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Abstract — In this paper, we investigate the use of a transfer 

learning approach applied to a topology management framework 

in a 5G heterogeneous aerial-terrestrial broadband access 

network, to reduce energy consumption and deployment cost, 

and improve system capacity and QoS. We implement a cognitive 

engine at the base station (BS), with reinforcement learning 

algorithms applied at the link level for spectrum assignment, and 

at the network level for user association. A novel transfer 

learning algorithm is developed to transfer the expertise 

knowledge learnt from spectrum assignment to formulate a 

knowledgebase for user association. Furthermore, a QoS aware 

base station switching operation algorithm is proposed at a 

network controller, to dynamically switch BSs between sleep and 

active modes based on system QoS requirements. System 

simulations under practical configurations show that the transfer 

learning based user association algorithm achieves significant 

energy saving and QoS improvement with optimized load 

management in a spectrum sharing scenario. The BS switching 

operation algorithm effectively controls the delay and 

retransmissions when saving energy from sleep mode.  

Keywords – Transfer Learning, Energy Efficient 5G, User 

Association, Sleep Mode  

I. INTRODUCTION  

The future “fifth generation (5G)” wireless communication 
system has been proposed to provide a high capacity density 
broadband access service to mobile users. To achieve this, a 
dense deployment of light-weight small cell Base Stations 
(BSs) have been considered as an effective approach, which is 
able to enhance local capacity and improve Quality of Service 
(QoS) in the area with high user or traffic density [1]. In this 
context, small cells are usually deployed in hotspot areas under 
macrocells which provide coverage. A heterogeneous macro-
small cell architecture can largely improve spectrum efficiency 
and reduce the cost of network deployment and operation. 

Energy consumption in the Radio Access Network (RAN) 
is one of the key challenges in future 5G infrastructure, and 
there is an aim to save up to 90% of energy used per service 
provided compared with today [2]. Currently, the electricity 
consumption from wireless network accounts for around 2% of 
the global CO� emissions, and 75% of the energy comes from 
the BS side [3]. Moreover, in many situations two thirds of the 
energy in a BS is consumed by the power amplifiers and air 
conditioning to keep the BS working. In this context, the 
required dense deployment of small cell BSs may cause severe 
challenges in terms of energy consumption. This is despite the 
fact that small cells BSs have a reduced transmit power 
compared with macro cell deployments, and the energy to 
deliver the required transmit power is only a small proportion 
of the total energy consumption [4]. A study of power models 
of LTE eNBs by the FP7 EARTH project shows that in a 

Micro, Pico or Femto cell, the base band and RF components 
dominate the overall power consumption [5]. 

Traffic aware RAN management has been a hot research 
topic, which aims at reducing energy consumption from 
optimized network planning and deployment, or dynamic BS 
sleep mode operation. [6] investigates the impact of BS 
deployment on system throughput and power consumption. 
This is further improved in [7] which optimizes the location of 
BS considering spatial user traffic distribution. Sleep modes 
have been introduced in [3, 8] which save energy from traffic 
variation in the time domain, and a load aware BS switching 
operation algorithm has been proposed in [9] based on this 
paradigm. On the other hand, the effect of user association and 
load balancing on energy and delay has been studied in [10], 
and QoS aware BS switching operation and user association 
algorithms have been proposed in [11]. Most of these 
approaches are based on instant or short term monitoring of 
system parameters, i.e. traffic load, delay, and blocking 
probability. However, in practice the user behaviour and radio 
environment is highly dynamic, which causes excessive 
variations on these parameters. Under this effect, the system 
cannot evaluate the stability of the environment and make 
effective decisions on switching operation or user association, 
which in turn reduce QoS and energy efficiency. 

In this paper, we formulate BS switching operation and user 
association collectively as topology management, and 
introduce the cognitive radio technology to deal with this 
problem in a dynamic radio spectrum and user traffic 
environment. Future 5G networks are likely to introduce dense 
small cells and dynamic spectrum access (DSA) to enhance 
system capacity density. In this context, a user is likely to have 
multiple BSs to connect to, and these BSs are allowed to share 
a common spectrum band. Thus in the 5G network, user 
association and spectrum assignment will need to be highly 
flexible, and will also be subject to severe challenges, such as 
interference and traffic congestion. Conventional centralized or 
decentralized algorithms become complex and ineffective, and 
cannot satisfy the self-organization requirement in 5G 
architecture design. In order to make user association and 
spectrum assignment distributed and intelligent, we apply 
cognitive radio engines to these two domains. It allows the BSs 
to learn the radio environment and user behaviour, and make 
effective decisions. 

The target of using cognitive radio on user association and 
spectrum assignment is to achieve effective QoS and energy 
saving. From the radio resource management perspective, these 
two domains are affected by similar factors, such as 
interference and spectrum availability. In this context, the 
knowledge learnt from one domain can potentially be used on 
the other. Therefore, we can deal with this issue by employing 
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the conceptual idea of transfer learning (TL). Transfer learning 
was originally proposed by the computer science community 
[12] as a method of improving learning in the new target task 
by transferring knowledge from the related source tasks. It has 
been investigated in [13] for BS switching operation. However, 
a major issue of applying learning to switching operation is that 
the BSs can be switched on and off frequently at the initial 
stage of learning in order to train the knowledgebase using 
trial-and-error operation. This is inefficient in practice where 
the time required for a BS to switch on/off is significantly 
longer than a user arrival/departure. On the other hand, the 
amount of energy saving from switching operation is ultimately 
determined by system QoS and capacity, where user 
association and spectrum assignment have major impact. As a 
result, we apply transfer learning to these two highly related 
domains. More importantly, they are carried out for every data 
file transmission in any cellular system, meaning that the 
learning algorithm can obtain sufficiently large amount of trails 
without disrupting the radio system.    

The remainder of this paper is organized as follows. Section 
II describes the aerial-terrestrial broadband access network 
architecture. In section III, the QoS aware topology 
management approaches are investigated, followed by a 
transfer learning algorithm designed for spectrum assignment 
and user association. Section IV presents the system level 
simulation and discusses the results. We finally conclude this 
paper in Section V. 

II. SYSTEM MODEL AND ARCHITECTURE 

In this paper, we investigate a heterogeneous aerial-
terrestrial broadband access network proposed by the FP7 
ABSOLUTE project [14]. It is constructed from a new design 
of two types LTE eNBs: an Aerial eNB (AeNB) on a Low 
Altitude Platform (LAP) which provides coverage over a large 
area, and a portable Terrestrial eNB (TeNB) which enhances 
network capacity in hotspot areas. The system is designed to 
provide reliable LTE services in various scenarios with 
significantly different user requirements, such as disaster relief 
and temporary events. The AeNBs can provide high data rate 
links over wide rural and remote areas. A dense deployment of 
TeNBs can provide a high capacity density network in urban 
areas. The full system architecture including both access and 
satellite backhaul links is demonstrated in Fig. 1.  

 

Fig. 1. Aerial-Terrestrial Broadband Network Architecture 

In order to investigate and develop energy saving solutions 
that are generally applicable to a heterogeneous macro-small 
cell scenario, we hereby consider the LTE access network in 

this architecture. In practical networks eNBs will be 
interspaced at intervals in suitable locations.  Here, an example 
system model for the access network is demonstrated in Fig. 2, 
which simulates a 2.4 km� rectangular urban area.  

 

Fig. 2. Example Aerial-Terrestrial Broadband Access Network Model 

A total number of 2 AeNBs and 23 TeNBs are considered 
and modelled on a grid for convenience and ease of 
interpretation of results. There are 300 UEs randomly placed in 
the area which have access to both AeNBs and TeNBs. The 
entire system is allocated with 20 MHz spectrum, which is 
equally divided into 2 bands for AeNBs and TeNBs. In each 
band the eNBs share the entire 10 MHz spectrum.  

The AeNBs and TeNBs are light-weight equipment and 
each of which has 5W transmit power. The microcell energy 
model from the FP7 EARTH project [5] is used to evaluate 
their power consumption. The total power consumed by all 
eNBs in the network is 
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where ���	  denotes the RF output power at maximum load, �
 
is the linear model parameter to represent power consumption 
at zero RF output power and ��  is the slope of the load 
dependent power consumption.	�� is the power consumption at 
sleep mode. ���� is the number of transceiver chains. ���, ���, �
 and �� are time of eNBs in transmit, receive, idle and sleep 
modes. The parameters based on the 2010 state-of-art 
estimation are summarized in Table I. 

Table I. Energy Parameters 

Parameters Values 

Number of Transceiver Chains ���� 2 

Load dependent slope �� 2.6 

Maximum output power ���	 5 W 

Power consumption at sleep mode �� 39 W 

Power consumption without RF �
 56 W 

Using a data link level simulation in MATLAB, this paper 
examines the system level performance which could be 
obtained from the developed topology management algorithms. 
Data traffic is modelled on both downlinks and uplinks, with 
other traffic types likely to have similar relative performance. 
This is modelled using a file transfer traffic model, which 
simulates a succession of packets delivered in the network [15]. 
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The inter-arrival time and file size are modelled as long-tailed 
Pareto distribution.  

The transmission time of a file is affected by the link data 
rate, which is determined by the bandwidth efficiency at a 
given SINR level. The SINR at a receiver is given by 
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where Tx and Rx are the transceiver pair and ��� denotes other 
transmitters in the system that could potentially cause 
interference. P is the transmit power, which is allocated 
equality on each channel. n is the thermal noise. G is the 
antenna gain. PL is the path loss. The free space propagation 
model with 8dB log-normal shadowing is used on aerial links, 
based on the aerial platform study in [16]. The WINNER II C1 
urban microcell model is used on terrestrial links [17]. 

The truncated Shannon model [18] is used to determine the 
link data rate at a particular SINR level, which is a 
representative of bandwidth efficiency that can be achieved in 
practice given an adaptive modulation and coding codeset: 

 � = � 0��log�!1 + $%��log�!1 + $&'(%,  
$ < $&*+$&*+ ≤ $ ≤ $&'($ > $&'(

 (3) 

where W is the channel bandwidth, �  is the implementation 
loss of Shannon bound, $&*+  is the minimum SINR 
requirement of a communication link and $&'(  denotes the 
SINR that contributes to the maximum data rate.  

III. TRANSFER LEARNING BASED TOPOLOGY MANAGEMENT 

In this section, we study topology management in two 
aspects: user association and BS switching operation, with QoS 
aware algorithms developed. Transfer learning is introduced to 
improve performance end reduce complexity, by transferring 
statistical experience from spectrum assignment.  

A. User Association Algorithms 

BS user association has been specified in LTE as cell 
selection and reselection, to allow UEs to search for a suitable 
cell to camp on in idle or connected modes [19]. This is 
achieved through an evaluation of Reference Signal Received 
Power (RSRP) between eNBs and UEs. However, the best 
signal eNB may suffer from traffic congestion or interference. 
In LTE, this is controlled by inter-cell interference coordination 
(ICIC), which allows an overloaded eNBs to handover UEs to 
adjacent or overlaid cells. However, the traffic offloading 
capability of a cell is highly dynamic affected by interference 
in a spectrum sharing scenario. Moreover, ICIC may incur 
excessive information exchange in 5G dense small cell 
networks. In this paper, we extend the functionality of user 
association to a network level, which allows it to considers 
multiple impacts including signal, interference, bottleneck, 
traffic congestion, spectrum availability, etc. 

1) QoS aware User Association 

In order to make the user association process fully 
distributed, we propose a QoS aware user association approach. 
The LTE network allows a single cell to utilize the entire 
spectrum band, and the future 5G network is likely to enable 

full spectrum sharing between cells. In this context, inter-cell 
interference can cause a data file to be blocked initially or 
interrupted during transmission when SINR drops below the 
minimum level for communications. Such blocked and 
interrupted files will be scheduled for retransmission after a 
random back off time, which has dominating impact on system 
performance. Therefore, the probability of retransmissions 
effectively characterises the radio environment (interference, 
traffic congestion) and QoS performance (delay, throughput), 
which can be monitored by the eNB on a temporal basis. 

In the user association procedure, RSRP is used to inform 
the UE of a list of eNBs that can provide service. The active 
eNBs are ranked in a list .�  by the UE based on RSRP 
(denoted as $). For ∀0 ∈ .�, when ∃.�!0 + 1%: 
 	$!.�!0%% ≥ $!.�!0 + 1%%	&	∀$!.�!0%% ≥ $&*+  (4) 

The active eNB list .� contains AeNBs .5� and TeNBs .	�, 
which use equally divided spectrum where no interference 
exists between the two system. However, the capacity provided 
from AeNBs can be highly limited because they have lower 
spectrum reuse capability. The aerial links provide better signal 
power than the terrestrial links in most of the areas where UEs 
are far from TeNBs. In this context, the RSRP based user 
association algorithm can cause the AeNBs to be overloaded.  

In order to effectively control the traffic load on AeNBs 
and also the interference between TeNBs, the QoS aware user 
association algorithm allows the UEs to compare the 
retransmission probability �6  on the AeNB .5� with that on all 
other TeNBs .	� following their order in .�. In a list of TeNBs 
that have lower �6  than the AeNB, the one with highest RSRP 
can be selected. The same criterion applies to the AeNBs. For ∀0 ∈ .�, the selected TeNB .	�!7% or AeNB .5�!7% follows 
 

.	�!7%:	�6!.	�!7%% ≤ �6!.5�!0%%	&	$!.	�!7%% ≥ $!.	�!0%%.5�!7%:	�6!.5�!7%% ≤ �6!.	�!0%%	&	$!.5�!7%% ≥ $!.5�!0%%	  (5)  
In most cases, there are more TeNBs than AeNBs in the 

candidate list .� , which thus has higher probability to be 
selected. The traffic load in each cell is expected to match with 
its reuse capability.  

2) Transfer Learning based User Association  

Traffic and interference profile in a RAN may have a large 
amount of short term variation, which causes the interim QoS 
parameter to be highly unstable. In conventional QoS 
monitoring approaches, the system cannot evaluate the stability 
of the radio environment, and intelligently uses the 
instantaneous and historical information to stabilize or change 
the decisions. To overcome this issue, we introduce cognitive 
engines at the eNBs to enable intelligent user association with 
dynamic spectrum assignment using reinforcement learning. 

As described in the system model, two spectrum bands are 
shared by all AeNBs and TeNBs, respectively. We hereby 
apply a single state Q learning algorithm developed in our 
previous work [20] for cognitive spectrum assignment. 
Specifically, the eNBs are implemented with a knowledgebase 
that stores a set of channel-associated Q values. A learning 
iteration is triggered by a file arrival on either the uplink or 



downlink. The eNB makes decision on channel selection 
according to a defined decision making policy: 

 9: = ;!9% ∈ argmax?5 !�% (6) 

where the channel 9: with maximum Q value in the spectrum 
pool a is selected at iteration t.  A successfully selected channel 
is then assigned to the file for data transmission. In the event of 
a failure selection, this process will be carried out iteratively 
until no channel is available. A learning function is then used to 
update the Q array in the event a file is either delivered or 
rescheduled for transmission: 

 ?!�% = !1 − A%?!� − 1% + AB, A ∈ !0,1% (7) 

where λ is the learning rate controlling the convergence speed. 
R is the reward that reinforces the Q array based on the 
outcome of decision making: 

B: = D 1		!positive	reinforcement%:	Success	Iteration−1	!negative	reinforcement%:	Failure	Iteration (8) 

The algorithm has been validated in [20] where effective 
spectrum partitioning and QoS are delivered. 

Spectrum assignment and user association are two highly 
related domains with extensive similarities. They can be 
triggered in the same iteration when a data file arrives, affected 
by success or failure decisions, and determine the QoS.  We 
thus develop a transfer learning function that transfers the 
expert knowledge learnt from the source domain (spectrum 
assignment) to the target domain (user association). The Q 
values in spectrum assignment contain the information of 
success or failure file transmission on each channel. By 
aggregating a Q array appropriately, we can have a new Q 
value that provides the QoS information of the whole cell.  

In the spectrum assignment domain, the Q values in an 
array contain different amount of learnt information, depending 
on the number of iterations that their associated channels have 
been selected. However, this cannot be identified in the single 
state Q learning where the Q values fluctuate between the 
reward values. Therefore in transfer learning, we normalize the 
Q values and aggregate them proportionally based on their 
number of iterations, which is expected to differentiate the 
learnt information. By defining the number of iterations as N, a 
Q value in the user association domain, associated with eNB .!0%, can be calculated from: 
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On the arrival of a file, the UE collects ?RS from multiple 
eNBs with RSRP satisfying the SINR threshold, and makes 
decisions on eNB selection based on the newly formulated Q 
array. Q learning is then carried out for spectrum assignment. 
This algorithm uses one cognitive engine to solve two different 
learning tasks, which effectively reduce system complexity. 

In order to use this algorithm for load management 
purposes in the two layer system, we apply the same user 
association procedure in the QoS aware approach, by applying 
the Q array to the selection criteria. For ∀0 ∈ .�, the selected .	�!7% or .5�!7% is as follows 

.	�!7%:	?RS!.	�!7%% ≤ ?RS!.5�!0%%	&	$!.	�!7%% ≥ $!.	�!0%%.5�!7%:	?RS!.5�!7%% ≤ ?RS!.	�!0%%	&	$!.5�!7%% ≥ $!.5�!0%%	(10) 
The integrated user association and spectrum assignment 

process with transfer learning algorithm is shown below. By 
exploiting the performance in RRM layer, this algorithm has 
the potential to achieve effective load balancing, congestion 
control, interference management, and ultimately improves 
QoS without complex optimization algorithm.   

 
Algorithm 1. Transfer Learning based User Association and 

Spectrum Assignment 

 
When a new file arrives on uplink or downlink 
1. UE evaluates RSRP of adjacent eNBs, achieves a candidate 

eNB list .� based on (4) 
2. UE sends connection request to eNBs in .� 
3. eNB obtains ?T!U%VS  from knowledgebase, calculate ?T!U%RS  

based on transfer learning function (9) and send to UE 
4. UE generates a Q array based on Q values sent from all 

eNBs in .�, makes decisions of eNB selection based on (10) 
initialize  7 ← ∅, 0 ← 1 
while 7 = ∅, do 

if ?!.	�!0%% ≤ ?!.5�!Y%%, ∀Y ∈ .5� 
then 7 ← .	�!0%; 

else if ∄.	�!0 + 1% 
then 7 ← .5�!1%; 

end if 
end while 

5. UE associated with eNB s 
6. eNB s makes decisions on channel selection based on (6), 

assigns to UE for file transmission  
7. eNB s observes the outcome based on (7) 

8. eNB s updates Q array ?T!�%VS  based on (8) 

 

B. QoS aware BS Switching Operation  

Network virtualization has been proposed as a candidate 
technique in 5G to simplify the functional architecture. In this 
context, a virtualized network controller is introduced to 
monitor the QoS in a localized area and manage the network 
topology. The purpose of QoS aware BS switching approach is 
to maximize the sleep mode operation while still providing 
effective QoS within a tolerance range from system 
requirement configuration. To achieve this, the network 
controller regularly collects the retransmission probability from 
all the activated TeNBs �6!.	%, and calculates the system level �6 . A retransmission tolerance [�6\ , �6�]  is applied to switch 
TeNBs between active and sleep modes.  

In order to maximize the user traffic that active TeNBs can 
serve, the network controller monitors average loading level ^!. % of all active TeNBs, and makes decisions of switching on .	̀ a or off .	̀ bb  a TeNB according to the following criteria:  

  ∀0 ∈ .	: ^!.	̀ a% ≥ ^c.	!0%d	&	�6 > �6�^!.	̀ bb% ≤ ^c.	!0%d	&	�6 < �6\ (11) 



IV. SYSTEM SIMULATION AND PERFORMANCE EVALUATION 

In this section, a system level simulation of the example 
aerial-terrestrial broadband access network architecture is 
demonstrated to validate transfer learning and QoS aware user 
association and BS operation algorithms. The simulator is 
based on the system model described in Section II and key 
parameters listed in TABLE II. It has been studied in [21] that 
the learning rates higher than 0.05 has few system impacts. 

TABLE II. SIMULATION PARAMETERS 

Parameters Values 

Carrier Frequency 2.6 GHz 

Bandwidth  AeNB: 10 MHz; TeNB: 10 MHz 

Number of Channels AeNB: 20; TeNB: 20 

Transmit Power ��� AeNB/TeNB: 37 dBm; UE: 23 dBm 

Thermal Noise -174 dBm/Hz 

Traffic 
Model 

Inter-arrival time Pareto distribution: � = 4 
File size 100 kB 

Antenna profile Omni-directional 

Height  AeNB: 100 m; TeNB: 25 m; UE: 1.5 m 

QoS tolerance  Retransmission Probability:	[5%, 10%]	 
Learning rate 0.1 

Effective SINR [$&*+, $&'(] [1.8, 21] 

The percentage of eNBs in sleep mode when applying BS 
switching operation (SO) is demonstrated in Fig. 3. A 
comparison between the transfer learning (TL), QoS and RSRP 
based user association algorithms (UA) shows that the load 
management performance has large impact on network scale 
and energy efficiency under the same switching criteria. 

 
Fig. 3. Percentage of Base Stations in Sleep Mode 

It can be observed that in low traffic levels, around 80% of 
the eNBs are switched off, namely the 2 AeNBs can effectively 
support the network traffic. The conventional RSRP algorithm 
requires significantly more TeNBs to serve the network as user 
traffic increases, reaching full deployment at 85Mb/s. On the 
other hand, the QoS algorithm largely reduces the scale of the 
network by up to 40%, which is achieved through effective 
load management between AeNBs and TeNBs. The transfer 
learning algorithm is demonstrated to further reduce the 
number of active eNBs, by up to 30% more than the QoS 
algorithm and 60% more than the RSRP algorithm. It can be 
concluded from here that the historical learnt knowledge from 
spectrum assignment can effectively improve decision making 
on user association compared to interim QoS information.  

The average power consumption per eNB is demonstrated 
in Fig. 4, which is evaluated through the energy model 
presented in Section II. It is demonstrated that the QoS aware 
BS switching operation algorithm significantly reduce the 
power consumption of by up to 30W at low traffic levels. In 
user association, the QoS algorithm achieves 15W more energy 
saving than the RSRP algorithm at 80 Mb/s traffic, and the 
transfer learning algorithm further saves 15W at 95 Mb/s. 
Compared with Fig. 3 we can conclude that significant energy 
savings can be achieved by using effective sleep mode 
operation on BSs. Furthermore, it can be seen from the same 
figure that without sleep mode operation, the transfer learning 
and QoS based user association algorithm has slightly higher 
power consumption than the and RSRP algorithm. This is 
because some UEs are associated with long distance eNBs, 
which increases the average transmission power consumption. 
However, this can be effectively compensated from sleep mode 
energy saving as shown in the figure.  

 
Fig. 4. Average Power Consumption per Base Station 

Fig. 5 presents the probability of retransmissions, which is 
used as a reference QoS parameter for user association and 
switching operation. Firstly, by comparing the performance of 
three user association algorithms in the full network scenario, 
we can see that the QoS and transfer learning algorithms 
largely reduce the retransmission probability compared to the 
RSRP algorithm. Such QoS improvement effectively helps to 
reduce energy in BS switching operation. Moreover, transfer 
learning further reduces retransmission by 5% at high traffic 
levels, but with significantly greater energy savings achieved 
compared with the gain from QoS algorithm. 

 

Fig. 5. Probability of Retransmissions 

40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

User Traffic (Mb/s)

P
re
d
e
n
ta
g
e
 o
f 
S
le
e
p
 M

o
d
e

 

 

TL UA, SO

QoS UA, SO

RSRP UA, SO

40 50 60 70 80 90 100
85

90

95

100

105

110

115

120

125

User Traffic (Mb/s)

P
o
w
e
r 
C
o
n
s
u
m
p
ti
o
n
 p
e
r 
B
a
s
e
 S
ta
ti
o
n
 (
w
)

 

 

TL UA, SO

QoS UA, SO

RSRP UA, SO

TL UA

QoS UA

RSRP UA

40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

User Traffic (Mb/s)

P
ro
b
a
b
ili
ty
 o
f 
R
e
tr
a
n
s
m
is
s
io
n
s

 

 

TL UA

QoS UA

RSRP UA

TL UA, SO

QoS UA, SO

RSRP UA, SO



In the same figure we can see that, the BS switching 
operation algorithm achieves a system retransmission 
probability in the range of [5%, 10%] on all user association 
algorithms before all eNBs are activated, which satisfies the 
predefined QoS configuration from system requirement in 
TABLE II. It can be concluded that the QoS aware switching 
algorithm effectively controls the QoS degradation affected by 
reduced number of BSs, with expected QoS provided. 

The system delay performance is demonstrated in Fig. 6. 
Similarly the delay level of BS switching operation algorithms 
falls within [0.1s, 0.2s] over a wide range of traffic levels by 
switching off TeNBs. At low traffic levels the delay is slightly 
higher because of the low data rate on the aerial link. The QoS 
aware and transfer learning based use association algorithms 
largely improve the delay performance at high traffic levels by 
more effective load management. Further delay reduction is 
also achieved by transfer learning at high traffic levels while 
providing significant energy saving. 

 
Fig. 6. System Delay 

V. CONCLUSION 

This paper studied the use of transfer learning to deal with 
base station user association, using a QoS aware base station 
switching operation approach to reduce energy consumption 
and improve QoS in an aerial-terrestrial broadband access 
network. A cognitive engine has been designed to provide 
intelligent self-organized spectrum assignment and user 
association at eNB, using a distributed Q learning algorithm. A 
transfer learning algorithm has been developed which 
effectively utilizes historically learnt knowledge from spectrum 
assignment to make decisions on user association. Furthermore, 
a tolerance range of system QoS has been used to dynamically 
switch eNBs between active and sleep modes to save energy, 
under the support of load management from user association.  

System level simulations from practical configurations 
demonstrate that the transfer learning algorithm places 30% to 
60% more TeNBs into sleep mode with significant power 
savings compared to QoS and signal based algorithms, 
respectively. Significant QoS improvement is achieved by 
effective load management from the QoS aware and transfer 
learning based user association. Furthermore, the base station 
switching operation algorithm reduces the energy consumption 
considerably while providing adequate QoS.  
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