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Abstract—This paper considers coexisting wireless networks of collaboration between multiple coexisting operatorarsig

sharing radio resources with contradicting performance olec-

tives. A multi-objective optimization framework is proposed to

investigate the fundamental trade-off between the perforrance
of the coexisting networks. For a given set of radio resource
the optimal achievable performances of the coexisting netwvks

are characterize by a multi-dimensional Pareto set. If the pr-

formance objectives of some of coexisting networks are mdikd

or adjusted, the proposed framework provides the maximum
corresponding achievable variation to the performance oflte rest
of coexisting networks. The quantitative information provided by

the proposed framework facilitates joint design and optimeation

of coexisting networks and can be further exploited for reglating

the collaborations among coexisting networks. We further kow

that the corresponding Pareto set can be in fact engineeredyb
adjusting the technologies adopted in each of these netwaskWe
then apply the proposed framework to two coexisting cellula

networks. An improvement of 25% on the achievable rate is
observed in return of a slightly higher interference tolerance at
one of the coexisting networks.

I. INTRODUCTION

the same radio resources. We further provide examples ko hig
light how this framework can be used to establish a thearktic
ground for collaboration between coexisting networks.

The Pareto set, also referred to as Pareto frontier, charac-
terises the achievable performance of the multiple systems
based on the available shared radio resources, the resource
constraints in each of the coexisting networks, and their co
responding quality-of-service requirements. We furtheovs
that the Pareto frontier can be engineered by adjusting the
technologies adopted in each of these networks. This can
facilitate joint design of the multiple networks to maximiz
the utilization of the shared radio resources.

Multi objective optimization is utilized in different engger-
ing applications, see, e.g., [4] and references thereinPMO
is adopted [5] as a tool for designing routing algorithms in
ad-hoc networks. An applications of MOP in radio resource
scheduling in cellular networks is also presented in [6] iehe
MOP is used to develop a distributed resource allocation

Coexisting wireless networks scenario provides many opeheme. Further in [7] MOP is utilized in beamforming design
portunities for improving spectrum usage for the fifth gerfor secure communications in a wireless system. In [8] MOP
eration (5G) wireless communication networks [1]. In thapproach is used for formulation of the optimal link adaptat

related literature however, there is no concise analytioal

problem of orthogonal frequency division multiplexing in a

for investigating the performance trade-offs in such aeyst cognitive radio system, where secondary users can oppsrtun
In this paper, we formulate the function of a system compgisi tically access the spectrum of primary users. MOP model]in [8

coexisting networks as a multi-objective optimizationigem

is developed based on joint maximizing the cognitive system

(MOP) to investigate its fundamental performance trade-ofthroughput and minimizing its transmit power. As it is seen,
The corresponding MOP includes a set of contradicting ebjeia the related literature MOP has been used as an algorithmic
tives such as maximizing achievable throughput, miningzinool which facilitates developing new algorithms for siagl

delay and minimizing outage probability. Since achievingts

networks. To the best of our knowledge, this paper for thé firs

objectives in any of the coexisting wireless networks regjuiconsiders MOP as a modeling too for coexisting networks to
allocating a larger portion of the shared radio resourceaayestigate their fundamental performance trade-offs.
in principle it compromises the performance of the other To show the application of the proposed framework here

coexisting networks.

we also present cognitive beamforming as a case study in

Multi objective optimization theory introduces techniguewhich two systems, primary and cognitive (also referredso a

that simultaneously optimize multiple yet contradictirgjex-

secondary) share the same spectrum. The secondary system is

tive functions [2], [3]. For MOP, instead of a single solutjo facilitated by multiple antenna and capable of beamforming

there exists a set of optimal solutions characterizePameto

We then formulate the function of this spectrum sharing

optimality that simultaneously optimizes all contradicting obsystem using MOP with a set of contradicting objectives. One
jectives [3]. Here, we show that the corresponding Paretto sdbjective is to minimize the interference due cognitiveebas

for coexisting wireless network provides essential quatinie

station (BS) transmission on the primary system receivers.

information which can be used in design and managemdwaximizing the intended signal received at all cognitivenss
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are also considered as performance objectives in thisraystan interface technology with lower interference tolerahas
Using the analytical tools provided by the multi objectivéoeen adopted.
optimization theory, we then derive an equivalent standardAn MOP is further characterized by its feasible set, objec-
semi-definite programming form with adjustable parametetige function vectorf, and the objective space. The objective
that facilitate system design. The obtained solution set prfunction vectorsy = f (x), i.e.,x € X', are mapped froniR?
vides the best achievable throughput (characterized by tioean ordered space, e(@®?, <), where comparisons are made
maximum intended signal power at each cognitive user) fasing the order relation. This mapping is called the modegd,ma
a given level of interference tolerance in the primary syste 8. An MOP is completely described by
It also evaluates the maximum achievable gain on the system
throughput if the primary system is able to make compromises (X, £,R?) /6/ (R”, <),
and increase its interference tolerance, such framewanldcowhich includes feasible set, objective function vectojeotive
be a base for negotiations between the operators. Noterthagpace, model map and order space. An MOP class is the set
practice reaching to the optimal points might be hard evey all MOPs with the same model map and order space which
impossible. Nevertheless it provides the best each netwaskdenoted by /0/ (R?, <).
can achieve out of the available resources in a given set- ) o
ting. Simulation results show that a possible improvemdnt 6 Selution Set and Optimality
10bits/s/channel-use in the secondary system total thymutg  Here we consider Pareto optimality for a class of MOPs:
is achievable in return of a slightly higher interferenceetiih- o/i.d./ (R?, %), where the model map is an identical mapping
old in the primary system. (i.d.), i.e.,0(y) =y.
The organization of the paper is as the following. In Section Consider the following MOP of the clasg/i.d./ (R?, ):
I, the preliminary definitions for multi objective optimation min  (fi (%), o (%))
as well as the system model are presented. Based on a practica x€X ! P ' )
example we further discuss engineering of Pareto frontier ji gt ) — f (X) be the image of the feasible s&t under the

Section 1ll . Then in Section IV we present a case Stu%jective function mapping(.).
followed by simulation results. The paper is concluded in pefinition Pareto Optimality A feasible solutionk € X
Section V. is calledPareto optimal if there is no othex € X such that

Notations Tr(-): trace operator;Y = 0: a positive ¢ (x) < f (). If % is Pareto optimal thefi (X) is said to be a

semi definite matri1>5;<: element-wise inequality(y,-)gi1 © non-dominated point. !, x? € X andf (x!) < f (x2), then
[y1 y2 - yui] ; E(z): expected value of random vari-it is said thatx! dominatesx? andf (x') dominatesf (x?).
ablex. The set of all Pareto optimal solutions, i.e., Pareto optsag
X € X is represented bys. Non-dominated set, is denoted
Il. SYSTEM MODEL AND PRELIMINARIES by Y, where all non-dominated poinfs= f (X) are in).

We consider a system consisting Bf objective functions Pareto optimal set is also referred to lareto Frontier.
indexed by p, f,(x), where x is the resource allocationPareto optimality allows no improvement in any objective
vector/matrix. Examples of the objective functigip(x) in- function is the set without trade-offs from the others.
clude maximum delay, outage probability, or a combinatibn o m
different key performance indicators in the coexistingvogks
such as a utility function.

The function of this system is modelled as a multi objecti
optimization problem (MOP) as the following:

PERFORMANCE TRADE-OFFS. PARETO FRONTIER

To have a better understanding, here we consider a sys-
em including two coexisting networks. Two contradicting
objectives are: maximizing the throughput in the first netwo
(f1 (x) = —1 x R), and minimizing the outage probability
min f(x) =min (f; (x), -, fp (x)), (1) in the second networkf¢ (x) = Poutage). Outage occurs if
xex xex the received interference due to the second network activit
where X andf (x) € RP are the resource allocation spaces higher than a given interference threshalg,. In such a
and the objective space, respectively. In fatctcharacterise system the Pareto frontier forms a curve as illustrateddn Ei
the solution space based on the available resources in thés it is seen for a given outage probabili€);, the maxi-
networks, the quality-of-service requirement for the rekv mum theoretical achievable throughput for the second syste
users, as well as the adopted air interface technology ih eds R;. This provides a benchmark for comparison of the actual
of the coexisting network. performance with that of the maximum achievable. Fig. 1 also
For instance for a network with energy constraint providndicates that the outage probability in the first system lwan
ing bit-error-rate sensitive services, adopting an aierfisice traded in return of an increase in the throughput of the sgcon
technology with higher tolerance to interference (e.g, &n aystem: assume that first system is able to be more flexible on
interface including sophisticated channel coding tech@jg the outage probability),, the second system is then able to
results in a larger solution set comparing to the case whexehieve the maximum rate &, whereR; > R;. An instance



higher spectral efficiency.

IV. CASE STuDY: COGNITIVE BEAMFORMING DESIGN

In this section we apply the above MOP framework to model
the performance of a spectrum sharing system. In this system
primary and secondary systems are coexisted cellularragste
both access a shared spectrum. The secondary system is also
cellular and utilizes underlay spectrum access [10]. In the
secondary network, a cognitive base station (BS) supports
secondary users sharing the uplink spectrum of the primary
network, subject to the received interference thresholihet
primary receivers.

- The cognitive BS is equipped with/ antenna elements and
i;"g{ﬁtr‘;"cdﬁg : capable of beamforming. For simplicity, we also assumelsing

- antenna setting at the secondary users (SUs) and the primary
BS. The received signal at the SUi € {1,--- ,U}, is

(eHysdq) y

U
Yi = hg_{LWLSZ + Z hginSj + Ny, 3)
Pouage J=1,j#1i

Fig. 1. Anillustration of the Pareto frontier for two coetkig) system with Wherehg’i eC*Mis _the channel between the cognitive BS
F1(x) = —1 x R, and f2 (x) = Poutage in two cases of with and without and SUi, w; € CM*1 is the beamforming vector for the SU
extra channel coding. 1, s; is the data symbol to be sent to the Slandn; is a
zero mean circularly symmetric complex Gaussian noise with
variances?, i.e., n; ~ CN(0,0?).
of increasing outage tolerance is where a the first netwosk ha The primary network imposed interference at the SUs is
an interference limited air interface (e.g., 3G CDMA-basegpnsidered as an additive background noise. For brevity the
air interface) and shares the same spectrum with the secandrage transmitted symbol energy to $lat the cognitive
network. If the first network experiences a lower traffic loadBS is assumed to be unity. L&,; = E (h,;h;) and
thus for a given receiver performance, it is theoreticalfiedo VW = {w1, w,--- , wy} be the set of candidate beamforming
tolerate a higher level of interference from the second agktw vectors in the cognitive BS for all SUs. The SINR at $i$
e., I;,, andl;, > I,;. Tolerating a largef;, can be translated
to a higher outage probability witfy,. 9 (W) = — )
H 2
In the above example, a higher level of interference from the Zj:l,j;ﬁi wi' R iwj +0;
coexisting network can be also tolerated in the first network LetR, — E (hphf), wherehf  C1%M is the channel be-

if it has an improved outage probability requirements. For P . .
instance, in [9] we design a sophisticated coding techniqﬂ’éeen the cognitive BS and the primary BS. Total interfeeenc

. . . U

to improve the robustness of the first system to the receiv%the primary BS induced by cognitive BS3S,_, w'R,w;.
interference. Adopting such a coding scheme in the first .
network enables the second system to increase its throt19h§‘u MOP Formulation
Using new coding scheme in the first network accordingly Here the objective is to maximize the intended signal power
modifies the Parto frontier of the system as shown in Fig. 1. faceived at each SWdefined as
this case for given outage probability; a higher throughput =
of R/ is achieved in the second network. The Pareto frontier fi(W) = —wi Ry iwi,
It?]rltz)lt?ér};)filjtrtizetrhzrc;\gggs;hlfet\m/v?));ll;n]g rT]g;gé%viale[:?;'qwe%vehile minimizing the interference imposed at the primary, BS
can also evaluate the lowest possible outage probabilitiygn U
first network, for a given throughput in the second network. foW) = waRpwi.

Maodification of the Pareto frontier using channel coding in i=1

the above example is an instance of engineering the Pargl intended signal power received is directly lined to the

frontier by using new combination of physical layer teclmol achievable throughput. Therefore, the objective vector is
gies. Such modifications based on the tools provided by MOP

model can help us to manage the compromises and achieve a ftONV)=(foOV), 1 OWV),--, fu (WV)).

H
W; Rs,iwi
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As it is seen the above formulation is in fact an MOP. Now, Problem O2:

we define the decision space
in ATr{R,» W, AiRs ;W
s | Z ) (Z )

i

U
D4 {W | (v)ity < (9 V)L, > wilwi < Po, st <{Wz} >0

- - ZTr (W) >0, (8)
=1

U

> wiR,w; < Im}, (5)

i=1 v
ZWZ-HRPWZ' < In,
i=1

where; is the required SINR level at SL) P, is the cognitive W, = 0, Vi,
BS maximum transmit power, and, is the interference -
threshold at the primary BS. We propose the following MORhere {W;} = {W,--- Wy} is the set of beamforming

class(D, f,RV"!) /id./ (RVT!, x): matrices and
U
_ ki ({W;}) = Tr (Rs;W)) Tr (R W;) — vio?.
%ﬂé% (f() (W> ) fl (W) [ 7fU (W)) . (6) ngj:?gl

We then prove tha©1 and O2 are equivalent. The proof is
not provided here due to space limitation.

The intended signal received power at the secondary re- The optimization problem ir©2 is a convex semi-definite
ceiver is an indication of the maximum achievable rate. IBrogrammmg [12], thus can be solved by the SeDuMi solver,
practice for a given interference threshold at the primary r rovided by CVX optimization package [12], to obtain the
ceiver the solution set for (6) provides the maximum intehd et of optimal beamforming matric@’*. Finally, the corre-
received signal power, i.e., the maximum achievable rate. sponding optimal solution to (7) is? = \/efv?, ' where ex

Using the tools provided by multi objective optimizatiorandv; are the eigenvalue and the correspéndlng elgenvector
theory, we then find the solutions to (6). We adopt weightest the rank-one matrisW?, respectively [13].
sum method [3] to obtain the solutions. Using this method
(6) is reduced to a single objective problem as the following. Smulation Results

hon-xonvex optimization: We simulate the scenario with a cognitive BS serving 2 SUSs,

i.e., U = 2. The SUs are located at30° and50° while the
Problem O1: primary BS is located at0° relative to the array broadside
of the cognitive BS. The distances from the SUs and primary
BS to the cognitive BS are 0.5km and 1km, respectively. The
channel covariance matric&s ; andR, are obtained using

U
min )\() E W?R;DWZ — E )\iW,fIRS’Z‘Wi,
w

i=1

€S, Rs,i = Bs,iR (es,i; Ua) and Rp = BpR (91); Ua) ) (9)
s. b 7 e H“ 5 > v, Vi, respectively, where3,; or 3, represents the channel gain

Zj:l,j;éi wi R, w; +o; 7 coefficient, 6, ; or 6, is the angle of departureg, is the

u (7) standard deviation of the angular spread, and the)th entry

> wlw; < P, of R (6, 0,) is, [13]:

=1

U ¢ 252 [(a—p)sind] ,—2[ 57« {(a—p)cog}]” (10)
ZWZHRpWi < Im.

i=1 In (9) Bs; or B, captures the distance-dependent path-loss

according t34.5+35log;, (1), wherel is the distance in meters
with [ > 35m, a log-normal shadow fading with 8dB standard
Here, we define beamforming matW; = w,w, where deviation and a Rayleigh component for the multi-path fgdin
W, = 0 and W; is a rank-one matrix. A matrix is rank onechannel. In (10)g, = 2° and the antenna spacing at the BS
if its largest number of linearly independent columns/rasvs A = A\/2, where X is the carrier wavelength. The subcarrier
one. Then, by rearranging the constraints, usif§Yx = bandwidth, the noise power spectral density, the noisedigtir
Tr (YxxH), and dropping the rank-one condition 8, (7) each user receiver and antenna gain are assumed to be 15kHz,
is converted to: -174dBm/Hz, 5dB and 15dBi, respectively.
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Fig. 2. Total SU throughput with different numbers of anterelements at Fig. 3. Radiation pattern at the cognitive BS with 6 and 1@@an& elements.
secondary BSss. various interference thresholds, i.é&x, at the primary BS. In (8), Im = —40dBm, Py = 40dBm, Ao = A1 = X2 = 1/3, and
In (8), Pn= 40dBm, )\0 = )\1 = )\2 = 1/3, andyl =2 = 10dB. Y1 =772 = 10dB.

Fig. 2 illustrates an approximation of the Pareto frontiein each of these networks to fit the design consideration in a
where the total SU throughput with different numbers of arcoexisting environment. The proposed framework in thisspap
tenna elements at the cognitive BS, versus various intéer provides tools which facilitate joint design and optimiratof
thresholds, i.e.ln, at the primary BS. In other words, forcoexisting networks to maximize the utilization of the sthr
each givenl,,, Fig. 2 gives the maximum achievable systemadio resources. We the applied the proposed frameworleto th
throughput. It is also seen that in this case one way to erginease of two coexisting cellular systems. It was shown thinoug
the Pareto frontier is modifying the number of antennas. Feimulation that at the interference threshold of -30dBm by
larger number of antennas, the total SU throughput beconesgyineering the Pareto frontier through increasing artenn
constant irrespective of interference threshold level e telements to 16, an improvement larger than 7 bits/s/channel
primary BS. This is because the beamformer has a bettare is achieved in the system throughput.
resolution at higher number of antenna elements, i.e., see
Fig. 3. As it is seen in Fig. 2 at the interference threshold ACKNOWLEDGMENT

of -30dBm by engineering the Pareto frontier through in- _ . .
creasing antenna elements to 16, an improvement of almosf NiS Work was partly supported by the UK Engineering
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the interference threshold from -23dBm to -20dBm results

25% improvement in the system achievable rate.
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