
Power allocation game for fading MIMO multiple access
channels with antenna correlation

Samson Lasaulce
Lab. des Signaux et Systemes

CNRS - Supelec - Paris 11
91190, Gif-sur-Yvette, France
lasaulce@lss.supelec.fr

Alberto Suárez
∗

Dpt. Communications Mobiles
Institut Eurecom

06904, Sophia Antipolis,
France

suarezr@eurecom.fr

Merouane Debbah
†

Dpt. Telecoms
Supelec

91190, Gif-sur-Yvette, France
merouane.debbah@supelec.fr

Laura Cottatellucci
Dpt. Communications Mobiles

Institut Eurecom
06904, Sophia Antipolis,

France
cottatellucci@eurecom.fr

ABSTRACT
In this contribution, a power allocation game for multi-
ple input multiple output multiple access channels is pro-
vided. Considering competing transmitting users, equipped
with several antennas each and common multiple antennas
at the receiver (base station), a game theoretic framework
is conducted to analyze the optimum precoding matrices
(power allocation and eigenvector transmit structure) such
that each user maximizes selfishly his own rate under a
power constraint (assuming single user decoding at the re-
ceiver). Interestingly, as the dimensions of the system grow
i.e the numbers of transmitting and receiving antennas go
to infinity but their ratio stays constant, a Nash equilibrium
is shown to exist and be unique. The results are based on
random matrix theory and provide, in the asymptotic case,
a closed-form expression of the Nash equilibrium operating
point. Each terminal can compute the power allocation in-
dependently based only on the knowledge of the statistics
of the channel (spatial correlation structure at the transmit-
ter and the receiver) and not its instantaneous realizations.
This reduces dramatically the downlink overhead signaling
protocol, which becomes important as the number of users
grow. The asymptotic claims are then validated through
simulations using only a finite number of antennas.
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1. INTRODUCTION
We consider the uplink of a typical cellular system, which

is a multiple access channel (MAC). The MAC consists of
several users, called mobile stations in cellular systems, send-
ing independent messages to a common receiver, called the
base station. More specifically we assume that both the base
and mobile stations are equipped with –possibly correlated–
multiple antennas and the different links into play are fading
channels. In this context we want to investigate the opti-
mum power allocation issue at the mobile stations in the
case where the base station does not send any control signal
to the mobile stations.

From an information theoretic point of view, the optimal
power and rate policies for the fading single input single out-
put (SISO) MAC have been determined by [1], which leads
to the MAC ergodic capacity region. Recently, the authors
of [2][3] addressed the fading multiple input multiple out-
put (MIMO) MAC with correlated antennas and covariance
feedback at the transmitters and determined the optimum
power allocation policy in terms of ergodic sum capacity. We
consider the same framework as [2][3] but we do not assume
the power allocation policies to be centralized. In order to
reduce the signaling protocol overhead, we want to deter-
mine the best distributed power allocation strategies: each
user wants selfishly to maximize its own utility instead of a
global utility function such as the sum-capacity. A conve-
nient tool to address this kind of problems turns out to be



game theory [4][5]. In this respect the authors of [6] used
a game theoretic approach to characterize the information
rates of the fading SISO and single input multiple output
(SIMO) multiple access channels. Note that different utility
functions can be defined such as those maximizing energy-
efficiency (see e.g. [7][8]). In this paper the individual utility
function we selected is the average mutual information be-
tween the transmitted signal of the considered user and the
signal received by the base station. In [9], which is the clos-
est work to the one presented here, the authors have chosen
the individual mutual information for studying static MIMO
MAC channels when the transmitters have perfect channel
state information (CSI). Here, given the fact that the chan-
nel is time-varying, we consider the ergodic mutual informa-
tion, which does not depend on a particular realization of
the channel but on its statistics. Therefore our work differs
from [9] in at least three important points:

• (a) each user is only informed with the statistics of its
own channel and not with its instantaneous knowledge;

• (b) the transmit and receive antennas can be correlated
(this feature cannot be considered when assuming per-
fect CSI since each transmitter exploits the realization
of the channel itself);

• (c) we use the theory of random matrices to simplify
the design of the power allocation algorithms.

Concerning the latter point, random matrix theory will
be used with the same approach as the authors of [10], who
studied the impact of antenna correlation on fading MIMO
single-user channels. As it will be seen, it considerably sim-
plifies the derivation of distributed power allocation algo-
rithms and the analysis of their properties.

This paper is structured as follows. We first provide the
signal model used to represent the fading MIMO MAC chan-
nel with antenna correlations (section 2). After defining
and justifying the utility function for the users in section
3, we provide the corresponding optimum power allocation
scheme in section 4. Sufficient conditions for the existence
and uniqueness of a Nash equilibrium are provided in section
4.3. Section 5 provides simulation results that show the ben-
efits of using the proposed power allocation policy instead of
allocating the available transmit power uniformly over the
different transmit antennas (isotropic power allocation).

2. SYSTEM MODEL
Notations: in this paper, the notations s, v, M stand for

scalar, vector and matrix respectively. The superscripts (.)T

and (.)H denote transpose and transpose conjugate, respec-
tively. The trace of the matrix M is denoted by Tr(M).
The mathematical expectation operator is denoted by E(.).
ℜ and ℑ denote respectively the real and imaginary parts.
N (v,M) denotes the complex Gaussian distribution with
mean v and covariance M.

We consider the uplink of a single cell with K active users
(see figure 1). Each mobile station is equipped with nt an-
tennas whereas the base station has nr antennas (thus we
assume the same number of transmitting antennas for all
the users). In our analysis the flat fading channel matrices
of the different links can possibly vary from symbol vector
(or space-time codeword) to symbol vector (or space-time
codeword). We assume that the receiver knows all the chan-
nel matrices (coherent communication assumption) whereas

each transmitter has only access to the statistics of the chan-
nel over which it sends a message. The equivalent baseband
signal received by the base station can be written as

y(τ) =

K∑

k=1

Hk(τ)xk(τ) + n(τ) (1)

where xk(τ) is the nt-dimensional column vector of symbols
transmitted by user k at time τ , Hk(τ) ∈ C

nr×nt is the
channel matrix (stationary and ergodic process) of user k

and n(τ) is a nt-dimensional complex white Gaussian noise
distributed as N (0, σ2Ir). For simplicity we will omit the
time index τ from our notations. Each channel input is
subject to a power constraint Tr

[
E(xkxH

k )
]

, Tr(Qk) ≤ nt.
Here we implicitly assume that the mobile terminals have
the same transmit power, which is a reasonable assumption
in a cellular system.

In order to take into account the antenna correlation ef-
fects at the transmitters and receiver we will assume the
different channel matrices to be structured according to the
Kronecker propagation model [11]:

∀k ∈ {1, ..., K}, Hk = R
1
2 ΘkT

1
2
k (2)

where R is the receive antenna correlation matrix, Tk is
the transmit antenna correlation matrix for user k and Θk

is an nt × nt matrix whose entries are zero-mean indepen-
dent and identically distributed (i.i.d.) Gaussian random
variables with variance 1

nt
. It turns out that in cellular sys-

tems the Kronecker model can often be simplified because
the receive antennas are sufficiently spaced such as there is
no correlation at the receiver side, which implies that R = I.
However our analysis can be extended to the case of receive
correlation by using similar arguments to those of [3][12].

User 1

User 2

User K
1...nT

1...nT

1...nT

1 … nR

Figure 1: System under investigation: K users with

nT antennas each, and a BS with nR receive antennas

3. PROBLEM STATEMENT
In this section, we first justify the choice of the consid-

ered utility functions (subsection 3.1). Then, in subsection



3.2 we show that the search for the input covariance matrix
maximizing the utility function of a given user can be sim-
plified. In fact, without loss of optimality, we can impose a
certain structure on the eigenvectors of the input covariance
matrix. Then (section 4), based on this choice for the eigen-
vectors, we use random matrix theory to obtain an accurate
and simple approximation of the utility function, which al-
lows us to maximize it and obtain the optimum eigenvalues
of the input covariance matrix.

3.1 On the choice of the utility function
As mentioned in the introduction, instead of maximizing

the sum-capacity [3] each user wants to selfishly maximize
his non-cooperative utility function. Therefore, assuming
single-user decoding at the base station the information rate
achieved by user k equals the mutual information between
xk and y conditioned on the overall channel matrix H =
[H1H2...HK ]:

I(xk; y|H) = E



log2

∣
∣
∑

ℓ HℓQℓH
H
ℓ + σ2I

∣
∣

∣
∣
∣
∑

ℓ6=k HℓQℓH
H
ℓ + σ2I

∣
∣
∣





= E
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log2
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∣
∣
∣
∣
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ℓ
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2
I

∣
∣
∣
∣
∣

]

−E



log2
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∣
∣
∣
∣
∣
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HℓQℓH
H
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2
I
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∣
∣
∣
∣
∣





, C
(1)
k − E



log2

∣
∣
∣
∣
∣
∣

∑

ℓ6=k

HℓQℓH
H
ℓ + σ

2
I

∣
∣
∣
∣
∣
∣



.

(3)
where |A| stands for the determinant of the matrix A and

the expectation is taken over the random channel matrices
H1, ...,HK . We see that the second term of the ergodic
mutual information (EMI) does not depend on the input
covariance matrix of user k and therefore does not need to be
considered for the individual utility function of the different
users k ∈ {1, ..., K} , which will be chosen then as

C
(1)
k (Qk) = E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

HℓQℓH
H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

. (4)

Note that, for the centralized approach, maximizing the EMI
with respect to the input covariance matrix Qk = E(xkxH

k )
leads to the channel/Shannon capacity for fast fading MIMO
channels i.e. when the channel vary from symbol to symbol.
This capacity is achieved by averaging over channel varia-
tions over time. For slow fading MIMO channels, i.e. when
the channel matrix remains constant over a certain block
duration much smaller than the channel coherence time, no
such averaging is possible and one has to communicate at
rates smaller than the ergodic capacity. The maximum EMI
is therefore a rate upper bound for slow fading MIMO chan-
nels and only a fraction of it can be achieved1. A more
suited performance metric to study slow-fading channels is
the outage capacity, which is related to the variance of the
mutual information instead of its mean (EMI) as we do here.
This can be considered as a possible extension of the present
work.

1This fraction is called the multiplexing gain in [13] where
the authors introduced the famous diversity multiplexing
trade-off.

Now we have justified why we chose C
(1)
k (Qk) for the

utility function, we address, for each user, the optimization
problem of this function with respect to Qk under the indi-
vidual power constraint Tr(Qk) ≤ nt. The input covariance
matrix can be decomposed spectrally as: Qk = VkPkV

H
k ,

where Pk = Diag(Pk(1), ..., Pk(nt)). The purpose of the fol-
lowing sections is precisely to show how to determine the
eigenvectors and eigenvalues of Qk in a game theoretic set-
ting.

3.2 Optimum eigenvectors of the input covari-
ance matrix

The utility function we are interested in is:

C
(1)
k (Qk) = E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

HℓQℓH
H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

. (5)

Indeed, the second term of Ck does not depend on Qk, which
means it does not need to be considered. Now remind the er-
godic sum capacity expression for the MIMO multiple access
channel

Csum = max
Q1,...,QK

E



log2

∣
∣
∣
∑K

ℓ=1 HℓQℓH
H
ℓ + σ2I

∣
∣
∣

|σ2I|



 (6)

under the classical trace constraints. So, up to an additive
constant term we want to optimize the same function as
in [3]. The difference is that we only optimize it over Qk

instead over (Q1, ...,QK). Therefore the proof of [3] can
be reused to assert that there is no loss in restricting the
search for the optimum covariance matrix by imposing the
structure Qk = UkΛkU

H
k where Tk = UkDkU

H
k , in other

words the transmit eigenvectors match the transmit corre-
lation matrix. In order to make this paper sufficiently self-
contained we will provide the proof of the following lemma:

Lemma 1 (Optimum eigenvectors). Let Q be the set
of nt×nt Hermitian matrices such that Tr(Q) ≤ nt i.e. Q =
{
(Q1, . . . QK) : ∀k ∈ {1, . . . , K}, Qk = QH

k , Tr(Qk) ≤ nt

}
.

Additionally, let S be the subset of Q such that Qk = U kP kUH
k

where Uk represents the eigenvectors of Tk. Then

max
Qk∈Q

C
(1)
k = max

Qk∈S
C

(1)
k . (7)

Proof. By definition: Hℓ = ΘℓT
1
2
ℓ = ΘℓUℓD

1
2
ℓ UH

ℓ ,
where Θℓ is a zero-mean i.i.d. Gaussian identity covari-
ance random matrix. Using the fact that multiplying Θℓ by
a unitary matrix does not change its joint distribution one
can write:

max
Qk

C
(1)
k =

max
Qk

E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

ΘℓUℓD
1
2
ℓ U

H
ℓ QℓUℓD

1
2
ℓ U

H
ℓ Θ

H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

=

max
Qk

E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

ΘℓD
1
2
ℓ U

H
ℓ QℓUℓD

1
2
ℓ Θ

H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

.

(8)

Then we can spectrally decompose the matrix D
1
2
ℓ UH

ℓ QℓUℓD
1
2
ℓ =



ŨℓD̃ℓŨ
H
ℓ and write that

max
Qk

C
(1)
k = max

Qk

E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

ΘℓŨℓD̃ℓŨ
H
ℓ Θ

H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

= max
Qk

E

[

log2

∣
∣
∣
∣
∣

K∑

ℓ=1

ΘℓD̃ℓΘ
H
ℓ + σ

2
I

∣
∣
∣
∣
∣

]

. (9)

We see that the function to be optimized depends on the
eigenvectors Ũk only through the power constraint:

Tr(Qk) = Tr(ŨH
k D

−1
k ŨkD̃k) ≤ nt. (10)

The matrix Ũk can be chosen arbitrarily provided it meets
the power constraint Tr(Qk) ≤ nt. The choice Ũk = I is

feasible since Tr(D−1
k D̃k) ≤ Tr(ŨH

k D−1
k ŨkD̃k) ≤ nt. This

shows that Qk can be chosen without loss of optimality to
be structured as:

Qk = UkD
−1
k D̃kU

H
k . (11)

Quite interestingly, if each user wants to maximize his own
rate, each user will independently choose an eigenvector ba-
sis which matches his transmit correlation matrix (and does
not depend on the channels of all the other users). This is
a quite important result when considering the decentralized
approach as it reduces the power allocation game algorithm
to the choice of the transmit powers only. As we will show
in the next section, the transmit power allocation algorithm
will also be simplified as it will turn out to be independent of
the channel realizations but will only depend on the statis-
tics of the different channels.

4. OPTIMUM SELFISH POWER
ALLOCATION POLICY: A LARGE
SYSTEM APPROACH

4.1 Asymptotic expression of the utility func-
tion

In the previous section we have shown that, for a given
user, there is no loss of optimality by choosing the eigenvec-
tors of Qk to be equal to those of the transmit correlation
matrix Tk = UkDkU

H
k . As a consequence, one can ex-

ploit the asymptotic results of [14] derived for fading MIMO
single-user channels with transmit and receive antenna cor-
relation for large systems. Indeed, from now on, we assume
the asymptotic regime in terms of the number of antennas,
which is defined as:

• nt → ∞;

• nr → ∞;

• lim
nt→∞,nr→∞

nt

nr

= c where 0 < c < ∞.

For each user k ∈ {1, ..., K}, we also suppose that dk(1), ..., dk(nt),
which are the elements of the diagonal matrix Dk, have an
empirical distribution that converges to a probability den-
sity function fk(t) i.e.

1

nt

nt∑

i=1

δ(t − dk(i)) → fk(t). (12)

Under these assumptions, one can apply Theorem 3.7 of [14]

and verify that C
(1)
k can be approximated by C

(1)
k :

C
(1)
k =

1

nr

K∑

ℓ=1

nt∑

i=1

log2 [1 + KρPℓ(i)dℓ(i)α] + log2(1 + Kρβ)

−ntK
2

nr

ραβ log2 e (13)

where ρ , 1
σ2 and the pair (α, β) is determined by the fol-

lowing system of equations:






α =
nr

Knt

1

1 + Kρβ

β =
1

Knt

K∑

ℓ=1

nt∑

i=1

Pℓ(i)dℓ(i)

1 + KρPℓ(i)dℓ(i)α
.

(14)

Note that in order to make this approximation accurate
the numbers of antennas do not need to be very high. This
is especially true when the metric of interest is the ergodic
mutual information since one benefits from a double averag-
ing effect, one from the randomness of the matrices into play
and the other one from the expectation operator. For exam-
ple, in [12], the asymptotic regime is shown to be reached
with a very small relative error for a 4 × 4 fading MIMO
single-user system.

4.2 Power allocation algorithm
For each user k, we want to determine the optimal way, in

the sense of his approximated utility function C
(1)
k , to share

its available power between the transmit eigenmodes. To
solve this constrained optimized problem we introduce the
Lagrange multiplier λk and define the function

Lλk
(Pk(i)) , C

(1)
k − λk ×

(
nt∑

j=1

Pk(j) − nt

)

(15)

and search for the solution(s) P ∗
k (i) such that

∂Lλk

∂Pk(i)
= 0.

The solution of the corresponding optimization problem is
stated through the following lemma.

Lemma 2 (Optimum eigenvalues). Assume that the
pair (α, β) is a solution of the system of equations (14).
Then the spatial power allocation maximizing the constrained
approximated utility function (15) is given by the following
water-filling solution:

P
∗
k (i) =

[
1

nr ln 2λk

− 1

Kρdk(i)α

]+

(16)

where we used the notation [x]+ = max(x, 0).

Proof. To obtain the water-filling solution(s) one first

needs to explicit
∂C

(1)
k

∂Pk(i)
, which is the purpose of the following

calculation. The main interest in the proposed derivation is
that one does not need to assume α or β to be independent
of Pk(i), which avoids one to study the convergence issues
for α and β. Otherwise, if they are assumed to be strict
constants with respect to a given power Pk(i), the result
can be obtained much more easily. We want to prove that
the derivative of the approximated utility function of user k

can be expressed as:

∂C
(1)
k

∂Pk(i)
=

1

nr ln 2

Kρdk(i)α

1 + KρPk(i)dk(i)α
. (17)



We have:

nrC
(1)
k = log2







∏

ℓ,j

[1 + KρPℓ(j)dℓ(j)α(Pk(i))]×

× (1 + Kρβ(Pk(i)))nr e
−ntK2ρα(Pk(i))β(Pk(i))

}

Define U ,
∏

ℓ,j

[1 + KρPℓ(j)dℓ(j)α(Pk(i))]

V , (1+Kρβ(Pk(i)))nr e−ntK2ρα(Pk(i))β(Pk(i)). With these
notations:

∂nrC
(1)
k

∂Pk(i)
=

1

UV

∂UV

∂Pk(i)
. (18)

It turns out that
∂UV

∂Pk(i)
= UV × Kρdk(i)α

1 + KρPk(i)dk(i)α
. This

is what we want to show.
First step:

U
′

,
∂U

∂Pk(i)

=
∑

ℓ,j

∏

(ℓ′,j′) 6=(ℓ,j)

[
1 + KρPℓ′(j

′)dℓ′(j
′)α
]
×

× [1 + KρPℓ(j)dℓ(j)α]′

=
∑

ℓ,j

N(ℓ, j)

1 + KρPℓ(j)dℓ(j)α

∏

ℓ′,j′

[
1 + KρPℓ′(j

′)dℓ′(j
′)α
]

︸ ︷︷ ︸

U

where

N(ℓ, j) =

∣
∣
∣
∣

KρPℓ(j)dℓ(j)α
′ if (ℓ, j) 6= (k, i)

Kρdk(i)(α + Pk(i)α′) if (ℓ, j) = (k, i).

Second step:

V
′

,
∂V

∂Pk(i)

= V × Kρ

[
nrβ

′

1 + Kρβ
− Knt(α

′
β + αβ

′)

]

.

From this we have that

∂UV

∂Pk(i)
= U

′
V + UV

′

= UV ×







∑

ℓ,j

N(ℓ, j)

1 + KρPℓ(j)dℓ(j)α

+ Kρ

[
nrβ

′

1 + Kρβ
− Knt(α

′
β + αβ

′)

]}

= UV ×







∑

(ℓ,j) 6=(k,i)

KρPℓ(j)dℓ(j)α
′

1 + KρPℓ(j)dℓ(j)α

+
Kρdk(i)(α + Pk(i)α)′

1 + KρPk(i)dk(i)α

+ Kρ

[
nrβ

′

1 + Kρβ
− Knt(α

′
β + αβ

′)

]}

Now using the relations







α =
nr

Knt

1

1 + Kρβ

β =
1

Knt

∑

ℓ,j

Pℓ(j)dℓ(j)

1 + KρPℓ(j)dℓ(j)α

α′ =
Kρβ′

1 + Kρβ
α

β′ =
−nr

KntKρ

1

α2

we find, after simplifications, the proposed expression for

the derivative of C
(1)
k .

Finally, by setting the derivative of Lλk
(Pk(i)) to zero we

find that:

P
∗
k (i) =

[
1

nrln2λk

− 1

Kρdk(i)α

]+

. (19)

In the water-filling procedure the Lagrangian multiplier λk,
for user k, is tuned in order to meet the power constraint.
In a finite setting the corresponding λk would depend on the
particular values of dk(i). However, in the asymptotic case,
by assuming a known law pk for the diagonal terms dk(i),
so that

1

nt

nt∑

i=1

1

dk(i)
→
∫

fk(t)

t
, (20)

we see that λk can be expressed analytically and only de-
pends on the distribution of dk(i) according to the following
relation:

1 =

∫ +∞

0

[
1

µk

− 1

Kρtα

]+

fk(t)dt where µk = nrln2λk

=

∫ +∞

µk
Kρα

(
1

µk

− 1

Kρtα

)

fk(t)dt (21)

where µk is obtained through

µk =

∫ +∞

µk
Kρα

fk(t)dt

1 + Kρα

∫ +∞

µk
Kρα

fk(t)

t
dt

. (22)

At this point we are in position to describe the proposed
iterative power allocation algorithm:

1. Initialize α with a value in the interval [αmin, αmax]
with αmin = nr

Knt

1
1+Kρ

and αmax = nr

Knt
.

2. Apply water-filling over the dk(i) by using equation
(16) in order to find Pk(i) for all i ∈ {1, ..., nt} and
k ∈ {1, ..., K}. For this purpose make use of equation
(22) to find µk for all k ∈ {1, ..., K}.

3. By using the powers obtained at the previous step,
update the value of α by searching for the solution of
the system of equations (14).

4. If α has not converged (fix an arbitrary accuracy level
on α) go to step 1. Otherwise stop the iterative pro-
cedure and go to step 5.



5. Apply for the last time the water-filling procedure over
the dk(i) by using equation (16) in order to find Pk(i)
for all i ∈ {1, ..., nt} and k ∈ {1, ..., K}.

Depending on the assumptions one makes at the termi-
nals, step 3 can slightly change. If the Knt correlation terms
dk(i), k ∈ {1, ..., K}, i ∈ {1, ..., nt} are assumed to be known
at all transmitters step 3 can be implemented by using eq.
(14). One can also restrict the knowledge of the transmit-
ters to the probability density function fk(t), k ∈ {1, ..., K}
in which case one just needs to use equation given below
for step 3. Indeed, in the asymptotic regime, the existence
and uniqueness of the solution to the proposed optimization
procedure is related to the existence and uniqueness of the
solution α, which verifies the following key equation:

Kcα +
1

K

K∑

ℓ=1

∫ +∞

µℓ
Kρα

(

1 − µℓ

Kραt

)

fℓ(t)dt = 1. (23)

This equation is obtained eliminating β in the system of

equations (14), using the fact that dℓ(i)
1+KρPℓ(i)dℓ(i)α

= µℓ

(equation (17)) when a non-zero power is allocated to the
ith antenna, using the expression of P ∗

ℓ (i) (equation (19))
and using the probability density function fk(t) instead of
dk(i) in the asymptotic regime. Studying the existence and
uniqueness of the solution of this equation is the purpose of
the next section.

4.3 Nash equilibrium
For the non-cooperative power allocation game proposed

in this paper, a Nash equilibrium is a set of power vectors
{P ∗

1, ..., P
∗
K}, with ∀k ∈ {1, ..., K}, P ∗

k = (P ∗
k (1), ..., P ∗

k (nt))
such that no user can unilaterally improve its utility by
choosing a different power vector i.e. {P ∗

1, ..., P
∗
K} is a Nash

equilibrium if and only if:

C
(1)
k (P ∗

k, P
∗
−k) ≥ C

(1)
k (P k, P

∗
−k) for all P k (24)

where P ∗
−k stands for the strategies of all the users except

for user k.
In this section we investigate the existence and uniqueness

of a Nash equilibrium when all the active users perform allo-
cation power according to the proposed iterative algorithm.
In order to prove the existence and uniqueness of a Nash
equilibrium one needs to study the convergence of this algo-
rithm. In the literature of random matrix theory this kind
of algorithm is quite common (see e.g. [10], [12]). Although
many simulation results illustrate the convergence of these
algorithms, the convergence proof has only been provided
very recently in [17].2 The authors proved the convergence of
this algorithm in the case of Rician MIMO single-user chan-
nels with two-sided antenna correlation. By noticing that
maximizing the utility function of user k used in this paper
amounts to maximizing the EMI of a Knt × nr MIMO sys-
tem with respect to Qk one can therefore apply the results of
[17]. First these results allow us to assert the strict concav-
ity of the asymptotic approximant of I(x1, ..., xK ; y|H) with
respect to (Q1, ...,QK). This clearly proves that, provided
the optimality of the optimization algorithm given in the
previous section, there exists a unique Nash equilibrium. It
turns out that [17] also allow us to insure the convergence of
the proposed algorithm towards the unique maximum, under

2See also reference [18] which is incomplete but in English.

a quite general but non-explicit condition. In order to pro-
vide explicit conditions for the existence and uniqueness of a
Nash equilibrium we prefer to provide another type of proof.
For determining the condition for existence and uniqueness
of Nash equilibrium define

g(α) ,
Knt

nr

α +
1

K

K∑

ℓ=1

∫ +∞

µℓ
ρα

(

1 − µℓ

ραt

)

fℓ(t)dt − 1. (25)

Note that if g is strictly decreasing or increasing there is at
most one point where it vanishes. We want to show that
∂g

∂α
keeps the same sign on the interval [αmin, αmax] where

αmin = nr

Knt

1
1+ρ

, αmax = nr

Knt
. We have

∂g

∂α
=

Knt

nr

+ lim
T→∞

1

K

K∑

ℓ=1

(

1 − µℓ

ραT

)

fℓ(t)
∂T

∂α

−
(

1 − µℓ

ρα

ρα

µℓ

)

pℓ

(
µℓ

ρα

)
∂

∂α

(
µℓ

ρα

)

=
Knt

nr

+
1

Kρα2

K∑

ℓ=1

µℓ

∫ +∞

µℓ
ρα

fℓ(t)

t
dt. (26)

We see that ∂g

∂α
is strictly positive on [0, +∞). This un-

conditionally insures the uniqueness of the point α0 such
that g(α0) = 1. However this point will not always be
in the operating interval [αmin, αmax]. As for all α ≤ 0,
g(α) ≥ Knt

nr
α − 1 it is clear that α0 ≤ αmax. Therefore a

necessary and sufficient condition for the existence of a Nash
equilibrium follows:

α0 ≥ nr

Knt

1

1 + ρ
. (27)

If this condition is met there exists a unique Nash equi-
librium and, in this case we note: α0 = α∗. The main issue
here is that it is not easy to provide a closed-form expression
for α0. This is why determining sufficient but not necessary
conditions for the existence of α∗ turns out to be useful.

For all α ≥ 0 we have

g(α) ≤ Knt

nr

α − 1 +
1

K

K∑

ℓ=1

∫ +∞

µℓ
ρα

fℓ(t)dt. (28)

Let us denote by α̃0 the point where the upper bound func-
tion, says g̃(α), vanishes. By construction α̃0 ≤ α0. There-
fore, from equation (27) we know that if α̃0 ≥ nr

Knt

1
1+ρ

then
the existence of a Nash equilibrium is insured. This means
that if one can explicit the function

Iℓ :

∣
∣
∣
∣
∣
∣

[0, +∞) → [0, 1]

α 7→
∫ +∞

µℓ
ρα

fℓ(t)dt (29)

one can find an explicit sufficient condition for a Nash equi-
librium of the multiple access system under consideration.

In what follows we provide sufficient conditions for a typ-
ical and realistic antenna correlation profile:

∀(i, j) ∈ {1, ..., nt}2
, Tk(i, j) = r

|i−j|
k (30)

where rk is the correlation coefficient characterizing the trans-
mit correlation matrix Tk (this is also the case for the sim-
ulation results provided in sec. 5). The authors of [19] have
shown that the asymptotic probability density function of



the eigenvalues of Tk are simply given by:

∀k ∈ {1, ..., K}, fk(t) =

∣
∣
∣
∣
∣

1

πt
√

−t2+2akx−1
if 1−rk

1+rk
< t <

1+rk

1−rk

0 otherwise
(31)

with ak ,
1+r2

k

1−r2
k

. The corresponding cumulative distribution

function is:

Fk(t) =
1

π
cos−1

(
1 − r2

k

2rkt
− 1 + r2

k

2rk

)

. (32)

Assuming the chosen correlation profile we find that

I(α) =

∣
∣
∣
∣
∣
∣
∣

0 if α <
µℓ

Kρ

1−rℓ

1+rℓ

1 − 1
π

cos−1(Aℓ(α)) if α ∈
[

µℓ

Kρ

1−rℓ

1+rℓ
,

µℓ

Kρ

1+rℓ

1−rℓ

]

1 if α >
µℓ

Kρ

1+rℓ

1−rℓ

(33)

with Aℓ(α) =
Kρ(1−r2

ℓ )

µℓ2rℓ
α − 1+r2

ℓ

2rℓ
. By upper bounding the

function Iℓ by 1 on the interval
[

µℓ

Kρ

1−rℓ

1+rℓ
,

µℓ

Kρ

1+rℓ

1−rℓ

]

one de-

fines a new upper bound function ĝ(α) ≥ g̃(α) ≥ g(α) that
vanishes at a unique point called α̂0. This function is defined
by

ĝ(α) =
Knt

nr

− 1 +
1

K

K∑

ℓ=1

µℓu

(

α − µℓ

Kρ

1 − rℓ

1 + rℓ

)

(34)

where the function u(.) is the Heaviside step function. One
can show that the corresponding nulling point expresses by:

α̂0 =
nr

Knt

×



1 − 1

K

K̂∑

ℓ=1

µℓ



 (35)

where K̂ is the greatest integer in the set {1, ..., K} such

that 1 − Knt

nr

α1 − 1

K

K̂∑

ℓ=1

µℓ ≥ 0 and the user indices have

been ordered so that µ1 ≤ µ2 ≤ ... ≤ µℓ. Thus a sufficient
condition for the existence of a Nash equilibrium when the
exponential correlation profile (30) is assumed is

1

1 + ρ
≤ 1 − 1

K

K̂∑

ℓ=1

µℓ. (36)

This equation can be implemented and allows each mobile
station to insure the existence of a Nash equilibrium. We
see that the existence of such an equilibrium tends to be
guaranteed as the signal-to-noise ratio increases. Note that
in some special cases, like the low and high signal-to-noise
ratio (SNR) regimes, the vanishing point of g(α) can be de-
termined exactly whatever the assumed correlation profile:







ρ → ∞ : α∗ → 0
ρ → 0 : α∗ → nr

Knt

K → ∞ : α∗ → 0
(37)

5. SIMULATION RESULTS
In this section we compare the performance of the pro-

posed distributed power allocation scheme with the uniform
power allocation scheme (over the different transmit anten-
nas). First we show that the asymptotic regime is reached

for relatively small numbers of antennas. Figure 2 repre-
sents the relative error (in percentage) between the max-
imized ergodic mutual information and its approximation
versus signal-to-noise ratio for one user and different corre-
lation scenarios: ρ = 0.2, ρ = 0.5 and ρ = 0.8 (the transmit
antenna correlation profile is the one used in section 4.3),
with nt = nr = 4. It is seen that even in this case, in
the considered range of SNR values, the approximation er-
ror never exceeds 1%. We then consider the single-user case
and compare the performance of uniform and optimal power
allocations schemes. Corresponding results are represented
in figures 3 and 4 with different values for the correlation
parameter (ρ = 0.5 and ρ = 0.8). The gain of the proposed
algorithm is quite significant for low SNRs but vanishes as
the SNR increases.

We then consider a system with two active users with the
following correlation parameters: ρ1 = 0.2, ρ2 = 0.8. Figure
5 depicts the sum-rate for the uniform and optimal power al-
location schemes while figure 6 shows the individual rates for
the two users. Interestingly, the optimum power allocation
strategy provides significant gains not only for low SNRs but
also and especially for high SNRs. It is interesting to note
that even at high values of SNR the optimal allocation may
result in some (or all) of the users not using all the available
dimensions to allocate the power, as can be seen in figure
7 where the powers allocated to each of the eigenvalues are
shown. We see that there is a performance saturation for the
isotropic power allocation, because in the context considered
in this paper (decentralized power allocation with single-user
decoding at the base station) the uniform scheme leads to a
multiple access interference-limited system whereas the pro-
posed decentralized scheme can cope with the presence of
interference. Other simulations results have confirmed this
result, which shows the interest of the proposed approach.
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Figure 2: 1 user, ρ = 0.2, 0.5, 0.8. Relative error of

the asymptotic approximation with respect to actual

ergodic capacity. nT = nR = 4
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Figure 3: Ergodic mutual information for optimal

and insotropic inputs. 1 user, ρ = 0.5, nT = nR = 4.
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Figure 4: Ergodic mutual information for optimal

and insotropic inputs. 1 user, ρ = 0.8, nT = nR = 4.
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Figure 5: Ergodic sum mutual information for opti-

mal and insotropic inputs. 2 users, ρ1 = 0.2, ρ2 = 0.8,
nT = nR = 4.
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6. CONCLUSIONS
In this paper we considered fading MIMO multiple access

channels with antenna correlation. We exploited key results
from random matrix theory to design a simple decentralized
power allocation algorithm. Sufficient conditions for the ex-
istence and uniqueness of a Nash equilibrium for the system
under investigation have been provided. Simulation results
show that the proposed algorithm clearly outperforms the
uniform power allocation strategy, because the performance
of the latter strategy is severely limited by multiple access
interference.

Several interesting extensions of this work could be ad-
dressed. First of all, the sufficient conditions for the exis-
tence of a Nash equilibrium could be refined. Second, as we
consider the individual ergodic mutual information for the
user utility function, it would be useful, for slow fading chan-
nels, to optimize the outage probability associated with the
individual mutual information. Finally, as the sum capacity
expression provided by random matrix theory is based on
certain fixed parameters (related to the channel statistics)
the base station could send a very limited amount of in-
formation (which scales properly with the number of users)
on these parameters to coordinate the system and therefore
obtain a correlated equilibrium aiming at optimizing in a
decentralized way the overall system performance [20].
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