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ABSTRACT 

Analyzing food intake behavior is necessary to prevent obesity 
and overweight. Detecting and counting chewing strokes is an 
elementary part of this analysis. In our project, sounds of food 
intake were recorded using a microphone in the outer ear canal. 
The records contained sounds of 51 healthy subjects chewing 8 
types of food. We evaluated seven different algorithms to detect 
chew events in sound records. Results of the automated detection 
were compared to manual annotations. Best performances (preci-
sion and recall over 76 %) were achieved by detecting chew 
events in six different frequency bands and fusing these results. 
With this method for counting the number of chews, an important 
step towards the estimation of bite weight has been done.  
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J.3 [Life and Medical Sciences]: Health – food intake monitor-

ing, chewing sound, on-body signal processing. 
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1. INTRODUCTION 
There is a growing need for individuals to plan and evaluate their 
food intake in order to maintain a healthy diet. Unbalanced diet 
and excessive eating lead to various kinds of health risks such as 
cardiovascular disease, diabetes mellitus and cancer. A significant 
increase of these kinds of nutrition related diseases during the past 
decades was reported by the World Health Organization (WHO) 
in 2006 [12]. Approximately 1.6 billion adult people worldwide 
have been stated to be overweight. At least 400 million of them 
were classified to have reached an obese state. This challenge has 
high impact especially in the population of elderly individuals 
under the conditions of ambient assisted living. Nursing auxilia-
ries and physicians regularly check the health state of these people 
and protocol their food intake by interviewing them once a day. 

The accuracy of this procedure depends on the skills of the inter-
viewers and the mental conditions of the patient. Estimation errors 
of the amount of consumed food of up to 50 % are not unusual 
[10]. Additionally, snacking between the meals is often forgotten 
to be reported. 

A wearable device for precise and timesaving logging of human 
food intake data may be of great benefit in the task of analyzing 
eating behavior. Analyzing and classifying the sounds generated 
during the human food intake process seems to be a promising 
way to protocol food intake. Several research groups developed 
systems to get information of the food intake process by sound 
analysis [3, 6, 7, 11]. Body worn devices share the benefit of be-
ing independent from the eating location and lighting conditions.  

In [2], Amft et al. investigated the relation of the bite weight of 
consumed food and several parameters of the food intake process, 
e.g. the number of chewing strokes. They concluded that bite 
weight prediction using this kind of information results in estima-
tion errors in the range of self-reporting. Thereby, the automated 
prediction procedure can drastically reduce the user’s effort on 
data logging. 

The performance of a bite weight prediction algorithm strongly 
depends on the accuracy of the spotting of chew events in the 
sound data. Several authors have faced the task of spotting chew 
events [2, 6, 11]. In this paper, we want to evaluate the perform-
ance of different algorithms for this task on a database of records. 
Additionally, we investigate the usability of approaches from the 
field of rhythm detection in music for chew event spotting. 

This paper is organized as follows: In section 2, we present re-
lated studies on the task chew event detection. An Algorithm from 
the field of music analysis is presented here as well. Details of the 
wearable sensor system for food intake monitoring developed by 
our group are given in section 3. Section 4 explains the chew 
event spotting algorithms under investigation. Section 5 presents 
the methods and results of the evaluation experiments. Discussion 
and conclusion are drawn in section 6 and 7, respectively. 

2. RELATED WORK 

2.1 Studies on food intake sound monitoring 
In 1963, Drake investigated acoustics of chewing hard and crisp 
food in a pioneer study [5]. He demonstrated that chewing of each 
food type generates characteristic sounds. There are several ap-
proaches to analyze chewing sounds using wearable devices in 
order to protocol food intake behavior in the past decades: Amft 
developed a wearable earpad sensor with a microphone inside of a 
headphone housing [3]. Using a device like this, Amft et al. de-
rived the boundaries of chew events from the raw sound data and 
classified the type of consumed food. Sound data were recorded 
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Figure 2. Workflow of the maximum sound energy algorithm. 

Symbolism: E is the signal energy, y is the current signal sample 

value, Emax is the latest detected signal energy maximum, xmax is 

the sample number of Emax. 

 

Figure 1. Hearing aid package with both integrated mi-

crophones. 

from eight participants chewing three types of crispy food. Chew 
event spotting and food classification was done using feature 
similarity search. Shuzo et al. [11] recorded chewing sounds using 
a wearable recorder with miniature bone conduction microphones. 
The microphones were placed inside of the outer ear canals. The 
authors spotted periods of food intake, classified consumed food 
according to its texture and counted mastications (i.e. chewing 
strokes). Detection and counting of chewing strokes was based on 
filtering the absolute values of the signal with a low-pass filter. A 
cut-off frequency in the range of 0.5 to 5 Hz was used. Chewing 
strokes were spotted by detection of maximum values in the fil-
tered signal. The recording device of Nishimura and Kuroda [6] 
consisted of a microphone integrated into a Bluetooth headset. 
Using it, periods of food intake could be detected by spotting 
“chew-like” signals and a classification of “crisp” and “non-crisp” 
food types was carried out. “Chew-like” signals were detected as 
rhythmic sounds with amplitudes modulated with a frequency of 
not more than 2 Hz. For this, the signal was divided into subse-
quent frames and the log energy was calculated in each frame. The 
resulting log energy signal was low-pass filtered with a cut-off 
frequency of 2 Hz. Regression coefficients of 9 adjacent frames 
on the filtered signal and zero crossings of these coefficients were 
calculated. Finally, chewing strokes were marked when the fil-
tered signal was larger than a threshold and regression coefficients 
had negative slope when crossing zero. The “chew-like” signals 
were verified using models based on Mel-frequency cepstral coef-
ficient (MFCC) features. A wearable sensor system for food in-
take monitoring has been designed by our group [7]. The system 
is designed especially for elderly people and explained in more 
detail in section 3. We recorded food intake sounds from users at 
a sampling rate of 11,025 Hz. Using these records, we were able 
to classify different types of consumed food based on their chew-
ing sounds [7]. 

2.2  Studies on beat detection in music 
A common task in music analysis is the so called beat detection 
task. Beats generated by drums or bass guitars in music recordings 
are detected by special designed algorithms. Rhythm analysis can 
be based on such a beat detection algorithm. One example of beat 
detection algorithms is presented here. It was based on the “Beat 
This” project published online in [4]. Six spectral bands were 
extracted from the spectrum of the Fast Fourier Transform (FFT) 
of a whole record. Time signals were calculated by inverse Fast 
Fourier Transform (IFFT) of each spectral band. Absolute values 
of these signals were calculated. Subsequently, they are low-pass 
filtered by convolution with the function of a half-Hanning win-
dow. The resulting signal is differentiated and rectified. The 
dominating peaks of these rectified signals demark the occurrence 
of beats in music signals. 

3. WEARABLE SENSOR SYSTEM 
In order to analyze food intake behavior in elderly people, we 
designed a sensor system with two tiny electret microphones (FG-
23329-CO5, Knowles Acoustics) integrated in a hearing aid case 
[7]. Figure 1 shows the application part of the system. One micro-
phone (“in-ear microphone”) was placed in the outer ear canal of 
the user to record chewing sounds. It was protected from ear wax 
by a silicon tip. The decision for this application place was made 
based on investigations of Amft et al. [1], who found the outer ear 
canal best to record chewing sounds from the acoustical point of 
view. The second microphone (“reference microphone”) was 
placed in the hearing aid case above the outer ear. It recorded 

environmental sounds not generated by the body. The signals of 
both microphones were amplified and filtered in an analogous 
stage. Both signals were sampled synchronously by a standard 
sound card of a notebook computer. A sampling rate of 11,025 Hz 
was used at a quantization of 16 bit. 

4. CHEW EVENT DETECTION ALGO-

RITHMS 
We investigated seven different algorithms for spotting of chew 
events. These algorithms are presented in this section. 

4.1 Maximum sound energy algorithm 
Chew events were spotted by this algorithm when signal energy 
reached a maximum value, thereby extending a threshold. For 
this, the sound signal was divided into subsequent frames of 23 
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Figure 3. Workflow of the maximum spectral band energy algo-

rithm. Symbolism: Eq is the signal energy equivalent, y is the 

current signal sample value, Eqmax is the latest detected maxi-

mum of Eq, xmax is the sample number of Eqmax. 

 

start

framing
(256 samples, 23 ms)

calculate energy 
equivalent 

Eq =     |y|

detection of 
maximum of slope

end

slope > slopemax?

slope � slopemax

(12 frames

after last slopemax) and
(slopemax > threshold)?

save current
sample no. xmax

chew event detected!
store sample no. xmax

reset slopemax,

reset threshold

any further frames?

yes

no

yes

yes

no

no

calculation of slope

slope = Eq(i) – Eq(i-1)
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ms (i.e. 256 samples) without overlap. Signal energy was calcu-
lated as the sum of the squared signal values of each sample in a 
frame.  

Maxima of the signal energy in the sequence of the frames of a 
record were detected as follows: A maximum was spotted if signal 
energy of each of the subsequent 12 frames was lower than the 
value of the current frame. Only if the signal energy maximum 
exceeded a threshold value, its occurrence was marked as chew 
event. Otherwise, the next signal energy maximum was evaluated. 
After the occurrence of a chew event, the threshold value was set 
to the signal energy of the 12th frame subsequent to the frame 
containing the chew event. These variation of the threshold value 
was restricted by a given minimum value.  

The workflow of the maximum sound energy algorithm for chew 
event detection is shown in Figure 2. This algorithm is the sim-
plest one for chew event detection under evaluation in this paper. 

4.2 Maximum spectral band energy algorithm 
Using this algorithm, the sound signal was divided into subse-
quent frames of 5.8 ms (i.e. 64 samples) without overlap. The 
signal in each frame is transformed using the FFT. The sum of the 
absolute spectral values was calculated for each of six spectral 
bands in a frame. This sum is an energy equivalent of the signal. 
These spectral bands were 0 to 200 Hz, 200 to 400 Hz, 400 to 800 
Hz, 800 to 1600 Hz, 1600 to 3200 Hz and 3200 to 5512 Hz. For 
every band, maxima of the energy equivalent were calculated for 
the sequence of the frames in a record. This maximum detection 
was carried out as shown in section 4.1. Thereby, an own thresh-
old value for the maximum energy equivalent of each spectral 
band was introduced. Chew events were spotted only if more than 

two maxima of different spectral bands were detected in a range of 
14 adjacent frames (i.e. 81.2 ms). 

This algorithm takes into account the spectral properties of chew-
ing sounds. As shown in [8], the spectra of sounds of chewing 
strokes are rather flat and consist of signal energy of frequencies 
up to 4 kHz. Sound signals with a single dominant frequency 
component, such as vowels in speech, are not likely to be detected 
by this algorithm. The workflow of the maximum spectral band 
energy algorithm is shown in Figure 3. 

4.3 Maximum energy slope algorithm 
Chew events are characterized by a sudden onset of chewing 
sounds. To detect this onset, the maximal slope values of a sound 
energy equivalent were spotted by the maximum energy slope 
algorithm. The sound signal was divided into subsequent frames 
of 23 ms (i.e. 256 samples) without overlap. For each frame, a 
sound energy equivalent was calculated as the sum of the absolute 
signal values of each sample. The slope of these energy equivalent 
values was calculated by subtracting the energy equivalent of the 
previous frame from that of the current one. The maxima of the 
slope were detected analogue to the maximum detection in section 
4.1. 

The maximum energy slope algorithm takes into account the sud-
den onset of chewing sounds. The algorithm is independent of 
quasi-static background noise and slowly changing sounds. How-
ever, it is expected to fail in the case of transient noise signals or 
as speech. The workflow of the maximum energy slope algorithm 
is shown in Figure 4. 
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Figure 5. Workflow of the maximum energy ratio algo-
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4.4 Maximum energy ratio algorithm 
In our previous work [7], we showed that the ratio R of the energy 
equivalents of in-ear signal and reference signal could be used to 
distinguish signals from inside and outside of the body. This en-
ergy ratio was used in the maximum energy ratio algorithm to 
detect maxima in the chewing sound signal and reject sound 
maxima generated by the environment. The sound signal was 
divided into subsequent frames of 23 ms (i.e. 256 samples) with-
out overlap. For each frame of in-ear and reference signal, respec-
tively, sound energy equivalents were calculated as the sum of the 
absolute signal values of the samples. The ratio of the energy 
equivalents was computed by dividing the energy equivalent of 
the in-ear signal by that of the reference signal. To avoid division 
by zero, we set a limit to the energy equivalent of the reference 
signal by a fixed minimum value. The calculated ratio was 

smoothed by an adaptation factor α of 0.9 according to (1): 

)()1()()( iRiRiR ⋅−+⋅= αα , (1) 

where R  is the smoothed ratio and i is the index of the current 
frame. Maxima of the smoothed ratio were detected analogue to 
the maximum detection in section 4.1. The workflow of the 
maximum energy ratio algorithm is shown in Figure 5. 

4.5 Low-pass filtered signal algorithm 
This algorithm was designed according to the algorithm for count-
ing the number of mastications of Shuzo et al. [11]. First, the 
absolute value of each signal value was computed. The resulting 
signal is low-pass filtered with a cut-off frequency of 2 Hz. We 
used a Butterworth filter of fifth order. We decided to use a static 
cut-off frequency for ease of use. Maxima were detected in the 
filtered signal analogue to the maximum detection in section 4.1. 
In the low-pass filtered signal algorithm, maximum detection was 
carried out for every sample value. A maximum was spotted if the 
signal value of each of the subsequent 3072 samples (i.e. 280 ms) 
was lower than the signal value of the current sample. 

Using this algorithm, a proper detection of chew events occurring 
with a mastication frequency less than 120/min could be expected. 
However, chewing with higher mastication frequencies could be 
rejected. Rhythmic sounds from the environment are expected to 
be falsely detected as chew events. The workflow of the low-pass 
filtered signal algorithm is shown in Figure 6. 

4.6 “Chew-like” signal detection algorithm 
The “chew-like” signal detection algorithm was developed by 
Nishimura and Kuroda [6]. We used it to compare the perform-
ance of our algorithms with it. In order to use it, the sound signal 
was divided into subsequent frames of 23 ms (i.e. 256 samples) 
without overlap. For each frame the logarithmic energy equivalent 
was computed by calculating the common logarithm of the sum of 
the absolute signal values. The result was filtered with a Butter-
worth low-pass filter of the 4th order and a cut-off frequency of 4 
Hz. Mean and standard deviation of the signal values from the 
first nine frames of the filtered signal were computed. The thresh-
old value for signal energy was set to seven times the sum of this 
mean and standard deviation value. Regression coefficients of 
nine adjacent frames on the filtered signal were calculated. 
Frames, where the regression coefficients crossed zero with a 
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negative slope, were marked. Finally, the markings were treated as 
occurrences of chewing strokes if the filtered signal was larger 
than the threshold value.  

The workflow of the “chew-like” signal detection algorithm is 
shown in Figure 7. We did not use the chewing sound verification 
step introduced by Nishimura and Kuroda. 

4.7 “BeatThis” algorithm 
The “BeatThis” algorithm was developed based on a publication 
of Scheirer [9] and source code of this algorithm from [4]. The 
intentions of these publications were to detect beats in music re-
cordings. The source code of [4] was based on [9]. A frequency 
spectrum is calculated from the whole sound record using the 
FFT. The spectrum was divided into sub-spectra of six spectral 
bands. These spectral bands were 0 to 200 Hz, 200 to 400 Hz, 400 
to 800 Hz, 800 to 1600 Hz, 1600 to 3200 Hz and 3200 to 5512 
Hz. Spectra of the single bands were re-transformed using the 
IFFT. Absolute values of the resulting signals were computed. 
Convolution with the function of a half-Hanning window (with a 
length of 500 ms) was used to smooth these signals. Finally, the 
first temporal slopes were calculated by subtracting each two ad-
jacent signal values and these slopes were rectified. In [4], a cal-
culation of the basic rhythm of a piece of music was carried out. 
We modified the algorithm by inserting a maximum search and 
dropping the rhythm calculation. Maxima of the slopes were de-
tected for every spectral band analogue to the maximum detection 
in section 4.1. Chew events were spotted only if more than four 
maxima from different spectral bands were detected in a range of 
896 samples (i.e. 81.2 ms). 

The workflow of the “BeatThis” algorithm is shown in Figure 8. 
The “BeatThis” algorithm was designed to spot short transient 

sounds (“beats”) in music. We wanted to test whether chewing 
sounds could be detected as well. 

5. EVALUATION EXPERIMENTS 

5.1 Material and methods 
Using the sensor system introduced in section 3, we recorded food 
intake sounds from 51 participants chewing 6 types of food. Par-
ticipants were healthy subjects aged 15 to 77 years (mean: 34.8) 
with natural dentition. They ate 10 pieces of six types of solid 
food (potato chips, peanut, walnut, carrot, apple, chocolate). Food 
types were excluded only if participants expressed a strong dislike 
or were allergic of them. All participants were informed that re-
cording can be interrupted if they feel sick or do not want to eat 
more pieces of food. Sound data were recorded from participants 
sitting at a table in a quiet office or recording room. Single pieces 
of food were eaten, each recorded as a single intake cycle in a 
separate file. Food should be chewed and swallowed as done usu-
ally. Participants were told not to talk during the record and to 
avoid any kind of disturbing sound. The raw sound data were 
labeled by trained evaluators. We achieved one label file for each 
sound file from this annotation procedure. Label files contained 
the information about onset and end of each chew or swallowing 
event in a sound file. 

Evaluation of chew event spotting algorithms was done by com-
paring automatically detected chew events to the corresponding 
label files. If a detected chew event fell into the interval of 276 ms 



 

Table 1. Performance values achieved from each algorithm on the test records. Algorithms are referenced by the section where 

they were described in this paper. Acc, Pre and Rec stand for accuracy, precision and recall, respectively. All values are given in 

percent. 

algorithm section 4.1 section4.2 section 4.3 section 4.4 section 4.5 section 4.6 section 4.7 

 Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec 

food type                      

potato chip 74 92 81 63 79 87 52 72 87 54 80 71 64 88 74 71 91 79 65 81 86 

peanut 39 90 45 53 75 79 47 76 68 45 78 62 32 86 38 41 87 48 49 77 69 

walnut 36 92 40 60 81 79 52 80 70 50 82 65 31 86 37 42 89 48 57 82 72 

carrot 82 96 85 73 90 82 74 87 87 66 91 73 72 91 80 80 96 84 72 91 80 

apple 78 94 84 70 84 86 65 80 86 64 87 75 67 88 78 77 93 83 68 84 83 

chocolate 19 77 27 42 68 78 31 68 58 31 71 53 7 65 15 26 79 35 40 70 71 

overall 57 91 64 54 75 81 52 76 76 50 79 67 48 86 57 56 88 65 53 77 76 
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Figure 9. Overall performance values of the evaluated al-

gorithms. Algorithms are referenced by the section where 

they were described in this paper. Best performance is 

found towards the top-right corner (high precision and 

high recall). 

 

around the centre of a chew event label, it was counted as true 
positive (TP). Any further detection in this range was counted as 
false positive (FP), i.e. an insertion. Detections not in this range 
around the centre of a chew event label were treated as false posi-
tive as well. If there was no chew event detected in this range 
around the centre of a chew event label, an deletion (false nega-
tive, FN) was counted. Accuracy, precision and recall values were 
computed as follows: 

FNTP

FPTP

+

−
=Accuracy ,  (2) 

FPTP

TP

+
=Precision ,   (3) 

FNTP

TP

+
=Recall .  (4) 

5.2 Results 
Table 1 shows the performance values achieved from each algo-
rithm on all records of a specific type of food. Overall perform-
ance values are printed in Figure 9. Best performances in terms of 
precision and recall could be achieved by the maximum spectral 
band energy algorithm and the “BeatThis” algorithm. Best predic-
tion values were received by using the maximum sound energy 
algorithm and the “chew-like” signal detection algorithm. How-
ever, there are too many chew events not detected by these algo-
rithms. Best performances were achieved for the food types potato 
chip, carrot and apple. Applying the algorithms on records of 
peanuts, walnuts and chocolate resulted in lower precision and 
recall values compared to the other food types. This is due to a 
higher number of deletion of chew events in these records. 

6. DISCUSSION 
In their publication [2], Amft et al. achieved remarkable perform-
ances of 80 % recall at 60 % - 70 % precision. These results are 
computed on records of eight participants consuming three differ-
ent types of crispy food (potato chips, mixed lettuce and apple). 
We compared these results to the recognition performances of our 

algorithms on the food types potato chips, carrot (representing 
food with wet crispy texture like lettuce) and apple. It seems that 
most of the algorithms evaluated by us could outperform the re-
sults of Amft et al. However, Amft et al. took into account the 
borders of automatically assigned chew event labels in their 
evaluation routine. For we used discrete time marks for chew 
events assigned by the algorithms, a direct comparison to the re-
sults of Amft et al. is not possible. 

Evaluating records of the food types peanut, walnut and chocolate 
showed lower performances than the other types of food. This is 
seen in the texture properties of these food types. While potato 
chips, carrot and apple had crisp texture, peanut, walnut and 
chocolate were not as crispy as the former ones. The lack in crisp-
ness results in lower sound signal amplitudes in the records. 
Therefore, many chew events have not enough signal energy to 
exceed the threshold value and hence, are not detected by the 
algorithms. Different threshold values for food types of different 
texture may overcome this drawback. However, this investigation 
was not in the scope of this paper and will be considered in future 
research.  



Overall performance values of the maximum spectral band energy 
algorithm and the “BeatThis” algorithm rank best in precision and 
recall. Both algorithms are based on the analysis of different spec-
tral bands of the signal. They are based on the high energy content 
in all components of the spectrum of chew event sounds. Algo-
rithms based only on overall signal energy showed lower per-
formances. Additionally, the maximum spectral band energy algo-
rithm is less complex and needs less computing effort than the 
“BeatThis” algorithm. This algorithm is expected to be able of 
being integrated into wearable devices, which have limited re-
sources due to limited battery lifetime. Nishimura and Kuroda 
achieved error rates of 1.93 % on average using the “chew-like” 
signal detection algorithm and verification using models based on 
MFCC features. They recorded chewing sounds of 5 different 
types of food. This remarkable result could not be reproduced in 
our investigations. The difference is seen in the way Nishimura 
and Kuroda [6] collected the data. Their recording device used 
occlusion of the ear to prevent recording of environmental sounds. 
We avoided ear occlusion and hence, recorded background noise 
of the recording room. Future research will show if signal en-
hancement algorithms can reduce the noise level and improve the 
chew event detection performance. Shuzo et al. did not give per-
formance values of the counting of mastications by their algorithm 
[11].  

However, all evaluations were carried out only on records of six 
types of food. Other types of food may be detected better or less 
well than the selected ones. To investigate the detection perform-
ance on a wide variety of different food types, studies on records 
of participants eating more different types of food are planned. 
These studies will show whether similar food properties in differ-
ent types of food allow a reasonable grouping of the correspond-
ing sound models. Doing so could also help to estimate and clas-
sify the properties like density, viscosity, liquidity or other tex-
tural properties of the consumed food. Additionally, the records 
contain mainly clean food intake sounds without background 
noise or environmental signals. We plan to carry out the chew 
event detection on records of different environmental sounds re-
corded by our sensor system. For this investigation, a pre-
processing step containing food intake activity detection [7] or 
signal enhancement may reduce the influence of noisy recording 
conditions. This and optimizing the algorithms evaluated in this 
work will give a possibility for accurately detection of chew 
events in records of chewing sounds under free-living conditions. 
In future investigations, we want to create a really wireless sensor 
system with the ability of on-body data evaluation. For this pur-
pose, we need to consider low-power storage and signal process-
ing technologies for a battery-powered device. Furthermore, the 
usability of the device must be investigated in long-time studies 
under free-living conditions. 

7. CONCLUSION 
A timesaving and pervasive method to protocol human food in-
take behavior is required to fight the challenge of obesity. For 
automated analysis of human food intake patterns, detecting chew 
events plays an important role. This is not only for counting chew 
events but also for the estimation of the bite weight of consumed 
food. In this paper, we analyzed different algorithms for detection 
of chew events. Some of them were taken from literature of food 
intake analysis. Others came from beat detection in music. The 
algorithms were evaluated on a database recorded from fifty-one 
participants with our sensor system and annotated manually. 
Hence, a big variety of individual chewing styles was contained in 

the records. Especially algorithms, which detect signal energy 
maxima in different spectral bands, showed promising results. 
However, the algorithms need to be optimized to reduce the num-
ber of insertions and deletions. The algorithms will be carried out 
on recorded reference sounds in combination with food intake 
activity detection algorithms in future studies. This will show if 
chew event detection works in noisy environments. Overall, an 
important step to develop a robust method for food intake pattern 
analysis and bite weight estimation has been carried out. 
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