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ABSTRACT
Our group has been conducting a series of experiments on
various recently available high-speed transport protocols over
long-distance, 10-gigabit-class, international testbed networks.
The study reported here focuses on the scenario of mul-
tiple coexisting flows along an end-to-end 10-Gbps path,
where TCP-based transport protocols are used. The results
show that two coexisting high-speed flows cannot share net-
work resources efficiently. For example, for some protocols,
competition between two flows prevents the sum of their
throughputs from fully utilizing available bandwidth, espe-
cially when flows have the same RTT, and causes consid-
erable imbalance in the time-averaged throughput between
two flows, especially when there are different RTTs.

Keywords
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1. INTRODUCTION
A variety of high-speed transport protocols have been pro-

posed in response to emerging requirements for extremely
high throughput data transfer across fast long-distance net-
works in distributed data processing and data sharing envi-
ronments such as Grid computing. The bandwidth of global
networks like the Internet, however, has been increasing in
both access and core networks. In Japan, for example, rea-
sonably priced 1-Gbps broadband access (FTTH) services
have recently become available, and 10-Gbps services might
be available soon. In addition, recent off-the-shelf high-
end computers combined with 10-Gbps NIC can in practice
archive more than 5 Gbps throughput. Thus, Grid users will
probably want high-speed transport protocols on an end-to-
end long distance path to transfer a larger amount of data.

Various high-speed transport protocols have already been
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proposed, and research groups have been conducting a va-
riety of experiments focusing on these protocols for high-
throughput data transfer in fast long-distance networks us-
ing simulators, emulators, and testbed networks. Among
them, high-speed testbed networks have relatively realis-
tic characteristics (production-level router mechanisms and
configurations, physical distance, etc.) compared with em-
ulator or simulator networks, while they allow us to inves-
tigate the internal status and/or to control competing traf-
fic to some extent. For example, the Hamilton Institute
group made a common benchmarking environment using
dummynet (network emulator), where the different proto-
cols were implemented with common network stacks and
evaluated in terms of a common performance measure[10][3].
The BIC Lab team tried to realistically evaluate perfor-
mance by creating an emulator-based network environment
in which high-speed transport protocol flows are accompa-
nied by well-designed background traffic[2][12]. For bench-
marking in 10-gigabit-class environments, the Caltech group
is constructing the Wan-in-Lab (WiL), which is a 2400-km
long-haul fiber optic testbed, in a single laboratory as an
open benchmark testing platform for the research commu-
nity to evaluate different protocols in a more realistic envi-
ronment[14].

We also started investigating several promising high-speed
transport protocols through experiments using the Japan
Gigabit Network II (JGNII), which is an open 10-Gbps-class
Ethernet-based network between the USA and Japan. In our
previous studies [7][8], we reported a series of experiments
with 1-Gbps end equipment (sender and receiver hosts) and
a 1-Gbps bottleneck link. We did this by examining what
happened in several typical scenarios, such as when there are
a change of network routes, coexisting short-lived TCP flows
(e.g., web browsing flows), and coexisting constant bit-rate
UDP flows (e.g., video stream flows). We also developed a
TCP-related monitoring tool for internally monitoring ker-
nels in these experiments[9].

Despite these evaluations of high-speed transport proto-
cols, there has been little detailed reporting on the problems
faced by high-speed flows competing on a 10-Gbps path even
though such long distance global networks must be shared
by various users and applications. Thus, in this study we
experimentally investigated the actual behaviors of a few
high-speed flows competing on an end-to-end 10-Gbps-class
network. We focused in particular on how to fully exploit the
10-Gbps bandwidth and how to stably balance those flows
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in their time-average throughputs, both of which issues are
of practical importance for Grid computing.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the experimental environments. Section 3
presents the experimental results, and Section 4 makes some
closing remarks.

2. EXPERIMENTAL SETUP
The network configurations used in our experiments are

shown in Fig. 1. In Case (a), Flows 1 and 2 were estab-
lished between Kitakyushu, Japan and Chicago, USA. Each
flow had a measured round trip time (RTT) of 180 ms. In
Case (b), Flow 1 was established between Kitakyushu and
Chicago, while Flow 2 was established between Kitakyushu
and Tokyo (measured RTT = 18 ms). We considered several
coexisting flow scenarios: flows from a single sender to mul-
tiple clients (i.e., sender machine bottleneck), flows from dif-
ferent senders to multiple clients (i.e., network bottleneck),
and single or multiple flows between a server/client pair.
We also examined the impact of socket buffer sizes and of
a TCP offload engine. Sender (server) and receiver (client)
equipment specifications are listed in Table 1.
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Figure 1: Network configurations. Top: (a) data
transfer between Kitakyushu and Chicago; bottom:
(b) data transfer between Kitakyushu-Tokyo and
Kitakyushu-Chicago

We used Linux (SUSE Linux kernel 2.6.16) as the sender-
side OS in the experiments. Kernel 2.6.16 supports plug-
gable congestion control algorithms by setting the sysctl
variables. In this study, we focused on Standard TCP (RENO),
HSTCP, Scalable TCP, HTCP, CUBIC, and Compound TCP.
Patch code for Compound TCP is provided in [11]. Other
targeted protocols were originally implemented in kernel

2.6.16.
We tuned various parameters (e.g., Linux txqueuelen and

system memory) based on technical information [1][13][15]
[6][4], as shown in Fig. 2.

The performance of high-speed transport protocol is sig-
nificantly affected by the buffer size of the bottleneck link
(router), which has several internal output buffers with a
complex architecture. Therefore, we present experimental
results obtained when the buffer size at the ingress edge
router (Hitachi GS 4000) was configured to be as large as
possible. We also monitored the packet loss counter at the
edge router during data transfer. Note that the JGNII paths
used in our experiment share network resources with other
constant or temporary traffic on the JGNII. To prevent such
unexpected and uncontrollable concurrent background traf-
fic from influencing our results, we conducted several trials
(at least three times) for each experiment with the same con-
figuration, and then discarded irregular cases. Unless oth-
erwise noted, the results shown are for cases with typical or
relatively good throughput performance, which is expected
when the influence of background traffic is negligibly weak.

sysctl -w net.ipv4.route.flush=1

### for large window

sysctl -w net.core.rmem_max=268435456

sysctl -w net.core.wmem_max=268435456

sysctl -w net.core.rmem_default=65536

sysctl -w net.core.wmem_default=65536

sysctl -w net.ipv4.tcp_rmem="4096 268435456 268435456"

sysctl -w net.ipv4.tcp_wmem="4096 268435456 268435456"

sysctl -w net.ipv4.tcp_mem="268435456 268435456 268435456"

sysctl -w net.ipv4.tcp_no_metrics_save=1

sysctl -w net.core.netdev_max_backlog=300000

sysctl -w net.ipv4.tcp_tw_recycle=0

sysctl -w net.ipv4.tcp_tw_reuse=0

sysctl -w net.ipv4.tcp_sack=1

sysctl -w net.ipv4.tcp_timestamps=1

ifconfig eth1 mtu 9000

ifconfig eth1 txqueuelen 10000

### for neterion+opteron

setpci -d 17d5:5832 62=1d

sysctl -w net.ipv4.tcp_congestion_control=(reno, highspeed, bic,

cubic, htcp, compound)

Figure 2: Parameter tuning for TCP flows.

3. EXPERIMENTAL RESULTS
We show the throughput characteristics of a single flow

using each high-speed transport protocol in subsection 3.1
and those of multiple coexisting flows in subsections 3.2–
3.5. TCP throughputs are illustrated as a time series of
one-second averaged goodputs measured by the receiver-side
iperf[5] command. We also examine the impact of changing
the socket buffer sizes (at both the sender and the receiver),
which can be set by the iperf command “-w”. Note that, in
this paper, the socket buffer size is indicated by using “sock
buf”. Moreover, for Figs. 4, 7, and 9, we compare coexisting
flows in the TCP throughput averaged over periods in which
there are multiple coexisting flows. The throughput values
are also averaged over several trials.



Table 1: Equipment specifications
End host in Chicago End host in Tokyo End host in Kitakyushu

OS Debian Linux Debian Linux SUSE Linux
CPU Opteron 2.4 GHz Opteron 2.4GHz Opteron 2.8 GHz

Memory 1 GByte 1 GBytes 4 GBytes
PCI bus 64 bits

NIC Neterion Xframe II (2.0.18.8693)

3.1 Throughput characteristics of a single flow
In our laboratory, we have two kinds of server with PCI-

133 buses: HP-xw8200 and HP-xw9300. Each has one PCI-
X 133 slot and two PCI-X 100 slots. We also have two
kinds of 10-Gbps network interface card: Intel PRO/10GbE
and Neterion Xframe II. Table 2 summarizes the maximum
observed throughput of a single TCP flow (Flow 1) in Fig. 1.

Table 2: Maximum observed throughput of a single
flow.

End host PCI-X NIC TSO Throughput [Gbps]

xw-8200
133 Xframe II off 5.2

PRO/10GbE off 4.8

xw-9300

133 Xframe II on 6.5
PRO/10GbE on 6.1

100 Xframe II on 5.8
off 5.4

PRO/10GbE on 5.0

Using xw-8200 as a sender server at Kitakyushu, we ob-
served that the maximum throughput of a single flow was 5.2
Gbps when the network interface card (NIC) was installed
in the PCI-X 133 slot. This limitation must be due to the
type of memory implemented in the xw-8200. We observed
the highest throughput of a single flow when Xframe II was
installed in the PCI-X 133 slot on xw-9300 machine and
TSO (TCP segmentation offload) was on. In that case, the
one-second averaged throughput measured by iperf reached
6.5 Gbps. We initially planned to use the PCI-X 133 bus on
xw-9300. Unfortunately, the NIC (both PRO/10GbE and
Xframe II) behaved erratically because the area around the
PCI-bus slots became very hot when the NIC was installed
in PCI-X 133.

One reason for this trouble is that the PCI-X 133 slot,
which is the fastest bus of xw-9300, is located at the edge of
its chassis, so it is difficult to dissipate the heat around the
NIC. Therefore, we present the throughput characteristics of
flows observed when the Xframe II card was installed in the
PCI-X 100 slot on xw-9300. In this configuration, the maxi-
mum throughput of a single constant bit rate flow measured
by iperf (with the UDP option) was 5.5 Gbps. Figure 3(a)
shows the throughput changes of a single flow (Flow 1 shown
in Fig. 1(a)) of Compound TCP when it ran alone for 60 sec-
onds. We observed similar tendencies in throughput charac-
teristics of all the other TCP-based transport protocol flows
(including Reno flows). Figure 3 (a) shows the change of
CPU utilization measured using vmstat. Figure 3 (b) shows
the throughput characteristics of a single CUBIC flow for
various socket buffer sizes.
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(a) Characteristics of a single Compound flow (sock buf =100 MB)
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(b) Throughput of a single CUBIC flow 

sock_buf =40 [MB], tso=off
sock_buf=60 [MB], tso=off 

sock_buf=100 [MB], tso = off
sock_buf=100 [MB], tso = on

Figure 3: Characteristics of a single flow.

The following points can be observed from these figures.
First, whenever the network is not congested, a single TCP
flow can stably achieve maximum throughput (more than
5 Gbps), which might be limited by the hardware specifi-
cations. Second, an insufficient socket buffer size also lim-
its maximum throughput, as shown Figure 3 (b). Finally,
higher throughput was achieved when TSO was on, as shown
in Table2. In addition, the CPU utilization was relieved to
some extent by setting TSO to on, as shown in Fig. 3(a).
All the other protocols except for CUBIC behaved in a sim-
ilar manner. The throughput of a CUBIC flow, however,
increased slowly when TSO was on, in contrast with when
it was off, as can be seen in Fig. 3(b).

Note that the use of TSO increases the time-averaged
TCP throughput and decreases the CPU load to some ex-
tent, while also slowing down the increase in TCP through-
put in CUBIC. To compare different protocol flows, here-
inafter we show results obtained when TSO is set to off,
unless otherwise noted.



3.2 Data transfer from a single server
We examined the throughput characteristics of multiple

coexisting flows using the same transport protocol in sce-
narios where multiple flows ran from a single sender (Server
1), i.e., a potential bottleneck (= 5.4 Gbps).

Figure 4 summarizes the time-averaged throughput of each
individual flow from a single server using various high-speed
transport protocols. Case (1) shows the averaged through-
put of a single flow running alone, Case (2) indicates the
throughput of four coexisting flows that are established us-
ing iperf “-P 2” command between both Server 1 – Client
1 and Server 1 – Client 2 pairs simultaneously in Fig. 1(a).
Case (3) indicates throughputs for four flows in Fig. 1(b)
where Flows 1 and 2 were established between Server 1 and
Client 1 and Flows 3 and 4 were simultaneously established
between Server 1 and Client 2 using iperf “-P 2” command.
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Figure 4: Data transfer from a single server.

It can be observed in Case (2) that when multiple flows
have the same RTT they shared resources fairly when they
started simultaneously, except when Reno and HSTCP pro-
tocols were used. In Case (3), where Flows 1 and 2 have
RTTs ten-times longer than those of Flows 3 and 4, the ad-
vantage of shorter RTT flows (Flows 3 and 4) is obvious in
Reno, HSTCP, CUBIC, and Compound TCP cases. That is,
resources were shared unfairly between the coexisting flows.
In the HTCP protocol, in contrast, coexisting flows shared
resources fairly. In all cases, it can be observed that the max-
imum throughput limited by the server can be fully shared
by multiple coexisting flows when one server sends its data
to multiple clients simultaneously.

Next, we show the time series throughput characteristics
in scenarios where two flows with different start times coex-
ist. In the first scenario, the receiver hosts of two coexisting
flows were located near each other (i.e. had the same RTT),
as shown in Fig. 1(a). Flow 1, from Server 1 to Client 1,
started transferring data first. Then, after 50 seconds, Flow
2, from Server 1 to Client 2, started transferring data, and
continued to do so for 300 seconds. In all protocol flows,
we observed that Flow 1’s throughput was affected when
Flow 2 started to transfer data. Flow 1’s throughput level
recovered to its ssthresh level and increased its cwnd in con-
gestion avoidance mode. However, we observed a difference
in the throughput behavior of Flow 2 with different kinds of
high-speed transport protocols. As shown in Fig. 5(a), in ev-
ery trial, when Flow 2 uses HTCP, its throughput increases
relatively rapidly and throughput is shared fairly between
the coexisting flows. With all the other protocols, Flow 2
increased its throughput relatively slowly and the sharing

was unfair, as shown in Fig. 5(b).
Next, we investigated heterogeneous RTTs, where data

was transferred from a single server to clients located in dif-
ferent places, as shown in Fig. 1(b). We considered two sce-
narios: in Scenario 1, Flow 1 started transferring data first.
Fifty seconds later, Flow 2 started transferring data and con-
tinued to do so for 300 seconds, while in Scenario 2, Flow
1 started 50 seconds after Flow 2. Figure 6(a) shows the
throughput characteristics for HTCP and Fig. 6(b) shows
them for HSTCP. In both scenarios, the throughput char-
acteristics of the flow that started first were affected when
the new flow started and recovered to ssthresh, as in the
case in Fig. 5. Flow 2, which started later in the case shown
in Fig. 6, increased its throughput more quickly than Flow
2 in Fig. 5. This is because the RTT of Flow 2 in Fig. 6
is one tenth as long as that of Flow 1. In the HTCP case
shown in Fig. 6(a), Flow 1, which had a ten-times longer
RTT, achieved higher throughput than Flow 2, while for the
HSTCP shown in Fig. 6(b), Flows 1 and 2 shared the band-
width evenly. These tendencies stayed the same regardless
of the socket buffer size and TSO setting.
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Figure 5: Data transfer from a single server.

3.3 Multiple coexisting flows with identical RTT
We examined the throughput characteristics of multiple

coexisting flows using the same transport protocol in sce-
narios where flows ran from Server 1 to Client 1 and from
Server 2 to Client 2, as shown in Fig. 1(a), where multiple
flows have the same RTT and the bottleneck might be in the
ingress router close to the senders. Hereafter, we observed
the counter of packet loss of the router, which accommo-
dates Servers 1 and 2 at Kitakyushu during observation of
the throughput characteristics. We found that sometimes
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Figure 6: Data Transfer from a single server (differ-
ent RTTs).

but not always the packet loss counter increases (for exam-
ple, the observed packet loss rate at the switch was between
3e − 6 to 1e − 5) when the throughput decreases. Thus
the bottleneck points might be not only the router at Ki-
takyushu but also located another place along the path. We
measured the total throughput of two concurrent UDP (con-
stant bit rate) flows, Flows 1 and 2, at the receivers, and
found it was about 9 Gbps without packet losses. That is,
the bandwidth of the link can be guaranteed to be at least 9
Gbps. In this subsection, we discuss our evaluations of two
cases of socket buffer size: in Case (L), the socket buffer size
was set to 100 MB so that the maximum throughput of a
single flow could reach 5.4 Gbps, and in Case (S), it was set
to 40 MB so that the throughput of a single flow was limited
to 3 Gbps.

Figure 7 shows the total throughput of multiple flows
established in Fig. 1(a) in Case (L). Multiple flows were
simultaneously established between the server-client pairs
(Server 1 – Client 1 and Server 2 – Client 2), using iperf “-
P” command. Two, four, and six flows were established
simultaneously. In case of coexisting multiple flows, the
more the number of coexisting flows increased, the higher
the total throughput to some extent. Interestingly, how-
ever, in all protocols the total throughput of six flows was
smaller than that of a single flow, which imply that coex-
inting flows are adversely affected by each other. In ad-
dition, the more the number of coexisting flows increased,
the smaller the throughput of each flow while the more the
throughput fairness (balance) among flows improved, es-
pecially when HSTCP, CUBIC, and HTCP protocols were
used.
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Figure 7: Time averaged throughputs in data trans-
fer from two servers.

The time series throughput characteristics of Flows 1 and
2 in Case (L) with two coexisting flows and TSO off are
shown in Fig. 8. In this scenario, Flow 1 started transferring
data first, and Flow 2 started transferring 50 seconds later
and continued for 300 seconds. We also examined these flows
with TSO set to on. As can be seen in Fig. 8, when Flow
2 started at 50 s, the throughput characteristics of Flow 1
decreased in all protocols. CUBIC flow can recover to the
original level quickly, while flows in other protocols recover
to ssthresh.

We observed similar tendencies in the throughput char-
acteristics of flows using Reno and HSTCP. Figure 8(a)
presents flows for HSTCP. Soon after Flow 1 started, its
throughput jumped to 5.4 Gbps. Then, after Flow 2 started,
the throughput of Flow 1 fell to 3.8 Gbps and then gradu-
ally increased, and the throughput of Flow 2 increased very
slowly. For example, the throughput of Flow 2 at 200 s was
400 Mbps. After Flow 2 stopped, the throughput of Flow
1 gradually increased. In Fig. 8(b) for CUBIC protocol, it
took about 30 s for the throughput of Flow 1 to reach 5.4
Gbps, similarly in Fig. 3(b), while throughput of the Flow
2 took 130 s to reach 1 Gbps and 300 s to reach 1.85 Gbps.
Then, after the total throughput of the two flows reached
about 6 Gbps, the throughputs of both flows decreased si-
multaneously. After that, the throughput of Flow 1 was able
to recover quickly to its original level, while that of Flow 2
recovered only slowly. The throughputs of the two coexist-
ing HTCP flows increased and decreased simultaneously, as
shown in Fig. 8(c). The total throughput of the two flows re-
peatedly increased to some extent and then decreased. After
Flow 2 stopped transferring data at 350 s, the throughput
of Flow 1 recovered quickly. Fig. 8(d) shows the fluctuation
of the coexisting Compound TCP flows of throughputs in a
short period. After Flow 2 stopped, the behavior of Flow 1
changed.

Next, we observed the throughput characteristics in Case
(S) where the achievable one-second averaged throughput of
a single flow was limited to 3 Gbps, so two flows would likely
be able to coexist successfully without competing with each
other. Based on experimental results not shown here, how-
ever, considerable interference was observed between two
flows, which is similar to Case (L) in Fig. 8, although the
maximum achievable throughput for each individual flow
differs from that in Case (L). We also repeatedly exam-
ined the same scenarios when TSO was on with a variety
of socket buffer sizes and, as in Cases (L) and (S), found
that interference between those flows resulted in oscillation
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Figure 8: Data transfer from two servers in Fig.1
(a)

and inefficiency of throughput.
Consequently, two flows with identical RTTs coexisting in

the 10-Gbps end-to-end path interfered with each other, and
their throughput tended to increase and decrease simultane-
ously regardless of the socket buffer sizes and TSO setting.
In contrast, in the 1-Gbps end-to-end path reported in our
previous studies, this kind of interference could to some ex-
tent be avoided by limiting the socket buffer size. This might
be because a 10-Gbps end-to-end path allows an extremely
bursty transfer within a part of an RTT, especially in the
slow-start phase. This cannot be mitigated by resetting the
socket buffer size.

3.4 Two coexisting flows with different RTTs
We examined the scenario with two kinds of coexisting

flows competing at the ingress router on the path, i.e., flows
with RTTs of 180 ms and 18 ms, as shown in Fig. 1(b). We
observed that the maximum total throughput per second of
two flows was about 6-9 Gbps depending on the transport
protocol.

Figure 9 summarizes the averaged throughput of coexist-
ing flows in Fig. 1(b). Case (1) shows the averaged through-
put of a single flow running alone (Flow 1), and Case (2)
shows that for two coexisting flows, where Flow 1 was es-
tablished between Server 1 and Client 1 and Flow 2 was
established between Server 2 and Client 2. In Case (3), four
flows were established simultaneously. Flows 1 and 2 are es-
tablished between Server 1 and Client 1, while Flows 3 and
4 are established between Server 2 and Client 2.

By comparing Cases (2) and (3) in Fig. 9 to Cases (2) and
(3) in Fig. 7, it can be observed that the different RTTs of
the coexisting flows help to mitigate the throughput degra-
dation by interference, while flows that have shorter RTTs
have a great advantage in throughput competition. As ob-
served in Fig. 9, the difference between averaged through-
put characteristics in flows that have different RTTs is obvi-
ous.Throughput of flows that have longer RTTs using Com-
pound TCP was especially limited in our configuration.
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Figure 9: Time averaged throughputs in data trans-
fer from two servers (different RTTs).

Figure 10 shows the time-series throughput characteristics
of two coexisting flows when the socket buffer size was set to
100 MB and the resulting achievable throughput of a single
flow was 5.4 Gbps. Flow 1 started transferring data first,
and Flow 2 was established after 50 seconds.

In all cases, as in the cases in Fig. 8, Flow 1 was damaged
when Flow 2 started. When HSTCP or HTCP is used, Flow
1’s throughput recovers to the ssthresh and CUBIC flow
recovers to its original level, while flow for Compound TCP
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Figure 10: Data transfer from two servers in Fig.1
(b)

does not recover while Flow 2 is transferring data.
In the HSTCP protocol shown in Fig. 10(a), Flow 1’s

throughput quickly jumped to 5.4 Gbps, but Flow 2’s through-
put, which had the shorter RTT, jumped to 5.4 Gbps after
it started and sustained this level. As a result, the through-
put of Flow 1 decreased and then gradually started to in-
crease. Then, the total throughputs of Flows 1 and 2 reached
around 7 Gbps, i.e., their throughput decreased simultane-
ously. Then Flow 2 quickly recovered to 5.4 Gbps, while
Flow 1 increased by degrees. For CUBIC (Fig. 10(b)), the
throughput of Flow 1, which had a longer RTT, increased
rapidly. Then, when Flow 2 started, Flow 1 decreased, as
in HSTCP. For HTCP (Fig. 10(c)), we observed that the
throughput of Flow 2 was slightly higher than that of Flow
1 while the throughputs of the two coexisting flows increased
and decreased periodically. For Compound TCP, as shown
in Fig. 10(d), after Flow 2, which had the shorter RTT,
started, the throughput of Flow 1 did not increase. After
Flow 2 stopped, the throughput of Flow 1 was able to re-
cover to a level slightly lower than that observed before Flow
2 started.

We also investigated the same scenarios when the socket
buffer size was adjusted to limit the maximum throughput
of a single flow to 3 Gbps, as described in the previous sub-
section. We observed no differences in throughput charac-
teristics from those observed in Fig. 10 for any protocol,
including the Reno protocol.

3.5 Coexisting flows using standard TCP and
high-speed transport protocol

On an end-to-end path with 1 Gbps or less bandwidth, the
unfairness problem between a high-speed transport protocol
and Standard TCP is well-known (e.g. [7]). We examined
this problem where a high-speed transport protocol flow and
a Standard TCP flow coexist on 10-Gbps shown in Fig. 1(a).
We focused on two scenarios: (1) the high-speed transport
protocol flow starts 50 seconds after the Standard TCP flow
starts, and; (2) the high-speed transport protocol starts first.
In both scenarios, the socket buffer sizes were set to either
40 MB or 100 MB.

The time-series in Scenario (1) with 100 MB socket buffer
are shown in Fig. 11, where differences among the high-speed
transport protocols were observed. Figure 11(a) shows the
flow for CUBIC, whose throughput increased more slowly
than that observed in Fig. 3(b).As shown in Fig. 11(b) (for
HTCP) and (c) (for Compound TCP), the throughputs of
those flows increased and decreased repeatedly. In all cases,
after the high-speed transport protocol flow stopped trans-
ferring data, the Standard TCP could not recover quickly.
In addition, the throughput behaviors remained unchanged
even when the socket buffer size was changed.

In Scenario (2), based on experimental results not shown
here, the high-speed transport protocol flow instantaneously
decreased when Standard TCP flow starts its data trans-
fer, however, the throughput recovered to its original level
quickly. In contrast, the throughput of the Standard TCP
flow increased very gradually; that is, the throughput of the
Standard TCP flow was only several hundreds of Mbps at
100 s. This tendency was observed regardless of the type of
high-speed transport protocols and the socket buffer size.
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Figure 11: Coexisting Standard TCP flow (start
first) and High-Speed TCP flow

4. CONCLUDING REMARKS
We investigated the performance of various high-speed

transport protocols implemented in the Linux kernel through
experiments on long distance 10-Gbps-class paths including
US-Japan international lines, provided by JGN II, an open
10-Gbps-class network testbed in Japan.

We reported here the preliminary results of our experi-
ments. We tested the TCP throughput of a single flow and
then those of multiple coexisting flows on an end-to-end 10-
Gbps path. We observed that for all the targeted high-speed
transport protocols, a single flow could stably sustain the
maximum throughput allowed by a bottleneck on the sender
machine. When two individual flows coexisted, in most
cases, the throughput of each flow fluctuated periodically,
resulting in inefficient sharing of the network bandwidth.

For example, imbalance in the time-averaged throughput be-
tween two flows would likely occur even if those flows have
the same RTT, and the sum of those throughputs could
not fully utilize the 10 Gbps bandwidth, especially when
flows have the same RTT. We also observed that the perfor-
mance of a high-speed transport protocol flow was damaged
in throughput when a new TCP flow started after it. This is
probably due to an aggressive slow-start mechanism harm-
ful both to the coexisting flows and to itself. Therefore, a
new gentle but effective start-up mechanism in high-speed
transport protocols is one of the key issues in efficiently im-
plementing coexisting multiple flows through the same bot-
tleneck.

In future work, we are planning to examine a wider va-
riety of network resource-sharing scenarios and to conduct
more in-depth investigations (by monitoring TCP-internal
or kernel-internal behaviors). We will also conduct exper-
iments using the updated kernel version for various other
high-speed transport protocols.

We give special thanks to Prof. Dirceu Cavendish for his
helpful comments. We are grateful to the NCDM team mem-
bers and the staff at APAN/JGNII NOC for their kind help
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