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Abstract 

 

INTRODUCTION: With the development of technology and policy support, high-speed rail's temporal and spatial layout 

is gradually expanding, and it becomes essential to ensure high-safety operation. 

OBJECTIVES: The real-time correlation fault diagnosis technology of critical components of electromechanical systems 

of high-speed trains is analyzed, and a new method of automatic fault diagnosis based on genetic support vector machine is 

proposed. 

METHODS: In this study, the Author combines two techniques, IFD and AE, and introduces an adaptive weighting 

algorithm to fuse the data of the two and experimentally verify their accuracy. 

RESULTS: The experimental results show that in the IFD experiment, the 2-point frequency at 1050 speed is 347.6 Hz, 

and the 3-point frequency is 498.4 Hz, both of which are very close to the 2 and 3 times frequencies of the 1-point 

frequency, and the multiplicative relationship is much more straightforward. 

CONCLUSION: Combining IFD and AE can realize automatic and accurate diagnosis of bearing state and pre-diagnosis 

of bearings by adaptive weighted fusion algorithm, which is effective in the practical mechanical diagnosis of rolling 

bearing faults in high-speed railroads. 
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1. Introduction 

The development of science and technology has promoted 

the rapid growth of construction machinery, and 

mechanical equipment has gradually developed in the 

direction of automation and intelligence[1]. In high-speed 

trains, roller bearings determine the operational safety of 

high-speed trains, so it becomes essential to make 

automatic and accurate diagnoses of their internal 

faults[2]. Li Y uses machine learning to deeply analyze 

the real-time relevant fault diagnosis technology of the 

critical components of the electromechanical system of 

high-speed trains and puts forward a new automatic fault 

diagnosis method based on genetic support vector 

machine[3]. Li Z et al. used the variational modal 

decomposition method. By decomposing the vibration 

signals of roller bearings using the variational modal 

decomposition method, they proposed a new automatic 

diagnosis method based on a random forest classifier and 

high spatial mode filter[4]. Liu Y Z et al. built the bearing 

abnormal temperature detection model and real-time 

prediction model based on the analytic hierarchy process 

by analyzing the relevant characteristics of the bearing 

temperature of high-speed trains under different times and 

spaces [5]. In this context, the research combines resonant 

failure detection (IFD) with the acoustic emission method 

(AE). It introduces the adaptive process of weighted 

fusion to fuse and analyze the data collected by the 
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sensors in two ways, aiming at improving the accuracy of 

automatic diagnosis of high-speed iron roller bearings and 

achieving pre-diagnosis. 

The current research on automatic fault diagnosis methods 

for high-speed rail roller bearings is relatively simplistic. 

Therefore, combining AE and IFD methods and 

introducing weighted fusion adaptive ways are innovative. 

At the same time, the research is divided into four parts. 

The first part summarizes and discusses the current 

research on fault diagnosis of roller bearings. The second 

part analyzes automatic diagnosis technology for high-

speed rail roller bearings, including the types and 

diagnostic methods of high-speed rail bearing faults and 

the analysis of IFD and AE methods. The third part is the 

performance verification of the fusion method, and the 

fourth part summarizes the entire article. 

2. Related Work 

Double-row tapered roller bearing is a critical component 

of high-speed railway, directly affecting high-speed trains' 

safe and stable operation. However, due to the high speed 

and high load of high-speed trains, the probability of 

failure is very high[6]. Therefore, improving the accuracy 

of automatic fault diagnosis becomes especially 

important, and in the bearing fault diagnosis, the IFD and 

AE methods are widely used[7]. Based on this, scholars at 

home and abroad have conducted in-depth research on 

this issue. Xiao X et al. constructed a framework for 

bearing fault diagnosis using a knowledge graph and data 

accumulation strategy to ensure the safe operation of 

high-speed rail roller bearings, effectively improving the 

diagnostic prediction accuracy and robustness of bearings 

based on the IFD method[8]. Wang H et al. extracted the 

early faint fault characteristics of rolling bearings 

accurately in the IFD method and frequency band method 

of multi-target information; they proposed an early fault 

feature enhancement method for rolling bearings, which 

effectively improved the accuracy of fault diagnosis and 

ensured the smooth operation of high-speed trains[9]. 

Gong T et al. proposed a new extraction method based on 

the adaptive stochastic IFD method to address the 

difficulty of extracting nonsmooth information of bearing 

faults under a robust noise environment so as that The 

feature information of the bearing is effectively enhanced 

based on the conversion of nonsmooth information into 

smooth details [10]. Guo J et al. used the IFD method to 

extract resonance information to realize feature extraction 

of the local fault of the rolling bearing. Based on the 

modulated signal bispectrum, a new fault diagnosis 

scheme is proposed, effectively improving the accuracy of 

bearing local fault diagnosis[11]. 

In addition, Hou D et al. proposed a new fault diagnosis 

method using the AE method and vibration analysis to 

ensure the overall safety of high-speed trains, thus 

realizing the early diagnosis of bearing faults in high-

speed trains and improving their detection accuracy[12]. 

Aasi A et al. constructed a corresponding test device 

based on AE sensors to realize the effective diagnosis of 

rolling bearing time-domain characteristics, thus 

effectively diagnosing rolling bearing defects and 

improving the stability of high-speed train operation[13]. 

Li Y et al. proposed a kernel entropy component analysis 

method with an enhanced moving window based on the 

AE method to improve the monitoring accuracy of 

mechanical structures based on obtaining more 

information on AE features[14]. Jawad S M et al. 

analyzed the vibration signals and constructed a bearing 

fault detection method based on the AE method to 

enhance the accuracy of machine health identification. To 

improve the health identification accuracy of the machine, 

Jawad S M et al. analyzed its vibration signal. They 

constructed a test bench for bearing fault identification 

based on the AE method, effectively reducing the 

frequency of machine running failures and improving 

fault detection accuracy [15]. 

From the research of domestic and foreign scholars, the 

current automatic diagnosis methods of roller bearing 

faults in high-speed railways are still relatively 

homogeneous. Therefore, the study combines the AE and 

IFD methods, which can more comprehensively and 

accurately diagnose the roller bearing faults. At the same 

time, the adaptive process of weighted fusion is 

introduced to effectively fuse the data collected by 

combining the two effectively, thus effectively enhancing 

the accuracy of diagnosis, which is highly innovative and 

practical in theory and practice. 

3. Analysis of automatic diagnosis 
technology of high-speed railway roller 
earings based on IFD and AE 
3.1Analysis of high-speed rail roller bearing 
fault types and diagnosis methods 

To guarantee the safety and efficiency of high-speed 

railways in high-speed operation, the study constructs 

automatic diagnosis technology for roller bearings of 

high-speed railways based on the IFD and AE methods 

and verifies its effectiveness. A roller bearing is a kind of 

rolling bearing. As long as people understand its fault 

type and diagnosis method, they can fully appreciate its 

corresponding fault type and procedure, which are 

interrelated. Rolling bearing is a precision mechanical 

part that reduces friction loss by turning the sliding 

friction of the rotating shaft and the support into rolling 

friction. The main structure of a rolling bearing contains 

an outer ring, inner ring, rolling body, cage, etc.[16]. 

Generally speaking, the motion contact between the inner 

circle and the rolling body of the high-speed rail bearing 

is linear, so the two will be subject to considerable contact 

stress, and the load will also change periodically. When 

running into the load-bearing area, the bag will rapidly 

rise from 0 to the maximum and fall from zero to zero. 

Such load changes are likely to cause cracks in the outer 

ring and rolling element, which can lead to more 
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extensive failures and thus cause damage to the bearing. 

Among them, the failure types of rolling bearings of high-

speed rail are shown in Figure 1. 

 
Figure. 1 Fault Types of Rolling Bearing in High-speed 

Railway 

From Figure 1, high-speed rail's rolling bearing failure 

mainly contains fatigue shedding, wear, cracks and 

fractures, cage damage, gluing, indentation, and 

corrosion. In the actual working condition, the state of 

rolling bearings will be affected by many factors. The 

internal factors include the influence of the quality of the 

bearing material, the power of the bearing manufacturing 

process, and the impact of the bearing product design. 

External factors include installing and adjusting the 

overall machine of high-speed rail, maintenance, and 

maintenance repair in use. Under regular use, the outer 

ring of the bearing fits with the bearing housing and is 

connected in a fixed or relatively fixed way; the inner 

circle of the approach fits with the drive shaft of the 

mechanical device and drives the driving rod to rotate. 

Therefore, in the bearing operation, the vibration of the 

bearing will affect the overall performance of the path. 

During the operation of a high-speed train, rolling the 

rolling body past these failure points produces a shock, 

which radiates rapidly outwards before the component is 

deformed. This longitudinal wave decays rapidly when 

the change occurs on the working surface of the element, 

resulting in a very brief, narrow pulse. However, a single 

rolling of adjacent rolling elements on the active surface 

of a component produces a relatively long interval of 

pulses, the corresponding frequency being called the 

"passing frequency." If the bearing has a fault, it is called 

the characteristic frequency of the spot [17]. The 

calculation equation is shown in Equation (1) and (2). 
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Equation (1) 0f  indicates the relevant characteristic 

frequency when the outer ring fails; z  shows the number 

of antifriction bearing rollers; rf  indicates the rotation 

frequency of the rolling bearing; 1d
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Equation (2) bof
 indicates the failure frequency when the 

rolling element contacts the outer ring and the cage 

contacts the inner circle. Therefore, diagnosing the failure 

of rolling bearings of high-speed rail becomes especially 

important when the failure occurs. The current bearing 

fault diagnosis method is shown in Figure 2. 

 
Figure. 2 Classification of bearing fault diagnosis 

methods 

From Figure 2, the current fault diagnosis methods 

contain vibration signal analysis, temperature monitoring, 

oil analysis, oil film resistance, and AE detection 

methods. The vibration signal analysis method is more 

widely used for bearing fault diagnosis. When bearings 

are in operation, vibration will be caused by the influence 

of faults, and the greater the number of spots, the greater 

the vibration will be. From the side, it reflects that the 

pulse of the bearing contains a lot of fault information. 

Monitoring and analyzing faults by specific methods can 

get the fault information faster and more accurately. The 

IFD method chosen for the study is one of the vibration 

signal analysis methods. AE testing method is a kind of 

nondestructive testing technology. With the development 

of science and technology, many scholars also 
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increasingly value the research of AE testing methods 

[18]. 

3.2High-speed rail double-row roller bearing 
IFD and AE technology research 

In the actual rolling bearing detection and fault diagnosis, 

it is impossible to correctly determine its fault type by 

unthinkingly analyzing it without going through the fault 

mechanism and fault failure. Based on this, the study 

selects the IFD method to perform fault diagnosis on 

bearings. Its actual principle is shown in Figure 3. 

 
Figure. 3 Practical principles of IFD technology 

In Figure 3, the FFT is the Fast Fourier Transform (FFT). 

From the Figure, the damaged part of the rolling bearing 

collides with the surface of other elements during 

operation, resulting in a pulse of concentrated energy and 

a specific frequency vibration. This lower periodic 

frequency resonates with the natural frequency of the 

bearing, and the complex high-frequency signal is 

extracted and then decomposed into low-frequency fault 

signals by Hilbert transform. Finally, FFT is used to 

process this signal accordingly to obtain the 

characteristics of the fault. Among them, the expression 

of Hilbert transform is shown in Equation (3). 
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Equation (3) 
( )x̂ t

 denotes the transformed signal, t  

indicates the time,   means the time at the singularity, 

F  denotes the equivalent static force, 
j

 denotes the 

signal order, 
f

 denotes the friction coefficient, and X  

denotes the sampled signal. Therefore, the amplitude and 

phase expressions of the resolved function of the 

movement
( )x t

 are shown in Equation (4). 
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Equation (4) 
( )x t

 denotes the analytic function's 

amplitude and represents the rational function's phase. 

Based on this, Hilbert's instantaneous frequency definition 

expression is shown in Equation (5). 
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Equation (5)   denotes the Hilbert instantaneous 

frequency. In the IFD method, the envelope detection 

technique is essentially the corresponding envelope 

demodulation of the signal. The IFD signal processing 

method is divided into low-pass filtering, Hilbert 

transform, and FFT. Low-pass filtering mainly extracts 

the low-frequency signal from the high-frequency signal, 

and then the Hilbert transform is used to remove the 

filtered signal further to obtain the low-frequency signal. 

At this time, the signals are time domain signals, which 

cannot make a correct judgment, and the Hilbert 

transform must be used to convert the time domain signals 

to frequency domain signals. The final frequency domain 

diagram is the spectrum diagram of the rolling bearing. 

Thus, assume that
( ) ( ) ( )x t b t g t=

  
( )b t

 denotes the 

low-frequency signal and
( )g t

 denotes the high-

frequency signal. At this point, the Hilbert transform of 

the phase multiplication signal is mainly the bearing 

vibration signal obtained by the Hilbert transform of the 

high-frequency signal. The expression of the Hilbert 

transform of the bearing vibration signal is shown in 

Equation (6). 
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Equation (6)  represents the signal's peak value, n  

denotes the number of discrete sampling points in the time 

domain, r  describes the rotational speed, i  means the 

number of rolling elements, i  indicates the angle of the 

rolling part i  , and represents the transformed angle. 

Therefore, the signal obtained using the square root of 

Equation (6) is the envelope demodulated signal. This 

signal contains a low-frequency signal, which is the fault 

information of each component in the rolling bearing. The 

Hilbert transform can effectively eliminate the high-

frequency signal in the low-frequency signal after low-

frequency filtering and separate the low-frequency 

envelope information containing the fault information 

without affecting the characteristics of the original signal. 

In addition, when the relevant parts deform during the 

stress process, the elastic wave will generate strain 
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energy, which is the AE method. It uses the obtained 

acoustic signal to conduct nondestructive dynamic 

detection of the target or parts. The basic principle of AE 

monitoring of rolling bearings is shown in Figure 4. 

 
Figure. 4 Basic principle of AE monitoring for rolling 

bearings 

In Figure 4, the elastic wave emitted by the sound source 

will have a certain displacement on the surface of the 

object, and when the movement speed of the thing 

exceeds the detection range of AE, it will convert it into 

an electronic signal. AE detection technology has 

characteristics that can detect the energy change through 

the device under test. No energy loss is generated in the 

detection process because the distance is too close. The 

fault information generated by AE itself is obtained from 

AE measurement, and no other equipment is needed for 

scanning. In addition, AE technology is a dynamic 

detection technology; it can't be used to detect static 

faults. AE signal is an elastic wave with a higher 

frequency, which has a broad spectrum and is less 

sensitive to the background noise in mechanical 

equipment. AE sensors are more prominent and require 

multiple vibration sensors to work together, thus 

reflecting its non-directional characteristics. 

3.3Analysis of adaptive weighted fusion 
algorithms in information fusion 

The study uses the data obtained from multiple sensors 

under the IFD and AE methods in the actual fault 

diagnosis. To improve the measurement accuracy of 

rolling bearing faults, the study proposes a data-level 

fusion algorithm, namely, the adaptive weighted fusion 

method. The adaptive method of weighted fusion firstly 

performs the corresponding measurement and thus obtains 

the initialized value of the sensor; secondly, the initialized 

variance is calculated; then the optimal weight value is 

found using the initialization method; finally, the optimal 

weight value and the initialized value are multiplied to 

obtain the best deal after fusion. In the adaptive weighted 

fusion method, the relational expression of the weighting 

factor weights is shown in Equation (7). 
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Equation (7) N  denotes the number of sensors ik   

indicating the weighting factor's weight corresponding to 

the i  sensor. Therefore, the total variance expression of 

the data-weighted fusion result and the system's actual 

value waiting to be estimated is shown in Equation (8). 
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Equation (8) B̂  represents the result of data weighting 

fusion, iB
 represents the actual value of the 

corresponding system waiting for estimation, 
2  

represents the total variance of this true value, and E  

represents the expected value. The expression obtained by 

substituting the value of B̂  Eq. (8) into the entire variance 

calculation formula is shown in Equation (9). 
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Equation (9) 
j

 denotes the serial number of the sensor. 

Since each sensor's measurements are independent and 

unbiased estimates B  , the average of positive and 

negative deviations is 0 in probability. The expression is 

shown in Equation (10). 
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Therefore, the expression obtained by substituting 

Equation (10) into Equation (9) is shown in Equation 

(11). 
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In Equation (11), the total variance value is inversely 

related to the weighting factor, so the weighting factor's 

value is the best weight when the total variance value is 

the minimum value. The expression obtained by 

associating Eq. (7) and Eq. (11) and using the Lagrange 

multiplier method with partial derivative solution is 

shown in Equation (12). 
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                                                    (12) 

Equation (12) F  indicates that the external force the 

external field applies   is the specific number of sensors. 

In this case, the left side of Equation (12) is set to 0, and 
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the expression obtained by summing is shown in Equation 

(13). 
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On this basis, the expression of the extreme point 

obtained by substituting Equation (7) and Equation (13) 

into Equation (12) is shown in Equation (14). 
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Equation (14) 

*

ik
 denotes the extreme value point. The 

minimum value of the total variance can be obtained by 

substituting Equation (14) into Equation (11), and the 

final fusion result can be obtained by using the minimum 

value, whose expression is shown in Equation (15). 
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Equation (15) 
*B̂  denotes the final fusion result obtained. 

To compare the fused results more significantly, the study 

adds the optimal single-sensor fusion algorithm when 

performing the fusion analysis and considers multiple 

sensors with the minimum mean square error sensor as the 

fusion estimation. 

4. Example study of automatic fault 
diagnosis by information fusion of 
double-row roller bearings for high-
speed rail 
4.1Experimental data analysis of double 
row roller bearing IFD and AE technology 

To verify the accuracy of the IFD and AE methods in 

automatic fault diagnosis of the double-row antifriction 

bearing of high-speed railways, the study first conducted 

corresponding fault diagnosis experiments on them. In the 

IFD method experiment, the study analyzed the outer ring 

faults of the bearings based on the collected data, and the 

spindle speeds of 350r/min and 1050r/min were selected. 

Among them, the diagnosis results of major and minor 

bearing faults at different rates are shown in Figure 5. 

 
Figure. 5 Diagnosis Results of Major and Minor 

Bearing Faults at Different Rotational Speeds 

From Figure 5(a), in the automatic diagnosis of minor 

faults, the increase in speed doesn't cause significant 

changes in the waveform, and the waveform amplitude 

remains roughly -1. Some of the waveform changes 

caused by the internal structure of the roller bearing and 

other mechanical systems are not very significant. From 

Figure 5(b), the waveform changes significantly in 

automatically diagnosing substantial faults. At 350 r/min 

speed, the waveform amplitude is maintained between -4 

and 0. When the speed increases, the waveform amplitude 

reaches between -6 and 4. The waveform changes more 

significantly at the same speed due to the fault change. As 

the number of spots increases, the waveform amplitude 

increases, while the waveform amplitude becomes smaller 

at minor defects. The theory shows that the IFD method is 

more accurate in automatically diagnosing significant 

faults. To further verify this result, the resonance 

demodulation variation of the bearing at different speeds 

for major and minor defects was analyzed. The results are 

shown in Figure 6. 

 
Figure. 6 Resonance demodulation diagram of bearing 

fault at different speeds 

Comprehensive Figure 6 shows that the peak is more 

apparent when the fault size is the same, and the octave 

relationship is more evident when the bearing speed 

increases. However, the two-fold and three-fold 

frequencies do not meet the requirements at low speeds, 
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and at low rates, the three-fold frequency peaks are not 

prominent. At high speed, the octave relationship 

becomes more apparent. Especially at significant faults 

and high speeds, the 1-point frequency at 1050 rpm in 

Figure 6(b) is 172.4 Hz, which is very similar to the 

theoretical 176.9 Hz. The 2-point frequency at 1050 rpm 

is 347.6 Hz, and the 3-point frequency is 498.4 Hz, which 

are very close to the two- and three-fold frequencies of 

the 1-point frequency, and the multiplication relationship 

is much more straightforward. The comprehensive results 

show that the IFD method has high accuracy in 

automatically diagnosing significant faults at high speed. 

On this basis, the vibration waveforms of large and small 

spots at different rotational speeds collected using the AE 

method are studied, and the results are shown in Figure 7. 

 
Figure. 7 Vibration Waveforms of Bearing Faults at 

Different Rotational Speeds 

From Figure. 7(a), in the same type of failure, the 

waveform's amplitude varies more, the waveform 

becomes more significant with the increase of speed, and 

the waveform also undergoes more significant shocks. It's 

mainly because of the high energy stress wave caused by 

bearing dislodgement and collision of the rolling body. In 

the actual test, the waveform spacing is haphazard and 

irregular due to transmission loss and other reasons. From 

Figure 7(b), as the fault increases, the waveform's 

amplitude becomes more extensive, and more significant 

waveform shocks appear. It's mainly because of the 

increased rotational speed; the friction between the rolling 

element and the outer ring increases, which causes the 

stress energy to rise continuously, and the waveform 

shows periodic fluctuations. Overall, the AE method still 

generates many acoustic emission signals at low rotational 

speed and has higher effectiveness. To further verify the 

accuracy of the AE method in the automatic diagnosis of 

bearing faults, the study further analyzed the acquired 

signals to obtain the envelope spectrum, as shown in 

Figure 8. 

 
Figure. 8 Envelope spectrum of bearing faults at 

different rotational speeds 

A comprehensive Figure 8 shows that the overall 

amplitude frequency is maintained between 0 and 1000 

Hz. In addition, the maximum frequency of the amplitude 

is not significant when the bearing is running at low speed 

with a minor fault. The main reason is that when the 

experimental platform runs at low speed, its structural 

noise masks the fault signal, so the characteristic 

frequency of the fault cannot be extracted but can be 

roughly determined. As the rotational speed increases, the 

higher amplitude frequencies become more pronounced. 

At increasing responsibility, the maximum amplitude can 

be estimated even at lower speeds, while at more 

significant fault speed increases, the maximum amplitude 

is 174.8 Hz, comparable to the theoretical 176.9 Hz. 

Combining Figure 5 with Figure 8, it can be found that 

the overall measurement results of the AE method are 

more accurate, while the IFD method has a higher 

accuracy in extensive fault diagnosis. Therefore, the study 

combines its two methods to improve detection and 

automatic diagnosis accuracy and persuasiveness. 

4.2Performance analysis of adaptive 
weighting algorithm under IFD and AE data 
fusion 

The study proposes an adaptive weighting algorithm for 

data fusion of the two sensors when fusing AE and IFD 

methods. To verify its effectiveness, the study is divided 

into an algorithm that introduces the optimal single sensor 

fusion algorithm and arithmetic averaging, which is 

compared with the data fusion results of the adaptive 

weighting algorithm. The results are shown in Figure 9. 
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Figure. 9 Comparison of bearing fault variance in 

three fusion modes 

In Figure. 9, A-D denotes small-fault high-speed, small-

fault-low-speed, large-fault high-speed, and large-fault-

low-speed, respectively. From Figure 9(a), the variance of 

the optimal single-sensor fusion algorithm and the 

arithmetic average algorithm are 0.6546 and 0.2363, 

respectively, higher than the 0.2025 of the adaptive 

weighting algorithm in the small-fault high-speed 

diagnosis. Similarly, both are higher than the 0.0165 of 

the adaptive weighting algorithm in the small-fault low-

speed diagnosis, indicating that their fusion effects are not 

ideal and their effectiveness is lower than that of the 

adaptive weighting algorithm. The point of the adaptive 

weighting algorithm is lower than that of the adaptive 

weighting algorithm. The variance of the optimal single-

sensor fusion algorithm and the arithmetic average 

algorithm are 0.2892 and 0.1004, respectively, higher than 

the 0.0830 of the adaptive weighting algorithm in the 

large-fault low-speed diagnosis in Figure. 9(b). 

Similarly, they are higher than the 0.5793 of the adaptive 

weighting algorithm in the large-fault high-speed 

diagnosis. It is more effective and shows that the multi-

sensor combination of the IFD and AE methods is more 

accurate for the fault diagnosis of antifriction bearings. To 

further verify the results, the study compared the fusion 

results of the three fusion methods under the fault-free 

diagnosis of the path, and the results are shown in Figure 

10. 

 

Figure. 10 Comparison of fusion results of three fusion 

methods in bearing fault-free diagnosis 

Comprehensive Figure 10 shows that the variance of the 

adaptive weighting algorithm is 0.058 at low speed and 

0.2149 at high speed for the fusion analysis of fault-free 

data, which are lower than the other two algorithms. It 

shows that the adaptive weighting algorithm effectively 

determines whether there is a fault in the bearing, i.e., the 

multi-sensor fusion combined with IFD and AE 

effectively diagnoses whether there is a fault in the 

direction. The combined Figure 9 and Figure 10 shows 

that the difference between the data with fewer faults and 

those without defects is minor. However, in practice, the 

difference between the two is still relatively significant 

whenever a flaw exists. Therefore, the combined method 

chosen for the study can be used to automatically pre-

diagnose the bearing condition relatively quickly. 

5. Conclusion 

To automatically diagnose the fault status of high-speed 

roller bearings, the study combines IFD and AE and 

introduces an adaptive weighting algorithm to organically 

fuse both data while using relevant experiments to verify 

their effectiveness. The experimental results make clear 

that in the IFD method experiments, the waveform 

amplitude of the bearing minor fault diagnosis fluctuates 

around -1, and the primary fault diagnosis is maintained 

between -6 and 0. The frequency of 1 point under the 

large-fault high speed is 172.4 Hz, which is very similar 

to the theoretical 176.9 Hz. In the AE method experiment, 

the waveform's amplitude changes more in the same type 

of fault, and the waveform becomes more significant with 

increasing speed, and the waveform also undergoes larger 

shocks. The maximum amplitude of the waveform is 

174.8 Hz at a more considerable fault speed increase, 

comparable to the theoretical 176.9 Hz. The IFD method 

has high accuracy for automatic diagnosis of significant 

faults, and the AE method has effectiveness for overall 

diagnosis, so the combination of the two is more 

comprehensive for analyzing the bearing condition. In the 

fusion method comparison experiment, the variance of the 

adaptive algorithm for high-speed diagnosis of minor 

faults in bearings is 0.2025 and 0.0165 for low speed, 

which is lower than the comparison algorithm. The results 

obtained in the fault-free diagnosis experiment are the 

same as those with faults. The combination of IFD and 

AE can diagnose the bearing condition more accurately 

and automatically; meanwhile, adding the adaptive 

weighted fusion algorithm can achieve pre-diagnosis. 

However, the study did not analyze the changes in its 

vibration waveform under data fusion, etc., which can be 

interpreted in depth in the follow-up. 
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