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ABSTRACT
Wireless Sensor Networks present a pending challenge for a
complete deployability due to energy requirements. The low
power density that these energy sources provide compared
to the required energy for the communication process cre-
ates the necessity of temporal storage. Unfortunately, the
random nature of the energy sources implies that the energy
storage unit might not be able to guarantee the communica-
tion at all time, thus giving a certain loss probability, which
is a function of the energy storage capacity. Typical solu-
tions reduce this loss probability by over-dimensioning the
battery, producing a very large overhead in size. In this
paper, a scalable energy model is presented for the estima-
tion of the loss probability. Accordingly, this energy model
is applied in order to provide battery dimensioning guide-
lines. The results show that, by means of an accurate energy
model, a certain loss probability can be achieved, while re-
ducing up to 4 times the needed energy storage capacity.
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1. INTRODUCTION
Advances in micro-electro-mechanical systems (MEMS) as

a technology for new sensors and actuators, wireless commu-
nications and digital electronics have enabled the develop-
ment of low-cost, low-power, small size, multi-application
sensor nodes for Wireless Sensor Networks (WSN). The ap-
plications of this miniaturized sensors can be found in very
diverse fields ranging from health monitoring [4] to environ-
mental applications [7].
WSN targets the extension of the capabilities and appli-

cations of single nodes. This consists of the deployment of
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hundreds of coordinated sensors to provide high complexity
applications in a distributed manner to cover large areas [2,
1].

One of the most active applications of WSN is on the
development of Body Area Networks (BAN), that is the im-
plantation of sensors in the human body to improve health-
care and the quality of life. Examples of applications for
BAN are from remote health monitoring, sports training to
secure authentication [3].

A major challenge in WSN is posed by the energy con-
straints of the nodes. In order to achieve the Self-Powered
WSN paradigm, the limited energy storage of the nodes
leads to the necessity of harvesting the available energy
which can be found in the close environment of a sensor
node. In general, the energy sources are presented in differ-
ent natures, such as mechanical, thermal, solar, acoustic and
electromagnetic energy [8]. Although this energy is usually
considered as an unlimited source of energy, its low power
density compared to the required energy to transmit infor-
mation creates the necessity of temporal energy storage.

However, the bursty and random nature of the energy
source, jointly with the communication process results in
the fact that the energy storage unit might not be able to
guarantee the communication at all time, thus forcing the
sensor node to remain inactive during a certain fraction of
time. This fraction of time, referred as the loss probabil-
ity, strongly depends on the statistical properties of both
harvesting and communication processes, as well as on the
energy storage capacity.

Existing energy models [9, 6, 5], usually target the opti-
mization of some communication properties, as an example,
the energy model in [6] provides the channel capacity in en-
ergy harvesting enabled nodes. However, up to now, energy
models, are derived from the communication perspective and
assume typical communication statistical distributions in or-
der to model the energy harvesting process, which might not
be a general assumption and, therefore, it might provide an
inaccurate result. Due to the lack of an accurate energy
model, and in particular, for this loss probability, it is com-
mon to over-dimension the energy storage, producing a large
volume and weight overhead in the sensor node implemen-
tation.

In this context, we present design guidelines for battery di-
mensioning. These guidelines provide the minimum battery
capacity required to achieve a certain probability of battery
depletion, thus disabling the communication for a certain
time. This is referred as loss probability. To do this, a
scalable energy model is presented, which is able to capture
different statistics for the harvesting source and it models
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Figure 1: Qualitative representation of the energy
field over the area.

the output energy as a communication process. Addition-
ally, the harvesting energy fluctuations are separated into
two dynamics; the smooth spatio-temporal variation which
affects at the network level and the fast and uncorrelated
variations which affects the statistics of the energy storage
at the node level. These are referred as slow and fast dy-
namics respectively. This separation of dynamics enables
the assumption that a single node is able to reach a steady
state during a certain time and thus, enabling the character-
ization of the sensor node by means of its loss probability.
The rest of this paper is organized as follows. In Sec. 2,

the energy harvesting model is described. In Sec. 3, the en-
ergy balance to achieve a perpetual operation is presented.
In Sec. 4, the energy model is evaluated. In Sec. 5 design
guidelines are discussed for the battery dimensioning. Fi-
nally, in Sec. 6 we conclude our work.

2. ENERGY HARVESTING MODEL
The energy available in the ambient is characterized by its

ubiquitousness and perpetual character. This energy located
near a single node is highly correlated in both time and space
among neighboring nodes. However, there also exists a very
fast variation due to the bursty nature of energy sources.
These two effects enable the separation of dynamics to better
understand and analyze the harvesting source. Therefore,
we assume that the input power at a given time and position
can be written as:

Pharv(r, t) = PS(r, t) · p(r, t) (1)

where Pharv is the input harvesting power at a position r and
time t, PS refers to the slow dynamics in power units and
p stands for the fast dynamics, which is described as a di-
mensionless stochastic process. In the following, we further
relate the slow dynamics with the impact of energy harvest-
ing at the network level, while the fast dynamics are related
to the impact of harvesting at the node level. In any case,
both dynamics are application dependent, so it is not pos-
sible to provide a closed-form, general expression. However,
several properties of both dynamics are shown as follows and
by assuming a certain nature of this energy source, this sep-
aration of dynamics can model the energy harvesting at the
node and network level.

2.1 Slow Dynamics
The slow dynamics term is usually referred as the Energy

field. This concept is shown in Fig. 1. Assuming that
the nodes are deployed over a certain surface, the energy

field provides the average input energy at each node. As
shown, although the nodes are located in a discrete position,
the Energy field is continuous in both, time and space, so
it can easily capture nodes mobility or massively deployed
networks. These slow dynamics have a strong impact at the
network level. The figure shows the spatial distribution of
the energy field at a given time.

The slow dynamics are usually generated by the addition
of several independent energy sources, which might be lo-
cated either inside or outside the network area. In this case,
the resulting energy propagates from its source to the net-
work area, and the power at a given point can be expressed
as the addition of the convolution of these sources with the
channel impulse response, if linear. This is:

PS(r, t) =
∑
i∈V

Vi(r, t) ∗ g(r, t) (2)

where V refers to the set of energy sources, Vi stands for
the generated power at the i-th source and g stands for the
impulse response of the channel.

Note that this model is useful as long as the number of
energy sources is finite and considerably small, i.e. solar
energy or vibrational energy in the close environment of a
rotating engine. When the number of energy sources in-
creases, statistical models to describe the energy field over
the network area are more convenient, such as RF harvest-
ing, where there are plenty of energy sources which are com-
municating in an uncoordinated manner. Therefore, there
is also the need of a correlation coefficient which relates the
variation of the energy along time and space. Being i and j
two points in the space, the correlation coefficient is defined
as:

ρij(ti, tj) =
E[(PS,i(ti)− µi)(PS,j(tj)− µj)]

σiσj
(3)

where PS,i and PS,j are the slow dynamics at a space points
i and j at a time ti and tj respectively, µi and µj stand
for the average input power, and σi and σj are standard
deviations of the input power.

2.2 Fast Dynamics
At the node level, the energy is harvested from the close

environment by means of energy scavengers. Then, the en-
ergy is power processed to guarantee the maximum power
transfer and to adapt voltage levels. Afterwards, the input
energy must be temporarily stored in a battery or capacitor
to be later used in the node. Since the communication pro-
cess is assumed to be the most energy consuming process in
a node, the energy consumption given by the processing and
sensing is not considered. Therefore, the energy stored is as-
sumed to be later used during the communication process.
This is referred as the power path.

The input energy at the node during a time T , is given
by:

ein =

∫
T

Pharv(r, t)dt ≈ PS

∫
T

p(t)dt (4)

where the dependence with r is not considered since we con-
sider a discrete location in space and PS is assumed to be
constant due to different time dynamics. This input en-
ergy is modeled as a random variable which depends on the
statistics of the random process p(t). By calculating the
variation, σ2

e of ein in terms of its average value, E[ein], it is
obtained that σ2

e ∝ E[ein]. This is, although p(t) can have



any statistic, ein is constrained to a set of statistics which
achieve this condition between its mean and variance. As
an example, the chi-square with E[ein] degrees of freedom
fulfills this condition.
Additionally, considering the condition between mean and

variation and observing that ein is proportional to the inte-
gration time, it is also true that the relation between devi-
ation and mean tend to zero as long as the integration time
increases. This is, large integration times tend to low-pass
the variations of fast dynamics.

3. ENERGY BALANCE
During the node operation, the energy within the energy

storage fluctuates due to the effect of the harvesting and
communication processes. This energy level at the storage
unit is referred as the energy state, B and it is limited to
the energy storage capacity C. This state will condition the
operability of the sensor node.
In order to guarantee the operability of the node, the input

energy, ein must be higher than the output energy eout, in
average. This is, during a time T , it must be accomplished
that:

E[ein] ≥ E[eout] (5)

where ein and eout are the harvested energy and the com-
munication energy expenditure during a time T . Note that
the equality can only be achieved when the energy storage
capacity tends to infinity. In harvesting-enabled, limited en-
ergy storage systems, the energy balance must operate near
the equality as well to maximize the throughput. However,
due to the randomness of both harvesting and communica-
tion processes, the instantaneous energy may not be bal-
anced resulting in a certain loss probability ploss.

3.1 Communication Process
The communication process consumes several orders of

magnitude more instantaneous power than the energy har-
vesting power. Therefore, to keep the energy balance, the
communication must be duty cycled in the sense that only
for a very small portion of time the node is involved in the
communication process, while most of time the node is sleep-
ing. This fact enables the discretization of the communica-
tion energy expenditure. This is, the communication process
shows an impulsive behavior. Commonly, this communica-
tion process is assumed to be Poisson distributed, having an
exponentially distributed time between packets. The length
of these packets can be either fixed or exponentially dis-
tributed.

3.2 Energy State Characterization
The energy state is conditioned by the following state

equation:

∂B

∂t
= Pharv(t)− Pcomm(t) (6)

where B is the energy level at the battery, Pharv is the
harvesting power and Pcomm stands for the communica-
tion power. Additionally, the energy level at the battery
is bounded by 0 ≤ B ≤ C, where C is the energy storage
capacity
Since the communication process is impulsive and only

the time when there is need for communication is required,
the time can be discretized by the time between communi-
cation packets. Therefore, the energy variation during two

communication packets is given by:

∆B = ein − eout (7)

where ein is the harvested energy during the time between
two consecutive communication packets and eout is the packet
energy. Since the time between packets is exponentially dis-
tributed, ein is a function of the fast dynamics random pro-
cess, p(t), and the time between packets. Additionally, the
equation is also bounded by 0 ≤ B ≤ C

Since the battery capacity is the parameter of interest
in battery dimensioning, this is also included in the above
equation by dividing at both sides of the equation, this is:

∆S =
ein
C

− eout
C

(8)

where S = B/C, is the normalized energy state. S can take
any value from 0 to 1. As shown, the normalized energy
state only depends on the relation of energy with the storage
capacity. This is, given a certain statistics for the harvesting
process, the energy state is scalable.

4. MODEL EVALUATION
The loss probability is considered to be the main criterion

for battery dimensioning. In this section we evaluate the
loss probability in terms of the relation C/eout to provide
design guidelines in the development of future autonomous
sensor devices. C/eout is the relation between the energy
storage capacity and the information packet energy (i.e. the
total amount of information packets that can be transmitted
without harvesting any energy).

To provide the following results, the equation (8) has been
iterated in an event-based simulation. The parameters used
in the simulation are C = 800 J, PS = 400 mW, which are
typical values in energy harvesting environments [8]. The
required energy to transmit a packet eout is set as a de-
sign parameter and the time between packets T is set such
that PST = eout. However, Finally, the loss probability has
been defined as the probability of not having enough energy
to transmit information when an information event occurs.
This is ploss = Pr{S + ein < eout}.

4.1 Impact of Different Statistics
In Fig. 2(a), we show a comparison among the loss prob-

ability that different types of statistics at the energy model.
In the figure, four situations are considered. Firstly, an ex-
ponentially distributed harvesting source is considered. This
first energy source provides an input power which is expo-
nentially distributed in amplitude. Additionally, a set of
three chi-square distributed with an average k = {2.5, 12.5,∞}
degrees of freedom, where k = ∞ refers to constant input
power, are considered. As shown, the effect of considering
different statistics in the harvesting energy strongly affects
the loss probability estimation. As an example, in order to
achieve a loss probability of 10−3, a wrong estimation in the
harvesting energy model would affect in an overdimensioning
of up to 4 times in case of considering a Poisson distributed
model for the harvesting process.

4.2 Variations in the Input Energy
In a real network, an error in the estimation of the har-

vesting rate may occur. Additionally, variations in the traffic
patterns which may affect in an sudden increase or decrease
of energy expenditure which may affect to the energy bal-
ance. This can have a dramatic impact in the loss proba-
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Figure 2: (a) Loss probability in terms of C/eout for exponential distribution (dash dotted line) and Chi-
squared (dashed and solid line), (b) impact on the loss probability of a small variation in the energy balance
and (c) impact of the energy balance over the loss probability.

bility which must be considered in the future design before
deployment.
Fig. 2(b) compares the energy balanced (ein = eout) case

to the situations where the input energy is either slightly
above or slightly below the balanced situation. As shown,
the loss probability is heavily affected by these two situ-
ations. Additionally, to better show this effect, Fig. 2(c)
shows the impact of a variation in eout with respect to ein
in the loss probability. The impact in ploss is normalized by
the value of ploss when ein = eout.

5. BATTERY CAPACITY DESIGN GUIDE-
LINES

The statistical characterization of the node in terms of loss
probability removes the effect of the fast dynamics and it
enables the characterization of the loss probability in terms
of the relation between the average input harvesting energy
and the energy storage capacity. Therefore, the loss proba-
bility, ploss, is given by a certain function

ploss = f(C/ein) (9)

where f refers to the function which relates the loss proba-
bility with the relation between the energy storage capacity
and average input harvesting energy (See Fig. 2(a)).
Therefore, having an average harvesting power PS , and a

certain communication rate, R in packets per second units,
the needed storage capacity to achieve a certain ploss is di-
rectly given by:

C =
P

R
f−1(ploss). (10)

In addition to this, in case of considering slow fadings
or variations in traffic patterns, effect of energy unbalancing
(See Fig. 2(c)) in the loss probability should also be included
in (10) to guarantee the given loss probability.

6. CONCLUSION
Energy harvesting will have a great impact in the deploy-

ment of Wireless Sensor Networks (WSN) in almost every
field of our society. For the time being, some solutions for en-
ergy harvesting have been already presented. However, the
dimensioning of the energy storage is still a pending chal-
lenge, which is usually solved by over-dimensioning, hence
being delimited in size and weight. In this paper, a novel en-
ergy model, which consists in the separation of dynamics, is

presented. Additionally, the loss probability is obtained by
using the presented energy model to provide design guide-
lines in the development of future wireless sensor netorks.
The results show that the loss probability only depends in
the relation between capacity and input energy, thus provid-
ing a fully scalable energy model. Moreover, it is shown the
importance of accurately modeling the harvesting proces.
An accurate model of the harvesting process can avoid the
over-dimensioning, thus enabling a reduction in the energy
storage capacity of up to 4 times.
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