
Comparing Network Bandwidth Time-Series∗

Matthew S. Allen
Department of Computer

Science
University of California, Santa

Barbara
msa@cs.ucsb.edu

John Brevik
Department of Mathematics &

Statistics
California State University,

Long Beach
jbrevik@csulb.edu

Rich Wolski
Department of Computer

Science
University of California, Santa

Barbara
rich@cs.ucsb.edu

ABSTRACT
Today, internet researchers, engineers, and application writ-
ers have at their disposal a number of methods for measuring
end-to-end internet performance. Additionally, many wide-
area applications make heavy use of measurement techniques
to optimize their performance. Despite this, there is no
widely accepted method for determining if two tools or tech-
niques produce equivalent results, or if feedback from a tool
is relevant to the application that employs it. In this paper,
we apply current technologies in time series databases and
network performance modeling to the problem of compar-
ing network bandwidth time series. Using these techniques,
we present a methodology to evaluate the level of similarity
between two time series.

1. INTRODUCTION
Developers and engineers on today’s internet have a num-
ber of techniques and tools at their disposal for evaluating
end-to-end internet performance. Tools like the Network
Weather Service [17] and Pinger [5], and their predeces-
sors Iperf [13] and NetPerf [10], measure internet proper-
ties using direct probes. Other tools like PathLoad [9] and
PathChirp [14] infer path properties using a storm of small
packets much like Van Jacobson’s pathchar utility did in the
early days of network measurement. Additionally, a wide
array of measurement heuristics see deployment as part of
existing wide area applications.

Wide-area distributed applications employ these tools and
techniques to aid in decision making. Grid applications
make heavy use of monitoring techniques to schedule both
distributed jobs and data transfers [16, 7]. Distributed stor-
age systems use network measurements to chose which copy
of a duplicated data item to download [2, 3]. Overlay peer-
to-peer networks use similar techniques to optimize their
routing tables and select high-bandwidth peers [19, 20].

∗This work was supported, in part, by NSF grants numbered
0305390 and 0123911.

Given this, there are compelling reasons to develop tech-
niques to automatically compare network bandwidth series.
On one hand, measurement tool developers could automat-
ically determine if an experimental measurement algorithm
produces results similar to an established method. Applica-
tion writers, on the other hand, could test how well a stream
of probes match observed transfers. While it is possible to
perform such comparisons visually, this is prohibitively dif-
ficult when comparing large amounts of data. And with the
tremendous diversity of internet links, performing extensive
comparisons can be very important. While there have been
some efforts in recent years to develop such a methodol-
ogy [12], there is still much work to be done.

Unfortunately, calculating the similarity between two end-
to-end performance time series is a challenging endeavor.
There are a number of subtle differences between two se-
ries that should be ignored during comparison. Also, the
time series themselves are complicated, non-stationary pro-
cesses with significant changes in mean and variance. The
following specific issues must be considered when comparing
bandwidth time series:

1. Network paths experience abrupt changes in their per-
formance characteristics. Methods that do not con-
sider these abrupt changes may not draw the correct
information from statistics like mean, variance, and
the empirical CDF.

2. Series may show similar performance changes, but dif-
fer in scale. Comparison methodologies should be re-
sistant to differences that can be removed using linear
transformations on the data.

3. Network measurements always exhibit some sampling
error, but the distribution of these errors is unknown.
Therefore, any method that assumes an underlying er-
ror distribution may produce erroneous results.

In this paper, we present a novel method for determining the
level of similarity between network bandwidth time series.
This method draws on a number of different techniques to
produce its comparison metric. We adapt techniques used
in the time series database community to understand and
remove difference in shift and scale between series. We uti-
lize change-point detection methods employed to automat-
ically locate abrupt changes in performance characteristics.
Finally, we make use of empirical properties of time series

peri
Typewriter
GridNets 2007 October 17-19, 2007, Lyon, France.

Copyright 2007 ICST ISBN 978-963-9799-07-3.

DOI 10.4108/gridnets.2007.2241

peri
Typewriter

peri
Typewriter



100 200 300 400 500

Time

0

5

10

15

M
ea

su
re

m
en

t

(a) Series A

100 200 300 400 500

Time

0

5

10

15

M
ea

su
re

m
en

t

(b) Series B

100 200 300 400 500

Time

0

5

10

15

M
ea

su
re

m
en

t

(c) Linear Transform of A

100 200 300 400 500

Value

0

5

10

15

P
ro

ba
bi

lit
y

(d) ECDF Translation of A

Figure 1: Synthetic series demonstrating potential difficulties in relating network bandwidth time series with

abrupt performance changes.

data, as well as non-parametric modeling techniques, to de-
velop a methodology that relies on few assumptions about
the underlying data. We evaluate the performance of this
methodology for a few case studies, and we discuss some
issues that impact its performance.

2. COMPARING SERIES WITH ABRUPT
PERFORMANCE CHANGES

In the world of network monitoring, few tools or techniques
produce exactly the same results. However, there are fre-
quently only minor differences between time series, and it
is preferable to ignore these differences during comparison.
In particular, a successful comparison must be insensitive
to differences in scale. There are a number of techniques
for accomplishing this, but here we will discuss two of the
most significant: linear transformations [1, 4, 6] and em-
pirical CDF (ECDF) translations [12, 15]. Both of these
techniques, which will be explained below, rely on comput-
ing statistics of the time series over a window of history to
create a transformation function.

While these algorithms perform well in many situations,
they are potentially complicated by one important link prop-
erty. End-to-end link performance is known to change abruptly,
which has been discussed thoroughly in [18], but is also
present in the data sets shown in this paper. Unfortunately
for the two methods mentioned above, these abrupt changes
can invalidate the statistics that are used to remove differ-
ences in scale when performing a comparison.

Figures 1(a) and 1(b) are artificially generated time series
used to illustrate this problem. These two series represent
the types of differences we would hope to ignore when com-
paring two bandwidth series. The values in series A are
generated from a normal distribution with (mean) µ = 9

and (variance) σ2 = 3 for the first half of the trace. At the
half-way mark, the generating distribution changes to µ = 6
and σ2 = 2. Series B, on the other hand, starts with µ = 12
and σ2 = 0.75, and transitions to µ = 8 and σ2 = 0.5. In
both series, the mean and variance both drop by 33% at the
half-way mark. Thus, while they contain different values,
they are clearly very similar in form.

Perhaps the simplest method for eliminating differences in
shift and scale is to perform a linear transformation on the
data. This method is commonplace in time series database
research because of its low computation overhead. To ac-
complish this, we construct a new series using the sample
mean m and the sample variance v computed over the two
series:

xc =
xa − ma√

va

∗
√

vb + mb

Due to the presence of the change-point, however, the sam-
ple mean and variance are no longer particularly meaningful
as statistics. As a result, the transformed series shown in fig-
ure 1(c) diverges significantly from the target series. Here,
we have µ ≈ 11.3 for the first half and µ ≈ 8.5 for the sec-
ond. As mentioned in [6], this problem can be mitigated by
smoothing the series with a moving average prior to scaling.
This transformation will obfuscate the sampling error of the
measurements in the series, but it will not eliminate this
problem. Also, moving averages will respond slowly to the
abrupt changes we see here, which is not desirable.

Another more robust method, developed in this research
group, uses the ECDFs of the two series to translate from
one to the other. In this technique, the ECDF is calculated



0 100000 200000 300000

Time (seconds)

0

1

2

3

4

5

B
an

dw
id

th
 (

M
b/

s)

(a) ku.edu to wisc.edu

1155399936 1155499904 1155599872

Time (seconds)

0

2

4

6

B
an

dw
id

th
 (

M
b/

s)

(b) utk.edu to unc.edu

1144199936 1144219904 1144239872

Time (seconds)

0

1

2

B
an

dw
id

th
 (

M
b/

s)

(c) ucsb.edu to umass.edu

1156899968 1156999936 1157099904

Time (seconds)

0

2

4

6

8

B
an

dw
id

th
 (

M
b/

s)

(d) penn.edu to pitt.edu

Figure 2: Examples of bandwidth interval models

for each series. Values can then be translated using the fol-
lowing function:

xd = ECDF
−1

b (ECDFa(xa))

Again, the presence of the change-point impacts the appro-
priateness of the ECDF, since it is actually capturing two
separate distributions. Figure 1(d) shows the results of this
translation on the example series. In this case, the problem
we see with the series is the modal pattern throughout the
trace. This is caused because in series A, the two distribu-
tions overlap, while in series B they do not. Values that fall
in the overlapping range of series B have a chance of being
paired with an inappropriate value in series A.

It should be noted that both these methods perform well in a
variety of applications. In particular, the ECDF translation
method works well in almost any situation except the one de-
scribed. However, both techniques can be adversely affected
by the types of change-points we see in network bandwidth
series. However, either method could be improved by proac-
tively detecting change-points and discarding data prior to
the the change.

3. COMPARISON METHODOLOGY
In this section, we describe a method for comparing network
bandwidth time series. This method has a number of prop-
erties that are important when considering these types of
series. First, it is fully non-parametric, meaning it makes
no assumptions about the distributions of the measurement
values. Additionally, it is specifically designed to work with
data that shows abrupt changes in location and shape. Fi-
nally, it is designed to resist differences in scale between the

series, and only detects differences that cannot be eliminated
through linear transformations of the data.

There are two phases to this technique. In the first phase, we
generate a change-point model for each series. These models
represent a time series as a collection of regions demonstrat-
ing consistent performance characteristics. In the second
phase, we apply each model to all of the other series that we
wish to compare it with. We perform a transformation on
each model to remove difference that could be represented
by a linear transformation. This test produces a metric de-
scribing the quality of the match between the two series.

3.1 Change Point Modeling
Our modeling methodology makes use of a non-parametric
recursive change-point detection method. Our method falls
into the same general class as the method presented in [18].
It works as follows:

1. Partition the series into two sections.

2. Perform a hypothesis test and calculate probability
that the difference between the two sections could be
caused purely by random chance (called the p-value)

3. Repeat 1 and 2 for all possible partitions of the series.

4. Choose the partition that results in the minimum p-
value. If this value falls below a significance level cho-
sen as a parameter to the method, mark the partition
as a change-point.

5. If a change-point was found, recursively apply steps 1
through 5 on the two resulting sections.

6. When the algorithm completes, test each change-point
with respect to the new change-points that may have



been added near it. To do this, consider every pair of
adjacent sections. Perform steps 1 through 4 on the
two combined sections to see if the change-point that
divides them should be moved or removed.

In [18], the authors apply the Fligner-Policello Rank-Sum
Test in the method just described. This non-parametric hy-
pothesis test is designed to detect differences in the median
of two samples without being affected if the variance of the
samples differ. However, in our application we are interested
in changes in the distribution, so this test is not appropri-
ate. Instead, we utilize the Kolmogorov-Smirnov Test, an-
other non-parametric test that detects any difference in the
distribution of two samples. This includes, but is not lim-
ited to, differences in central tendency and variance. The
Kolmogorov-Smirnov Test has been applied in this type of
change-point detector in a number of different disciplines [8,
11].

We will note that this method is not a statistically rigorous
method–it is a heuristic. It is a misuse of hypothesis testing
to claim that there is a difference between two samples. It
can only be used to to show that the difference that exists
is unlikely to be due to random chance. Nevertheless, this
method performs reasonably well for our purposes.

The final component of our modeling process is to deter-
mine the range of values we expect to see in each partition.
First, we calculate the expected bandwidth to be the mean
of all the values in a given partition. Next, we define the
bandwidth range to be the interval that captures 95% of the
values for that partition, which we determine empirically
using the 0.025 and 0.975 quantiles of the partition. Once
this is calculated for each partition, we have a description
of the bandwidth measurement values we would expect to
see at any given time in the trace. Figure 2 is an example
of our methodology applied to 4 different series. In these
graphs, the change-points are shown as vertical grey lines in
the background, and the bandwidth interval is superimposed
on top of the series.

3.2 Model Scaling
Our goal with this methodology is to compare series in a
manner that is resistant to differences in shift and scale. To
accomplish this, it is necessary that we be able to transform
the model for one series such that it is on the same scale
as another. In this section, we describe how we accomplish
this.

Obviously, the model we described previously can be rep-
resented by three piecewise linear functions describing the
expected bandwidth, upper, and lower quantiles at time t.
We call these model functions m(t), u(t), and l(t), respec-
tively. We define pi,start and pi,end to be the start and end
time of the ith partition of the model. We also define si to
be the appropriate statistic (mean, 97.5% quantile, or 2.5%
quantile) of that partition, and n to be the total number of
partitions in the model. Then, each of the model functions
m, u, and l can be expressed with a function of the form:

1169700096 1169750144 1169800192

Time (seconds)

0

2

4

6

B
an

dw
id

th
 (

M
b/

s)

Figure 3: Example of a transformed model

f(t) =

8

>

>

>

<

>

>

>

:

s1 for t ≥ p1,start and t < p1,end

s2 for t ≥ p2,start and t < p2,end

... ...

sn for t ≥ pn,start and t ≤ pn,end

Our transformation method relies on a simple technique to
calculate a linear transformation that minimizes the distance
between two such model functions. To place a model func-
tion for A on the same scale as a model function for B,
we construct a distance function that expresses the distance
between these two model functions. The distance function
includes two scaling coefficients, rAB and sAB , which de-
scribe a linear transformation of the model function. This
distance function is:

D =

Z end

start

(fB(t) − (rABfA(t) + sAB))2 dt

By solving for values of sAB and rAB that minimize D, we
can perform a transformation of fA that places it on the
same scale as fB . This formula provides us the fundamental
tool to scale the entire model for series A to fit series B.
Recall that we have three functions: m, u, and l. Before we
perform the scaling operation, we represent the upper and
lower bounds in terms of their relationship to the mean. We
define upper and lower bound offset functions, which are:

u
′(t) = u(t) − m(t)

l
′(t) = m(t) − l(t)

We apply our transformation formula to mA, u′

A, and l′A,
computing transformation coefficients rAB and sAB for each
separately. This results in a collection of functions of the
form:

f̂A(t) = rAB,ffA(t) + sAB,f

Finally, we recombine m̂A with û′

A and l̂′A to get ûA and l̂A.
These final three functions express the model for A trans-
formed so that it is on the same scale as B. Figure 3 shows



86 88 90 92 94

Capture Percent

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Figure 4: CDF of capture percentages from IID ran-

dom samples of length 100

ku-wisc utk-unc ucsb-umass penn-pitt
ku-wisc 94.9% 94.2% 55.4% 88.6%
utk-unc 93.6% 94.9% 51.4% 88.9%

ucsb-umass 93.7% 94.3% 94.6% 88.7%
penn-pitt 93.9% 94.3% 51.1% 94.8%

Table 1: Cross-capture table for example series in

Figure 2

as example of this method in action, where the dashed lines
show the model before it was scaled, and the solid lines show
the same model after scaling.

3.3 Model Cross-Capture
Our comparison technique makes use of a metric we call
capture percentage, which is the percentage of points in a
series that fall within the bandwidth range of a model. The
method presented earlier in this section produces a model
that will always capture very close to 95% of the values in
the series it was constructed from. So, if we are comparing
two network bandwidth time series A and B, we can say
they are equivalent if the model for A captures B roughly
95% of the time and the model for B captures A roughly
95% of the time.

This method is a heuristic, and there are no statistically
rigorous bounds on how close capture percentages should be
to 95%. Thus, we evaluate the range of reasonable values
empirically. Figure 4 shows an ECDF of capture percentages
produced when applying our method to two series of 100
values drawn from a normal distribution with no change-
points. This ECDF was computed by generating 10,000 such
series pairs and computing the capture percentages between
them. We use this graph as a benchmark for determining
goodness of fit. Since these values show capture percentage
between series drawn from the same distribution, we expect
matching series to fall into the range of values shown here.
Here, 70% of the values fall above 91.8%, which we classify as
a “good match”. Capture percentages greater than 88.5%,
which account for all but 5% of the data, are also likely
to indicate matching series. Thus, we classify these as a
“likely match”. Finally, we classify values less than 88.5%,
which should rarely occur in matching series, as an “unlikely
match”.

0 20000 40000 60000

Time (seconds)

0.0

0.5

1.0

1.5

B
an

dw
id

th
 (

M
b/

s)

Figure 5: Model for ku-wisc fitting the ucsb-umass

series, an example of a poor model fit

Our primary method for comparing collections of time series
is the cross-capture table. Table 1 is an example using the
four series shown in figure 2. The rows represent the model
for a series, and the columns represent the series being cap-
tured. So, for example, the value in the bottom-left corner
shows that the penn-pitt model captured 93.9% of the val-
ues of the ku-wisc series. To determine the equivalence of
two series, locate the capture percentage in both directions,
and use the minimum value. In this case, we see that in
the other direction the capture percentage is 88.6%, or a
moderate match.

It is important, when doing comparisons, that we base our
evaluation on how well each model fits the other series. Com-
puting this capture percentage from only one model to an-
other series is not sufficient. As an example, consider the
two series ucsb-umass in figure 2(c) and ku-wisc in figure
2(a). These series are very different, with the former con-
taining a number of distinctly different regions, and the later
being nearly flat. However, we see from the table that the
ucsb-umass model captures the ku-wisc series 93.7% of the
time–a “good match”. This is a result of the scaling oper-
ation, which can easily turn any model into a flat line by
setting r = 0. The true indication of fit comes from the
capture percentage in the other direction, shown in Figure
5. Here, the capture percentage of 55.3% reveals the lack of
a match.

4. METHODOLOGY PERFORMANCE
In this section, we will discuss the performance of our test
under a couple of applications where we expect similar per-
formance. In the methodology section we showed how the
test performs for a handful of series that were clearly dif-
ferent. In this section, we present studies of how this test
performs with series that are more similar. First, we will ex-
amine how our methodology performs with direct measure-
ment probes generated by different tools or different probe
sizes. We will then investigate how well our test performs
with different sampling frequencies.

4.1 Comparing Direct Measurement Tools
This methodology was originally conceived to compare the
results of different bandwidth measurement tools. There
exist a large number of tools that measure network band-
width by probing the network. Their implementations are
extremely similar. Each tool runs two applications–a source



50000 100000 150000 200000

Time (seconds)

0

1

2

3

B
an

dw
id

th
 (

M
b/

s)

(a) NetPerf

0 50000 100000 150000 200000

Time (seconds)

0

1

2

3

B
an

dw
id

th
 (

M
b/

s)

(b) NWS

50000 100000 150000 200000

Time (seconds)

0

1

2

3

B
an

dw
id

th
 (

M
b/

s)

(c) IPerf

Figure 6: Measurements recorded from ucsb.edu to wisc.edu by three different tools

NetPerf NWS IPerf
NetPerf 95.2% 93.3% 93.8%
NWS 94.3% 94.8% 94.1%
IPerf 92.4% 91.8% 95.1%

Table 2: Cross-capture table for NetPerf, NWS, and

Iperf tools shown in Figure 6

90 92 94

Cross-Capture Score

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Figure 7: ECDF of model fit metrics for experiments

comparing Iperf, Netperf, and NWS

on one machine, and a destination on the other. To per-
form a measurement, the source opens a TCP connection to
the destination, starts a timer, and initiates a transfer. The
destination responds when the transfer is complete, and the
source calculates the observed bandwidth by dividing the
size of the transfer by the transfer time. Tools may differ
with respect to the socket conditioning they perform or the
loop structure of their test, but share this same basic imple-
mentations.

Intuitively, we would expect that there is little to no differ-
ence between these two tools. In practice, however, mea-
surement series do exhibit clear differences. For instance,
figure 6 shows the three different measurement streams from
ucsb.edu to wisc.edu. Here, we see that although these re-
sults look very similar to the eye, there are also clear dif-
ference between them. For instance, the IPerf reports a
consistently higher bandwidth, and also clearly has a higher
sampling error. Netperf, on the other hand, exhibits slightly
lower measurements and less sampling error.

Despite these differences, the measurement series visually
appear similar, and we would expect our comparison method
to ignore these differences. Table 2 demonstrates that this

64 KB 512 KB 8196 KB
64 KB 95.1% 82.5% 88.1%
512 KB 89.8% 94.2% 93.3%
8196 KB 93.9% 88.6% 95.1%

Table 3: Cross-capture table for NWS with 64 KB,

512 KB, and 8196 KB probe sizes shown in Figure

8

does, in fact happen. Each value in the cross capture ta-
ble falls within the “good match” range. Thus, our method
detects that the differences between these tools can be ac-
counted for using change-point aware linear transformations.

We repeated this experiment across 10 different data sets
similar to the ucsb.edu to wisc.edu experiments above. The
results of these comparisons are shown in figure 7. This
graph shows us that over 80% of the series compared in
this test showed a cross capture score over 91.8%–a “good
match”. Only one of these comparisons resulted in an “un-
likely match”. This corroborates our intuition that tools like
NWS, Iperf, and NetPerf produce results with no meaningful
difference for evaluating link performance. Over the links we
tested, they could be used interchangeably with no adverse
effects.

4.2 Comparing Different Probe Sizes
Another interesting application for our measurement tech-
nique is to compare the outputs of measurement probes of
different sizes. Direct measurement tools must always strike
a balance between accuracy and intrusiveness. Large trans-
fers generate more accurate and reliable results, but small
transfers consume less network resources. Our technique al-
lows us to see if there is a series of linear transformations
that matches a small, non-intrusive measurement series with
an accurate but intrusive one.

Figure 8 shows three different series generated by the NWS
using three different probe sizes. Here, differences are far
more pronounced than in the previous case study. In partic-
ular, small probe sizes report much lower bandwidth than
large probes. Also, the variance in each partition is larger in
the small probes. Nevertheless, it is obvious to the eye that
these tools produce very similar results, and track the same
changes in network conditions. However, the extent of their
similarity is not necessarily clear cut.

The cross-capture table shown in table 3 describes the level



50000 100000 150000 200000

Time (seconds)

0

2

4

6

8

10

B
an

dw
id

th
 (

M
b/

s)

(a) 64 KB

50000 100000 150000 200000

Time (seconds)

0

2

4

6

8

10

B
an

dw
id

th
 (

M
b/

s)

(b) 512 KB

50000 100000 150000 200000

Time (seconds)

0

2

4

6

8

10

B
an

dw
id

th
 (

M
b/

s)

(c) 8196 KB

Figure 8: Measurements recorded from umich.edu to wisc.edu using three different probe sizes

50000 100000 150000 200000

Time (seconds)

0

2

4

6

8

10

B
an

dw
id

th
 (

M
b/

s)

Figure 9: ECDF of model fit metrics for experiments

comparing Iperf, Netperf, and NWS

of similarity between these two series. Here, we see that
only the 512 KB and 8196 KB measurement series match to
a level that is acceptable to our method. The 64 KB probe
fails to adequately match either of the larger measurements.
Figure 9 elucidates the cause of this result. Here, we see that
the 64 KB probe shows a pronounced shift near the 20,000
second mark, as well as a noticeable jump near the 60,000
second mark. These discrepancies indicate that the 64 KB
probes respond to network conditions that may not impact
larger transfers. By no means do we claim this is a general
result. We only show that the application of our tool can
reveal differences between series that may not be obvious.

5. SAMPLING FREQUENCIES
In this final section, we analyze how the performance of our
method changes with different sampling frequencies. Tests
of this nature are typically affected by the frequency with
which measurements are made. More data will produce
more accurate and consistent results, while less data will
cause more variance among the results. This test is no ex-
ception.

To understand our method’s performance under different
sampling frequencies, we modified the experiments reported
in section 4.1. These experiments consisted of 10,000 mea-
surements taken over an 80 hour period. The measurement
frequency was one measurement every 30 seconds for each of
the three tools–Iperf, NetPerf, and the NWS. We decimated
these data sets in three different ways to better understand
how our method performs.

• Cropped–Remove points from the end of both series.

This reduces the length of the series, but the period-
icity remains unaffected.

• Evenly Decimated–Remove points evenly distributed
throughout both series. This modification increases
the periodicity of the measurements.

• Unevenly Decimated–Decimate one series as above,
but leave the other series the same. Both series cover
the same time period, but one has a longer measure-
ment periodicity and less points.

Figure 10 reports the impact of the three modifications we
describe applied with increasing levels of severity. The bars
and error bars show the median, 5% quantile, and 95% quan-
tile of the output of our method. These values are derived
from ECDFs like the one shown in figure 7. The two de-
marcation lines in the background mark the “good match”
and “likely match” capture thresholds. Here, we see that
over half of the series classify as a “good match” up until
the level of decimation reaches 95%. Even in series that are
reduced by 99%, which equates to either a one hour trace
or a measurement periodicity of one hour, we still see that
the majority of the points classify as a match. Since it is
more difficult produce a meaningful comparison with such
short or infrequent measurement series, we consider this an
acceptable level of degradation.

It is, however, worth noting that series with less values are
more likely to produce an“unlikely match”result, even when
there is little impact on the median result. This is evident
from the 5% quantile, which is the statistic that is most
heavily influenced by decimation. Also, this effect is most
pronounced when the series are decimated unevenly. In this
graph, the 5% quantile after a 99% decimation was 49.7%.
The reason for this performance hit is similar to the issues
that arise when performing a linear transformation on time
series data as discussed in section 2. In a more densely
populated series, more change-points will be detected. This
results in more variance among the statistics of each parti-
tion. When it is scaled to match a more stable model with
less change-points, the effect will be similar to performing a
linear transformation on a series with a high variance, and
the higher variance series will be flattened.

6. CONCLUSION AND FUTURE WORK
In this paper we present a novel technique for comparing
network bandwidth time series. We feel this technique is
robust, flexible, and applicable to a number of problems in



25% 50% 75% 90% 95% 99%

Percentage Reduction

80

85

90

95

100

C
ro

ss
 C

ap
tu

re
 M

et
ri

c

Cropped
Evenly Decimated
Unevenly Decimated

Figure 10: Capture values produced after decimation or modification of measurement series.

the network measurement community. However, while we
feel that this document adequately explains this method,
and explores the parameters of its operation, this tool is
still in its infancy. Only through applying this technique to a
number of time series comparison problems will we be able to
fully understand its capabilities and address its weaknesses.

There are also a number of areas where this tool could be
further modified or enhanced. For example, there are a
number of sophisticated hypothesis test and change-point
detectors that might improve the modeling component of
the method. Also, our use of empirical quantiles to build
our model has a low breakdown point, and is sensitive to
outliers. Methods for estimating the population quantile or
building confidence intervals may enhance the resilience of
this tool. Finally, applying on-line change-point detection
techniques to bandwidth prediction may prove to be a re-
warding research direction. And this technique may help
provide groundwork for understanding how to design such a
prediction algorithm.

7. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. In
Foundations of Data Organization and Algorithms,
pages 69–84, 1993.

[2] M. Allen and R. Wolski. The Livny and Plank-Beck
problems: Studies in data movement on the
computational grid. In Supercomputing 2003,
November 2003.

[3] R. L. Cards and M. E. Crovella. On the network
impact of dynamic server selection. Computer
Networks, 31(23-24):2529–2558, 1999.

[4] K. K. W. Chu and M. H. Wong. Fast time-series
searching with scaling and shifting. In ACM
Symposium on Priciples of Database Systems, pages
237–248, 1999.

[5] L. Cottrell, W. Matthews, and C. Logg. Tutorial on
internet monitoring & pinger at slac.

[6] G. Das, D. Gunopulos, and H. Mannila. Finding
similar time series. In Principles of Data Mining and
Knowledge Discovery, pages 88–100, 1997.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann

Publishers, Inc., 1998.

[8] A. Inoue. Testing for distributional change in time
series. Econometric Theory, 17:156–187, November
2001.

[9] M. Jain and C. Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics,
and relation with tcp throughput. In
IEEE/INFOCOMM, August 2002.

[10] R. Jones. The netperf homepage.

[11] S. D. Mohanty and A. JimÃl’nez. Progress in
non-parametric change point detection of gravitational
wave bursts: the multikscd algorithm. Classical and
Quantum Gravity, 22(18):1233–1241, September 2005.

[12] M. Murray, S. Smallen, O. Khalili, and M. Swany.
Comparison of end-to-end bandwidth measurement
tools on the 10gige teragrid backbone. Technical
Report TR-05-02, University of Texas at Austin, 2005.

[13] NLANR/DAST. The iperf homepage.

[14] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and
L. Cottrell. pathchirp: Efficient available bandwidth
estimation for network paths. In Passive and Active
Measurement Workshop, 2003.

[15] M. Swany and R. Wolski. Multivariate resource
performance forecasting in the network weather
service. In IEEE/ACM Conference on
High-Performance Computing and Networking
(SC2002), November 2002.

[16] The Globus Alliance. GridFTP.

[17] R. Wolski. Dynamically forecasting network
performance using the network weather service.
Cluster Computing, 1:119–132, 1998.

[18] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On
the constancy of internet path properties. In ACM
SIGCOMM Internet Measurement Workshop, 2001.

[19] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications,
22(1):41–53, January 2004.

[20] J. Zurawski, M. Swany, M. Beck, and Y. Ding.
Logistical multicast for data distribution. In Workshop
on Grids and Advanced Networks, 2005.




