls the subscription, production
and optimization. The component needs to know about
producers, which thus need to register, and the subscribers
to those values, which need to subscribe. This enables one
of its main tasks: distributing information.

These two lists of producers and subscribers are managed
in the RegistrarInfo. Another list stored is the pending
requests list, which holds the requests that could not be
fulfilled due to a producer not being available for a needed
DataValue in the production tree. RegistrarInfo also holds
the current known policies for using the resources.

The Policy component is responsible for choosing which
modules are used to satisfy the applications’ requests while
optimizing for a defined cost. The Policy is an abstract class
that defines the interface that implementations of a policy
need to conform to. This is so as to give flexibility of defining
different policies that optimize to different costs. The default
algorithm to use is the one mentioned in §3, but it is possible
to define a policy that uses a different one.

5. COMPONENT INTERACTIONS
This section describes some of the interactions between

components that are supported by the architecture.
Requests are done by modules that need information

to function: application modules for the application, other

Figure 3: Request push value – subscribe (using an
application as example)

modules for storage, calculations, etc. There are two main
ways of receiving data: pull and push.

As expected, pull is a one-time query that is made as
needed. The requesting component may need to get a list
of producers from which to request the information it needs.
The pull can lead to a push based request if the value is
not available; e.g. the producer module does not have the
inputs needed to produce, or has not yet received them. The
pull request can also have a minimum “freshness”, where
the requester can restrict the “age” of the information. This
type of request is mainly used for getting information that
is already being produced for a push request, as it does not
entail any of the “information flow building” process.

The “push” request implies a subscription of the type of
information requested and can have requirements associated.
As illustrated in figure 3, this request leads to a chain of
requests to an optimum calculated module tree. This tree
is calculated by the Policy component so as to produce the
requested information. The RequestOutputSeqDiag checks
the modules to verify they are able to produce the requested
values. It also encompasses starting production, if not yet
started, or changing the settings if this request is stricter
than the currently served one. Subscription to the needed
inputs is also done by the module at this point.

Producer un-registering: a producer may decide to
stop producing due to change in sensing behaviour, detected
malfunctioning, battery draining4, etc. The module should
inform the RegistrarProduction of this action. This leads
to a re-assessment of the solution used. The modules that
were currently subscribing to the information being produced
by the stopping module are found and the strictest request
that each was serving assessed. After this, a search for
another producer module (or combinations of modules) for
substitution is done. If it is not possible to find a replacement
module, the requests are all re-done as if they were new
requests. This re-request is done after an un-subscription to

4This function could be implemented in a policy and lead to
a re-assessment of the modules to be used.

Figure 4: Prototype Screen-shot

the previous requests, so as to clear the affected requests.
Producer unavailable: when the Policy tries to find

the modules’ tree to fulfil a request it may be unable to
find a producer of a needed DataValue. In this case the
requester should be notified that the request was unsuccessful.
The request may additionally enter a “pending-requests” list,
so that when a producer capable of producing the needed
information registers, the request may be fulfilled.

6. IMPLEMENTATION
We implemented the architecture using SunSpots in a

Java framework. SunSpots are general purpose sensors nodes
developed by SUN that natively run Java code (a J2ME based
version) on a Virtual Machine (VM) called Squawk. They
have temperature and light sensors, a 3-axis accelerometer
and connectors for adding further instruments (actuators or
other sensors). We have developed the HW abstraction layer
and the information abstraction using this platform. The
information abstraction layer does not exist on the sensor
nodes, as they only do the sensing (dumb components). We
currently have the implementation for the BS running on a
laptop (also done in Java).

We have developed a test application that requests O2Del,
CO, acceleration and ECG. These data are all faked by the
SunSpot, except the acceleration. We have programmed the
SunSpots to advertise themselves as other types of sensors
able to sense O2Sat, Hb and SV. These are profiles that are
defined within the framework developed (see [24] for more
details). The different requests are issued as if they were
from different applications and the middleware combines
them if possible. In figure 4 we can see the screen-shot of the
prototype that runs on the BS. Here we can see the available
sensors, nodes and modules. It is possible to check the
metadata on these types and request the output production
of any of the available nodes. This request will contact the
needed modules so as to produce the output as described. In
the figure there are also dialogues with the values that were
being requested (02Del, HR and acceleration). Note that
it is possible to request data that is currently unable to be
obtained. The system will make the requests to the modules
and start the production as soon as they are made available.

7. CONCLUSIONS AND OPEN ISSUES
In this paper we presented part of our framework to enable

information distribution and correlation in BSNs. The frame-
work’s main purpose is to support a variety of applications

and to ease their access to the data they need in order to
operate, be it a raw sensor value or a derived value, while
enabling optimization of resource usage. This correlation and
calculation is done through the software modules described
and the pub/sub system. The correlation of information,
and thus the interrelation between modules, is described by
an information model.

The architecture supports several applications running on
a BS, requesting information (inferred or raw) with specific
requirements. The model described compartmentalizes the
information to provide opportunities for re-use and optim-
ization of the BSN resources. We described an algorithm
that searches for the optimal solution (for a defined cost)
for all the requests from the applications within the given
requirements. We analysed the worst case run time and
space, which are O(M2 · 2M) and O(M · 2M) respectively. In
its defence the algorithm always finds the optimal solution
(ignoring solutions that do not meet requirements and cach-
ing already found partial calculations) and the worst case
conditions are rare, if at all possible.

Comparing requirements to find the stringent one, may be
difficult when requirements encompass more than just one
metric. This could be encapsulated in a middleware function.
Further research is needed on this point.

We only gave as examples correlations that are very as-
sertive, namely formula based relationships. It would be
interesting to incorporate modules that produce fuzzy results.
Based on several inputs the module would output a result
with a probability of being correct. In this respect techniques
as fuzzy logic and/or qualitative reasoning [13] are interesting
to pursue.

8. REFERENCES
[1] Global Business Intelligence Research. Multiparameter

Patient Monitoring Market to 2016, Dec 2010. PRLog
news, Visited May 2012.

[2] Herbert Shubin and Max Harry Weil. Efficient
Monitoring with a Digital Computer of Cardiovascular
Function in Seriously Ill Patients. Annals of Internal
Medicine, 65(3):453–460, 1966.

[3] U. Anliker, J.A. Ward, P. Lukowicz, G. Troster,
F. Dolveck, M. Baer, F. Keita, E.B. Schenker,
F. Catarsi, L. Coluccini, et al. AMON: a wearable
multiparameter medical monitoring and alert system.
Information Technology in Biomedicine, IEEE
Transactions on, 8(4):415–427, December 2004.

[4] Q Li, R G Mark, and G D Clifford. Robust heart rate
estimation from multiple asynchronous noisy sources
using signal quality indices and a Kalman filter.
Physiological Measurement, 29(1):15, 2008.

[5] B.M. Dawant, S. Uckun, E.J. Manders, and D.P.
Lindstrom. The SIMON project: model-based signal
acquisition, analysis, and interpretation in intelligent
patient monitoring. Engineering in Medicine and
Biology Magazine, IEEE, 12(4):82 –91, December 1993.

[6] R. Law and H. Bukwirwa. The physiology of oxygen
delivery. Update Anaesthesia, 10:1–2, 1999.

[7] Philip A. Bernstein. Middleware: a model for
distributed system services. Commun. ACM, 39, 1996.

[8] J.X. Sun, A.T. Reisner, M. Saeed, and R.G. Mark.
Estimating cardiac output from arterial blood pressure

waveforms: a critical evaluation using the MIMIC II
database. In Computers in Cardiology, 2005.

[9] IEEE Standard for Local and metropolitan area
networks – Part 15.6: Wireless Body Area Networks,
February 2012.

[10] A. Natarajan, B. de Silva, Kok-Kiong Yap, and
M. Motani. To hop or not to hop: Network architecture
for body sensor networks. In Sensor, Mesh and Ad Hoc
Communications and Networks, SECON 6th Annual
IEEE Communications Society Conference on, 2009.

[11] Agustinus Borgy Waluyo, Wee-Soon Yeoh, Isaac Pek,
Yihan Yong, and Xiang Chen. Mobisense: Mobile body
sensor network for ambulatory monitoring. ACM Trans.
Embed. Comput. Syst., 10:13:1–13:30, August 2010.

[12] G. Fortino, A. Guerrieri, F.L. Bellifemine, and
R. Giannantonio. SPINE2: developing BSN
applications on heterogeneous sensor nodes. In
Industrial Embedded Systems, 2009. SIES ’09. IEEE
International Symposium on, pages 128 –131, 2009.

[13] K.D. Forbus. Intelligent Systems: Qualitative reasoning,
chapter VII. Computer Science Handbook. CRC Press,
2nd edition, 2004.

[14] W. B Heinzelman, A. L Murphy, H. S Carvalho, and
M. A Perillo. Middleware to support sensor network
applications. Network, IEEE, 18:6–14, February 2004.

[15] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic
streams: A framework for composable semantic
interpretation of sensor data. In Kay Römer, Holger
Karl, and Friedemann Mattern, editors, Wireless
Sensor Networks, volume 3868 of LNCS. Springer, 2006.

[16] Yong Yao and Johannes Gehrke. The cougar approach
to in-network query processing in sensor networks.
SIGMOD Rec., 31:9–18, September 2002.

[17] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. Tinydb: an acquisitional
query processing system for sensor networks. ACM
Trans. Database Syst., 30:122–173, March 2005.

[18] Prithviraj Sen and A. Deshpande. Representing and
querying correlated tuples in probabilistic databases. In
Data Engineering, ICDE IEEE 23rd International
Conference on, pages 596 –605, April 2007.

[19] A.N.N.M. Swartz, S.J. Strath, D.R. Bassett, W.L.
O’Brien, G.A. King, and B.E. Ainsworth. Estimation of
energy expenditure using CSA accelerometers at hip
and wrist sites. Medicine & Science in Sports &
Exercise, 32(9):S450–S456, 2000.

[20] George B. Moody. ECG-based Indices of Physical
Activity. Computers in Cardiology, 19:403–406, 1992.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[22] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv.,
35:114–131, June 2003.

[23] Pedro Brandão and Jean Bacon. Body Sensor
Networks: Can we use them? In M-MPAC -
International Workshop. ACM Digital Library, 2009.

[24] Pedro Brandão and Jean Bacon. BSN Middleware:
Abstracting Resources to Human Models. In HealthInf,
International Conference on Health Informatics, 2009.

http://www.prlog.org/11179728-multiparameter-patient-monitoring-market-to-2016.html
http://www.prlog.org/11179728-multiparameter-patient-monitoring-market-to-2016.html

	1 Introduction
	1.1 Problem statement

	2 Related work
	3 Model
	3.1 Framework description
	3.2 Optimization algorithm

	4 Information Flow
	4.1 Modules
	4.2 Brokerage

	5 Component interactions
	6 Implementation
	7 Conclusions and Open issues
	8 References

