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ABSTRACT

In the context of applied game theory in networking en-
vironments, a number of concepts have been proposed to
measure both efficiency and optimality of resource alloca-
tions, the most famous certainly being the price of anarchy
and the Jain index. Yet, very few have tried to question
these measures and compare one to another, in a general
framework, which is the aim of the present article.
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1. INTRODUCTION

The networking community has witnessed an impressive
amount of work based on applications of game theory con-
cepts. This paper focuses here on the ones dealing with
characterizations of performance of general policies.

We do not deal here with the choice of users utility func-
tions. We consider some general utilities u, may they rep-
resent throughput, experienced delays. . . or any utility func-
tion and study in this paper different allocation policies. We
distinguish in particular two kinds of policies:

e those who are index-based, that is to say that result
on the optimization of a given function, as for example
the Nash Bargaining Solution (also called proportional
fairness), that maximizes the product of the users’ util-
ities, or the social utility (maximizing their sum).

e general policy optimization. Those do not optimize a
specific function. The most common example being
the Nash equilibrium.

While many definitions of efficiency measure can be found
in the literature, at the present day, it seems that no fully
satisfactory concept is available. The goal of this article is to
present and study various commonly used characterizations
of the performance of policies.
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After introducing some general notations (Section 2), we
present some qualitative characterization of the allocations
(Section 3): in particular the notion of Pareto efficiency
(a general notion of efficiency), of index-optimization (that
would reflect some particular property of efficient points,
as for example fairness), and Braess-like paradoxes (a par-
ticularly non-desirable property of allocation policies). We
then analyze properties of allocations, in particular regard-
ing continuity (which ensures some stability of the allocation
for slight changes of the resources) and monotonicity (which
ensures that an adding of resources will always be beneficial
to the users).

Then, in Section 4, we consider quantitative measures of
efficiency. In particular, we discuss the concepts of Jain in-
dex, Price of anarchy (and more generally of index-optimizing
based metrics) and the recently introduced SDF (Selfishness
Degradation Factor).

2. NOTATIONS

We consider an n-player game, each of them having a
utility function whose values belong to R4. A utility set U is
thus a subset of R}. Let H (R} ) denote the set of non-empty
compact sets of R} and C(R’}) denote the set of non-empty
compact and convex sets of R}. In the rest of this article,
we assume that U the set of all utility sets is either equal to
H(RY) or C(RY}). Any negative result regarding C(R7}) also
applies to H(R%).

We define in this section the two kinds of allocation stud-
ied (index-based or not) and two concepts that will turn
useful for the analytical study, namely the Hausdorff metric
and some canonical partial orders.

Definition 1 (Policy function). A policy function o : U —
RY is a function such that for allU € U, a(U) € U.

Policy functions defined on H(R’}) are said to be general
policy function and policy functions defined on C(R}) are
said to be convex policy function.

Note that in this framework, we do not consider policy
optimization that depend on previous states of the system.
Such systems can occur for instance when considering dy-
namic systems where Nash equilibria adjusts to the system
evolution. In the event of multiple equilibria, the initial con-
ditions have an impact on the convergence point.

Definition 2 (Index-optimizing). An index function f is a

function from Rt to Ry. A policy function o is said to be

f-optimizing if for all U € U, f(a(U)) = sup, ey f(u).
Index may also be called aggregation operators [2].



To study the continuity of policy functions, we need a
topology on U. That is why in the following, we use the
classical metric on compact sets.

Definition 3 (Hausdorff metric). Considering a metric func-
tion d on R, one can define the distance from z to the
compact B as:

d(z, B) = min{d(z,y)|y € B}
The distance from the compact A to the compact B as:
d(A, B) = max{d(z, B)|x € A}
The Hausdorff distance between two compacts A and B can
thus be defined as:
h(A, B) = max(d(A, B),d(B, A))

(H(R%), h) and (C(R%), h) are complete metric spaces [1]
and we can thus study the continuity of policy functions
under pretty clean conditions.

Definition 4 (Canonical partial orders). We consider the

following orders as being canonical.
order on RY is defined by:

u<veVk:ur < vk

e The canonical partial <

o The canonical partial order on H(RY) is the classical
inclusion order: C.

The two classical strict partial order < and C are defined
accordingly. (u < v < u=<v andu #v.)

o We also define an additional strict partial order < on
R, namely the strict Pareto-superiority, by:

uLveVk:up < vk

3. QUALITATIVE CHARACTERIZATIONS

In this section, we focus on qualitative characterizations
of performance of allocations. Of particular interest are:

e The notion of Pareto optimality: a concepts that define
the set of points of U that are globally optimal,

e Index or aggregation operators: they reflect the opti-
mality of a point with respect to a particular criterion,

e Braess-like paradoxes: reflects whether an increase of
the system resource can be detrimental to all users
concurrently.

The rest of this section is organized as follows: after defin-
ing these three fundamental concepts, we study the link be-
tween Pareto-optimality and index optimization, the conti-
nuity of allocations and their monotonicity.

3.1 Common Definitions
We recall here the definitions of Pareto optimality, index-

optimizing function and Braess-like paradoxes.

Definition 5 (Pareto optimality). A choice u € U is said
to be Pareto optimal if

Yo e U,3i,v; > u; = 35,05 < uy.

In other words, u is Pareto optimal if it is mazimal in U for
the canonical partial order on R .

A policy function is said to be Pareto-optimal if for all
U eU,a(U) is Pareto-optimal.

The key idea here is that Pareto optimality is a global
notion. Even in systems that consists of independent ele-
ments, the Pareto optimality cannot be determined on each
independent subsystem. Such phenomena has been exhib-
ited in [6]. The considered system is a master-slave platform
in which the master can communicate with as many slaves
as it needs at any time. The master holds a infinite num-
ber of tasks corresponding to N applications, and each of
them can be executed on any slave. The authors study the
system at the Nash equilibrium (each application competing
with each other for both resource and CPU). Although the
problems associated with each machine is independent, the
authors show that for any system with one slave the equilib-
rium is Pareto optimal, while Pareto inefficiency can occur
in multiple slave systems.

Definition 6 (f-increasing). A policy « is said to be f-
increasing if f o a is monotone. Any f-optimizing policy is
thus f-increasing.

Definition 7 (Common Indexes). Many different indezes
have been proposed in the literature. We present a few ones:

o Arithmetic mean: ), u;.
o Minimum: min; u;.
o Maximum: max; u;.

e Geometric Mean: also called Nash Bargaining Solu-

tion or proportional fairness [], ui.
. . 1

e Harmonic Mean: S

e Quasi-arithmetic Mean: f~'(: 3" | f(ui)) where
1 is a strictly monotone continuous function on [0, +00].
The particular case where f is defined by f : & —
has been widely studied [7]. The five previous index are
particular case of this index for particular values of &
(respectively, 1, —oco, +00,0 and —1).

e Jain: (nZ“Z) (see [3]).

e Ordered Weighted Averaging: OW A(u1, ..., uy) =
> Wi uam where o is a permutation such that ug (1) <

Ug(2) S S Ug(n)-

All these indexes are continuous, however, some of them are
not strictly monotone.

Definition 8 (Braess-paradox). A policy function « is said
to have Braess-paradozes it there exists Uy and Uz such that

Ui C Uz and a(Ur) > a(Us)

with > defined as in definition 4. A policy function such that
there is no Braess-paradox is called Braess-paradox-free.

3.2 Pareto-optimality and Index Optimization

Pareto optimality and monotonicity of the index optimiza-
tion are closely related, as illustrated in the following results.

Theorem 1. Let o be an f-optimizing policy. If f is strictly
monotone then a is Pareto-optimal.

Proof. Suppose that « is not Pareto optimal. Then, there
exists U such that a(U) is not Pareto optimal. Hence, there
exists v € U such that a(U) < v, and hence f(a(U)) < f(v),
which contradicts the definition of a(U). O



Theorem 2. Let o be an f-optimizing policy. If o is Pareto-
optimal then f is monotone.

Proof. Suppose that f is not monotone. Then there exists
u < v such that f(v) < f(u). Consider U = {u,v}. As
u < v and « is Pareto-optimal, then o(U) = v which is in
contradiction with f(v) < f(u). O

Arithmetic and geometric mean indexes are examples or
strictly monotone index. On the other hand, the Jain index
is an example of non-monotone index. The min and the max
index are also not strictly monotone, which is why, max-min
fairness or min-max fairness are recursively defined in the
literature.

3.3 Continuity

Let us assume that a configuration » made of p resources
is modeled as an element 7 of R, . A set of configurations
R is thus a compact of H(R" ). Let us assume that utility
of users g are continuous functions from RE to R}. Then
utility sets U are built with the help of R and g.

_J(H(RE), Co(RE,RY))  — H(RY)
(R,9) = {g(r)|r € R}

The mapping U being continuous, a o U represents the
sensibility of the allocation with respect to resources and
utility functions. Continuity of the allocation « is thus an
essential feature. Indeed, it ensures that a slight change
in the system resources would not significantly affect the
allocation. In dynamically changing systems, this ensures a
certain stability. It also ensures that a slight error in utility
functions does not affect too much the allocation.

Theorem 3. The Pareto set of a convex utility set is not
necessarily compact.

The function P from C(R}) to H(R') that associates to
U the closure of its Pareto set is not continuous.

Proof. Let us first exhibit a convex utility set whose Pareto

set is not closed. Let C = {(x,y,2) € R} |2® + 4 < 1,0 <
z<1— %zz%yjﬂ} The set C' is depicted on Figure 1. We
have P(C) = {(z,y,1 — %ﬁ%z’jﬂﬂﬁ +yP < lz4y >
1,z > 0} U{(0,1,1)}, which is not closed.
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Figure 1: Convex set whose Pareto set is not closed.
The segment [A, B does not belong to the Pareto
set.

Let us consider P from C(R%) to H(R") that associate to
U the closure of its Pareto set. Figure 2 depicts a converging

sequence of convex C,, such that f(Cn) does not converge

to P(Coo). O

P(Cx)

Co P(Co)| C. \P(Ch) B

Figure 2: P is not continuous.

Theorem 4. Let a be a general Pareto-optimal policy func-
tion. « is not continuous.

Proof. We prove that « cannot be continuous with the sim-
ple instances depicted on Figure 3. The only Pareto-optimal
points are A and B. Therefore o has to choose in the first
set between A and B. If A; is chosen, then by moving A; to
Ag, the choice has to “jump” to B, hence « is not continuous.

O

Ay

Figure 3: General Pareto-optimal policies are dis-
continuous: a path leading to discontinuity.

Remark 1. There exists continuous and non-continuous
convex Pareto-optimal policy functions.

Proof. Let us consider a policy function « optimizing the
sum of utilities. The two convex sets on Figure 4 show that
a is not continuous around the set K = {(z,y)|z +y < 1}.
This discontinuity is due to the fact that many different
points of K simultaneously optimize the sum.

Figure 4: Optimizing > : a discontinuous convex
policy.

The policy function « optimizing the product [] of utili-
ties is continuous though. As [] is strictly monotone, « is
Pareto-optimal. Moreover, as for any ¢, I. = {x € R} |[]z: >
c} is strictly convex, for any convex, there is a single point
optimizing the []. Let us assume by contradiction that «
is not continuous at the point C. Then there exists C,
converging to C' and such that xz, = «(Cy) converges to



ZToo # a(C). As our sets are compact, there exists a se-
quence y, € C, such that y, converges to a(C). By defi-
nition, we have Vn, [[(yn) < [[(zn). Therefore [[(a(C)) <
[I(zo), which is absurd as a(C) is optimal in C for [] and
a(C) # Too. O

3.4 Monotonicity

We state in this sub-section two results on monotonic-
ity of index and policy functions. The first one emphasizes
that index-functions only measures a specific characteris-
tic of performance measure, and are hence not compatible.
This explains why allocations that are efficient (optimizing
the arithmetic mean) cannot (in general) also be fair (opti-
mizing the geometric mean).

The second result states that, even when restricted to con-
vex utility sets, policy functions cannot be monotone. This
infers that even in Braess-free systems, an increase in the
resource can be detrimental to some users.

Theorem 5. Let f and g be two monotone index functions.
A g-optimizing policy ag is f-increasing if and only if oy is
f-optimizing.

Proof. If ag is f-optimizing, then a4 is clearly f-increasing.

Let us assume that a4 is not f-optimizing. We define the
partial order <y (resp. <4) on R} by z <y y iff f(z) < f(y).
We have <¢#~<,, otherwise ay would be f-optimizing. Thus
there exists 1 and =z such that: =1 <y T2 and 72 <4 71.
Considering U = {z1} and U’ = {z1,z2}, shows that a4 is
not f-increasing. O

In other words, a policy optimizing an index f is always
non-monotone for a distinct index g.

Theorem 6. FEven if convex, policy functions cannot be
monotone.

Proof. Let us consider a a monotone convex policy function
and let us consider the three following convex sets U; =
{(0. 1)}, Uz = {(1,0)}, and Us = {(z,1—2)[0 < = < 1} (see
Figure 5).

Ug) ******

Figure 5: Even convex policy functions cannot be
monotone.

We necessarily have a(U1) = (0,1) and a(U2) = (1,0). As
Ui and U, are subsets of Us, we have a(Us) = (1,1), which
is absurd because no such point belongs to Us. O

3.5 Conclusion

In this section, we have established the following results:

e Indexes should be strictly monotone to ensure Pareto-
Optimality.

e Continuity (of allocations) is only possible when con-
sidering convex utility sets.

e It is impossible to ensure that the growth of the utility
set does not incur the decrease of the utility of some
player (i.e. policy functions cannot be monotone, even
when restricting to convex utility sets).

e A policy optimizing a given index f leads to erratic
values of an other index g when growing utility sets
(unless f and g induce the same optimization).

Note that even though being Braess-paradox-free does not
lead to bad properties, it does not give any information on
the efficiency of such policies. For example, an allocation
a that would be defined as returning 1/1000 of the NBS to
all users would obviously be Braess-paradox-free but is very
inefficient. This calls for more quantitative characterization
of efficiency.

4. QUANTITATIVE CHARACTERIZATIONS

How to measure the efficiency of a given policy is still an
open question. Many approaches have been proposed in the
literature but we will see in Section 4.1 that none of the pre-
viously proposed approach is fully satisfying. We discuss in
particular the most two popular ones: the Jain indez [3] and
the Price of Anarchy [5]. Then in Section 4.2, we propose
a new metric based on a more topological point of view and
explain how it relates to the notion of e-approximation [8].

4.1 Discussion

4.1.1 Jain index

The Jain efficiency measure (or Jain index) [3] of a choice

u is defined as % The Jain index is thus the ratio of

the first to the second moment of the choice u. Hence, it is
a good measure of a choice fairness (as defined by max-min
fairness). The Jain index has many interesting properties:

e It is independent of the number of users.

e [t remains unchanged if the utility set is linearly scaled.
e It is bounded (by 1/n and 1).

e It is continuous.

It can be straight-forwardly adapted to any measure of fair-
ness when considering the ratio of the first and second mo-
ment of z where for all 4, z; = u;/v; where v; is the fair
considered point. Another interpretation of the Jain index
is to write it as: 1/n>" (ui/us) where uy = (3 u?)/(3 ).
Then each u;/uys represents the ratio of the choice with the
fair allocation. The Jain is then the mean of these values.
The index is therefore considered a useful “distance” measure
to a given fair point.

The interest of the Jain factor is to determine which users
are discriminated, and which are favored in a given alloca-
tion. Transfer of share from favored to discriminate users
always increase the index, while the opposite reduces it.

However, as we have seen in Section 3.2 the Jain index
is non-monotone (see Figure 6(a)), hence optimal solutions
for the Jain index may not be Pareto-optimal. Even worse,
some max-min fair allocations (that are as “fair” as possible)
may have sub-optimal Jain index. Such an example is given
on Figure 6(b).



(a) Isolines for the Jain Index: this
index is not monotone.

(b) The max-min fair allocation may have a
sub-optimal Jain index.

Figure 6: Highlighting Jain’s index flaws.

4.1.2 Price of Anarchy and Index-Optimizing Based
Metrics

Index-optimizing based metrics are easy to compute, con-

1t Utility Set |

L Max-min Allocation

tinuous and generally conserve Pareto-superiority (under some

mild conditions). It is thus natural to select an index f and
to try to compare an allocation to the optimal one for f. Pa-
padimitriou [5] introduced the now popular measure “price
of anarchy” that we will study in this section.

For a given index f, let us consider a®) a f-optimizing
policy function. We define the inefficiency I(3,U) of the
allocation B(U) for f as

faV ()
ECHN
£(u)

=max —— - 1
B FB0)) .
Papadimitriou focuses on the arithmetic mean ¥ defined by
S(ut, ..., uk) = Zszl ug. The price of anarchy ¢x is thus
defined as the largest inefficiency:

If(ﬂ7U) =

_ _ PO
#2(0) = (5. 0) = b 5 B0
In other words, ¢=(8) is the approximation ratio of 3 for
the objective function . This measure is very popular and
rather easy to understand. However, we will see that it may
not reflect what people have in mind when speaking about
“price of anarchy”.

Consider the utility set Sar,n = {u € RY [u1 /M+3"0_ uy <

1} depicted in Fig 7. As the roles of the uy, k > 2 are sym-
metric, we can freely assume that us = - -+ = un for metrical
index-optimizing policies.

Remark 2. This example was taken from the master-slave
scheduling problem of [6].

It is then easy to compute the following index optimizing
allocation:

o o) (Sy ) = (M,0,...,0) corresponds to the alloca-
tion optimizing the average utility;

° a(mi“)(SM,N) = (N_lil/M, e N—1-1;-1/M) corresponds

to the max-min fair allocation [9];

Uk,

l Nash Equilibrium

L L L L L

Profit Allocation |

L L

Uy

M

Figure 7: Utility set and allocations for Sy,n (N =
3,M =2), with ug =--- = un.

oz(n)(SM,N) = (%, %, RN %) corresponds to the pro-
portionally fair allocation which is a particular Nash

Bargaining Solution [9].

Note that, a®, o™ and o™ are Pareto optimal by
definition. One can easily compute the price of anarchy of
the Nash Bargaining solution:
M
Is(a™, Surv) = M NI o
N N

The price of anarchy is therefore unbounded. However, the
fact that this allocation is Pareto-optimal and has interest-
ing properties of fairness (it corresponds to a Nash Bar-
gaining Solution [9]) questions the relevance of the price of
anarchy notion as a Pareto efficiency measure.

Likewise, the inefficiency of the max-min fair allocation
is equivalent to M for large values of M (as opposed to
K for the non-cooperative equilibrium). It can hence be
unbounded even for bounded number of applications and
machines. This seems even more surprising as such points
generally result from complex cooperations and are hence
Pareto optimal. These remarks raise once more the question
of the measure of Pareto inefficiency.

These are due to the fact that a policy optimizing an index
f is always non-monotone for a distinct index g (from The-
orem 5). Hence any policy (including Pareto optimal ones)



optimizing a distinct index from the arithmetic mean will
experience a bad price of anarchy. Note that the previous
problems are not specific to the efficiency measure arith-
metic mean. The same kind of behavior can be exhibited
when using the min or the product of the throughputs for
instance.

That is why we think that Pareto inefficiency should be
measured as the distance to the Pareto border and not to a
specific point.

4.1.3 Selfishness Degradation Factor

To quantify the degradation of Braess-like Paradoxes (the
degree of Paradox), Kameda [4] introduced the Pareto-compa-
rison of o and B as o(a,5) = ming g—f Therefore, a is
strictly superior to 8 iff o(o, 8) > 1. 1ntuitive1y o repre-
sents the performance degradation between o and 3. Using
this definition, the following definition of Pareto inefficiency,
named Selfishness Degradation Factor (SDF), was proposed
[6]:

Ispr(B,U) = maxe(u, 5(U))

= max min — % (2)
uelU

ko BU)k

Therefore 5(U) is Pareto inefficient as soon as Ispr(3,U) >
1 and the larger Ispr (8, U), the more inefficient the alloca-
tion.

Lemma 1. Let us define §,, = {x € R"|3k : x, < 0}. We
denote by al} = {z € R"|3k : 1, < ar}.

log(Ispr(B,U)) < &
Proof.

log(Ispr(3,U)) <

& log(U) € (log(B(U)) + &)L,

<
€ < maxmi min log( )<e

k) —log(B(U)k) <
k) < log(B(U)x )+€
(log(B(U)) + )84,

( )

< Yu € U, 3k, log(u
(u

& Vu € U, 3k, log
& VYu € U, log(u) €
< log(U)

Figure 8 depicts a graphical interpretation of this ineffi-
ciency measure. As illustrated by the previous lemma, this
inefficiency seems to measure how much 3(U) should be in-
creased so that it is not dominated by any other points in U.
Therefore, log(Ispr(8,U)) somehow measures the distance
in the log-space from B(U) to the Pareto set. However, as
we will see in the next section, this definition holds only
because of the very specific shape of the set U used in this
example.

Anyway, the selfishness degradation factor can, as in sec-
tion 4.1.2, be defined from this inefficiency measure:

¢ = sup Ispr(B,U) = sup max min Uk
Ueu

veuwel k B(U)

A system (e.g., queuing network, transportation network,
load-balancing, ...) that would be such that the Nash equi-
libria are always Pareto optimal would have a selfishness
degradation factor equal to one. The selfishness degrada-
tion factor may however be unbounded on systems where
non-cooperative equilibria are particularly inefficient. The
relevance of this definition is corroborated by the fact that
e-approximations of Pareto-sets defined by Yannakakis and
Papadimitriou [8] have a degradation factor of exp(e) ~
1+e.

C (log(B(U)) + 2)81,, -

4.2 A Topological Point of View

In this section, we go back to the inefficiency measure
introduced in the previous section and show that such a
measure can be properly defined only when referring to the
whole Pareto set. Indeed, what we are interested in is in
fact some kind of distance of a point to the Pareto set. As
researchers are used to look at factors when evaluating the
performance of an algorithm, this distance to the Pareto set
should be measured in the log space. As we have seen in
the previous section, the inefficiency measure for the selfish-
ness degradation factor is closely related to the distance to
the Pareto set. More precisely, we prove that being close to
the Pareto set implies a small measure of inefficiency. How-
ever, the converse is true only when the utility set has some
particular properties.

The distance from B(U) to the closure of the Pareto set
P(U) in the log-space is equal to:

doo (log(B(U), log(P(U))) = ug&) max [log(5(U)x)—log (ux)|

Therefore, we can define

Ioo(8,U) = exp(dss (log(B(U), log(P(U)))

BN un
w ’ﬁ(U)k> ®)

Let us recall the classical expansion definition:

X ®a={yld(z,y) <

This definition can be easily expanded as:
X ® a = exp(log(X) @ log(a))

= {yl exp(d(log(z),log(y)) <

Definition 9 (e-approximation). [8] defines an e-approzima-
tion of P(U) as a set of points S such that for all u € U
there erists some s € S such that Vk : up < (1 + €)sg.

= min maxmax(
u€P(u) k

a, for some z € X}

a for some z € X'}

With the previous notations, it is easy to see that:

Theorem 7. S C U is an e-approzimation of P(U) iff
B(U) C 8 ® exple).

Figure 9(d) depicts the expansion of log(P(U)) by € so
that it contains log(8(U)). It is easy to show that:

exp(e) & B(U) € P(U) ® exp(e).

In other words, Ino(8,U) < exp(e) iff B(U) is no farther
than € from P(U) in the log space.

Lemma 2. I.(3,U) <

When comparing the definitions of I, Ispr and foo, the
latest may seem harder to compute as it relies on P(U).
However, what we are interested in is measuring the distance
to the Pareto set and no index-based inefficiency measure
can reflect this distance. Then can only reflect a particu-
lar property of the allocation such as fairness. Note that in
mono-criteria situations, it is natural to compare a solution
to an intractable optimal solution, generally using approx-
imations or lower bounds. Therefore, similar approaches
should be used in multi-criteria settings to compute Too
This inefficiency measure is thus a natural extension of the
classical mono-criteria performance ratio.

The previous definition should thus be used in the general
case, even though in a some particular situations, the SDF
definition is sufficient.
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Figure 8: Inefficiency for the selfishness degradation factor: log(U) C (log(8(U)) + ¢)
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Figure 9: Distance to the Pareto set



5. CONCLUSION

In this paper, we have addressed the question of how to
properly measure efficiency of allocations, may they be ob-
tained as the result of some index-function optimization or
some general policy. We have shown a number of results,
both at qualitative and quantitative level. In particular, we
have shown that:

Monotonicity is the link between index-optimization
and Pareto optimality.

When utilities are continuous with the system’s re-
sources, solution allocations can be continuous in the
resources only when the utility sets are convex.

Even with Braess-free allocations, there always exists
instances where resource increase is detrimental to at
least one user.

A policy optimizing a given index leads to erratic val-
ues for another index when utility sets grow.

Both the Jain index and the price of anarchy have flaws
as measures of the inefficiency of an equilibria.

A correct general inefficiency measure can be defined
and is based on the log space as the distance of a point
to the Pareto border.

We believe that these results can serve as a general theo-
retical milestones to any researcher aiming at analyzing the
performance of an allocation in a specific problem.
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