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Abstract 

Abstract: Recently, broad applications can be found in optical remote sensing images (ORSI), such as in urban planning, 
military mapping, field survey, and so on. Target detection is one of its important applications. In the past few years, with the 
wings of deep learning, the target detection algorithm based on CNN has harvested a breakthrough. However, due to the 
different directions and target sizes in ORSI, it will lead to poor performance if the target detection algorithm for ordinary 
optical images is directly applied. Therefore, how to improve the performance of the object detection model on ORSI is thorny. 
Aiming at solving the above problems, premised on the one-stage target detection model-RetinaNet, this paper proposes a new 
network structure with more efficiency and accuracy, that is, a Transformer-Based Network with Deep Feature Fusion Using 
Carafe Operator (TRCNet). Firstly, a PVT2 structure based on the transformer is adopted in the backbone and we apply a 
multi-head attention mechanism to obtain global information in optical images with complex backgrounds. Meanwhile, the 
depth is increased to better extract features. Secondly, we introduce the carafe operator into the FPN structure of the neck to 
integrate the high-level semantics with the low-level ones more efficiently to further improve its target detection performance. 
Experiments on our well-known public NWPU-VHR-10 and RSOD show that mAP increases by 8.4% and 1.7% respectively. 
Comparison with other advanced networks also witnesses that our proposed network is effective and advanced. 
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1. Introduction

Over the past decades, up against the in-depth evolution of 
optical remote sensing technology, ORSI has owned better 
resolution. ORSI contain much more information. The object 
detection of ORSI is targeted at identifying high-value objects 
(aircraft, buildings, oil tanks, etc.) and locating them 
accurately, which has been broadly applied in urban planning 
[1] [2], military reconnaissance [3], etc.

In the wake of the deep learning framework evolution,
innovations have found continual expressions in CNN-based 
target detection algorithms in the past ten years, with two 

important branches emerging as follows. The two-stage 
detection model is represented by RCNN and the single-stage 
one by yolo [4] [5]. After feature extraction using CNN, the 
two-stage detection model first uses RPN to generate high-
quality RoI, then pools the RoI before finally regressing and 
classifying the bounding box. In contrast, the single-stage 
detection model directly regresses and classifies the bounding 
box. The two-stage model is slow and more accurate in the 
application. The single-stage model can rapidly function and 
achieve the real-time detection, but its accuracy is slightly 
defective. Therefore, this paper lays emphasis on the accuracy 
perfection of the single-stage target detection model while 
retaining its advantages. 
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The CNN-premised target detection algorithm can achieve 
good results on ordinary optical images with simple and clear 
scenes, but many differences exist between ORSI and ordinary 
optical images taken by mobile phones [6]. The shooting of 
ORSI is done by satellites or aircraft flying at high altitudes. 
Long-distance shooting leads to the characteristics of multi-
size, multi-resolution, and multi-direction. In addition, the 
background of the target is more complex with more diverse 
changes in background [7]. Traditional CNN has a limited 
receptive field, hindering the global information acquisition in 
the target recognition task of ORSI. Using stacking depth and 
pooling operation, the receptive field of CNN can be 
expanded. However, this will give rise to the degradation of 
small target detection performance. 

Furthermore, FPN greatly promotes the development of a 
multi-scale target detection algorithm, which transmits high-
level semantics, fuses it with low-level semantics after up-
sampling to generate high-resolution and strong semantic 
feature maps, and enhances the detection performance of 
small targets. However, given that it adopts nearest neighbor 
up-sampling without incorporating the semantics of the 
feature map, it cannot effectively use semantics in feature 
fusion and reorganization [8]. 

This paper proposes TRCNet based on Retinanet, a single-
stage detection model to tackle the aforementioned problems. 
As for the backbone, we use PVTv2 premised on the 
transformer to obtain the global information and do global 
modeling to eliminate the performance degradation of small 
target detection caused by insufficient receptive field and 
complex background of CNN. As for the Neck, we introduce 
the carafe operator to the FPN up-sampling process and guide 
the up-sampling process for efficient multi-features fusion. 
More specifically, the followings are our main contributions: 

A new network structure, TRCNet, is blueprinted to detect 
multi-scale objects in ORSI with higher accuracy. 

The network is perfected premised on Retinanet. In terms 
of the backbone, we introduce a transformer module for 
features extraction. With regard to the Neck, we utilized 
FPNcarafe to fuse features with different granularity more 
efficiently and explore the backbone with different depths. 

This experiment is launched on the premise of NWPU-
VHR-10 and RSOD data sets to test the TRCNet performance, 
manifesting the validity of our method. The second part is 
themed at related work, introducing the evolution of a target 
detection network in satellite remote sensing images and 
transformer structure development. Then, we discuss the 
proposed method, the general network structure, and 
principles related to the backbone network, neck, and detector 
in more detail. The experimental part is introduced later to 
elaborate on the results and analysis of the ablation experiment 
before the last summary of the full text. 

2. Related Work

2.1 Evolution of Remote Sensing Target 
Detection 

Up against the progress of CNN network architecture, the 
target detection algorithm performance has been greatly 
optimized. Various algorithms based on CNN network 
architecture have sprung up. Generally, given that whether the 
target detection algorithm has RPN or not, it is subsumed 
under single-stage target detection algorithms such as yolo 
series [34], SSD [35], Retinanet [12], etc., as well as two-stage 
ones such as RCNN [36], fast RCNN [37], faster RCNN [38], 
etc. Optical remote sensing image has the trait of scale 
diversity, visual angle particularity, high complexity of 
Beijing, smaller target than the background, and so on. 
However, the general target detection algorithms mentioned 
above are not specially designed for the problems of ORSI. 
Many workers have been working hard to solve these 
problems. The RP-Faster R-CNN framework [9] specially 
serves small target detection. Meanwhile, for the sake of 
importing detection compliance, deformable conversion 
layers [10] and R-FCN are united [11]. In this paper, the well-
known Retinanet will be further improved to achieve better 
performance in remote sensing target detection tasks. 

2.2 Transformer Structure 

Transformer [13] was originally designed to solve NLP 
problems, with its unique self-attention mechanism used to 
model sequence input for long range, achieving great success 
in the NLP field. In recent years, researchers have spared no 
efforts to apply transformer modules to computer vision, 
which has proved that it also has the great potential [14-16] to 
rival or even surpass CNN in some fields. VIT was the first to 
use a transformer as the backbone network. For the sake of 
adapting to computer vision tasks, the input image is inclined 
to be uniformly divided into non-overlapping image blocks. 
Then, the transformer uses its multi-head attention mechanism 
to model the input image blocks in a long range and generates 
the feature map needed by downstream tasks. Although VIT 
[17] makes somewhat difference, it is fragile when
encountering the multi-scale target detection and high-
resolution tasks due to its inability to provide multi-scale
feature maps and the high computational cost of a multi-head
attention mechanism. PVT [18] effectively resolved these
problems. It is a pyramid-structured transformer backbone
with a spatial-reduction attention mechanism, which makes it
still perform well confronted with multi-scale target detection
and high-resolution tasks.

3. Proposed Method

3.1 Architecture Overview 
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The TRCNet architecture based on Retinanet is shown in 
Figure 1 which is subsumed under three main modules, that is, 
backbone, neck, and head. We input satellite remote sensing 
images into TRCNet and feature extraction will be carried out 
in the backbone part based on the transformer to obtain multi-
scale feature maps C2, C3, C4, and C5. Then, C3, C4, and C5 
will be input into Neck for a more detailed feature fusion 
operation. The neck is mainly composed of FPN with a carafe 
operator. After receiving the multi-scale feature map from the 

backbone, the FPN carafe module will carry out in-depth 
feature extraction plus detailed high-level and low-level feature 
fusion. Finally, P3, P4, P5, P6, and P7 as detailed feature maps 
will be generated. The Head acquire the input detailed feature 
map and then classify objects plus regress the bounding box. 
In this way, the final target detection results are output. The 
sections of backbone network and the Neck are explained in 
detail below. 

Figure 1. The Structure of TRCNet 

Figure 2. Framework of PVTv2 Backbone. (b): Framework of PVTv2 Blocks 
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3.2 Backbone 

Since the objects in ORSI are chaotic with obviously various 
size, the contrast between the background and objects is small, 
etc., and the interference to objects is serious. Therefore, how 
to detect objects accurately in ORSI is worthy of thinking [39]. 
Traditional CNN has a limited receptive field, so the global 
information acquisition in the target recognition task of ORSI 
takes time. Although the receptive field of CNN can be 
expanded through stacking depth and pooling operation, it will 
lead to the degradation of small target detection performance. 
To solve these problems, we introduce a transformer-based 
backbone-PVTv2 [19], as shown in Figure 2 (a). The 
transformer can adaptively extract local/global context 
information and model flexibly [20-22]. 

Similar to Retinanet’s traditional Resnet 50-based 
hierarchical backbone, our transformer-based PVTv2 
backbone consists of four stages outputing multi-scale feature 
maps. There is a Conv1 module before the first phase. First of 
all, the input image is preprocessed and the input image as 

. 
All stages adopt a similar structure of PVTv2blocks. We 

used PVTv2blocks with depths of 3, 4, 6, and 3 in the first, 
second, third, and fourth stages, as shown in Figure 2 (b). 
Different from the traditional transformer, each PVTv2blocks 
consists of a linear spatial reduction attention layer (LSRA), an 
overlapping patch embedding layer, and a conventional feed-

forward layer (CFFL). is output in the first 

stage, the second, the 

third, and the fourth. 

Where indicates a series of operations of i 

PVTv2blocks, linear project operation, the 

function of LSRA, and the operation of CFFL. With 
similarities to MHA, our SRA receives (a query), (a 

key), and (a value), with respectively. 

Where the spatial height and width of the input before the 
attention operation are represented by and . At the same 
time, means the patch embedding dimension, and the 

head number of self-attention detection, 
the weights of linear projection operation. The spatial average 

pooling operation can be demonstrated by , while 

signifies the feature concatenation [59].  acts 
as the following self-attention function: 

Where the channel number of various detection heads are 
signified by d = C/N. Average pooling is taken advantaged by 
LSRA to reduce the size of the scale. The application of LSRA 
can reduce the computational/memory burden compared to 
MHA. In this way, the transformer block is qualified to extract 
long-distance dependencies with global receptive fields in 
essence. Apart from that, a 3 × 3 depth-wise convolution is 
incorporated with GELU [60] activation layer by the PVTv2 
block into CFFL between two entirely connected layers, in 
which CFFL is denoted as 

Where the operation of a entirely connected layer is 

denoted by , and the 3 × 3 depth-wise convolution 

. 
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Figure 3. The Overall Framework of CARAFE Composed by Kernel Prediction Module and Content-Aware 
Assembly Module

3.2.1 Neck 
Feature up-sampling is vital for multi-scale icon detection. 
After proposing the feature pyramid, it is more and more 
common to sample high-level features and fuse them with low-
level ones. However, the traditional up-sampling method fails 
to use the feature map semantics, which limits the feature 
fusion potential. Decomposition obtains the up-sampling 
kernel through the network. Although it uses semantics, it 
introduces a lot of parameters and calculations and applies the 
same kernel at every position of the feature, so it fails to use 
the semantics of the feature graph efficiently. However, the 
CARAFE operator possesses a large receptive field and the up-
sampling kernel is pertinent to the feature map semantics, 
which strengthens the effect of multi-scale target detection 
after fusing multi-level features without introducing too many 
parameters and calculations [8]. 

Therefore, we retain the Neck of the traditional Retinanet 
and adopt the FPN structure to fuse the multi-level feature map 
after sampling. We introduce the Carafe operator in the up-
sampling to improve their fusion effect. 

Carafe includes two steps as shown in figure 3. Step 1 is to 
generate an up-sampling kernel premised on the input feature 
map’s semantics. Step 2 is to check the features of the input 
feature map taking into account the generated up-sampling to 
carry out up-sampling reorganization. 

Suppose we input a feature map and the up-

sampling ratio is . A new feature map 

will be generated after passing the Carafe 
operator. It is expressed as follows by the mathematical 
formula: 

Where L and l are target positioning,  of the 

Y,  is the mapped source location on X, and 

. The  indicates the 

neighborhood of size centered on . As for , we 
will show the details later. 

3.2.2 Kernal prediction module 
The kernel prediction module can generate an up-sampling 
kernel based on the semantics of the input feature map. Every 

source position on X can correspond to the target position 
on Y. Each target location has an up-sampling core of size 

. 
In order to generate the up-sampling kernel, the first step is 

to mitigate the input feature channel from to via the 

convolution, fastening the operation after reducing the 
channel. Then, the convolution kernel with kernel size 

 and channels =  is used for 
convolution operation to generate up-sampling kernels. Each 

 up-sampling kernel is normalized in space by 
softmax. 

C-B: Content-Aware Restructuring Up-Sampling Kernel
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For each up-sampling kernel , the content-aware 

restructuring module will recombine through  and calculate 
with the input feature map to get the up-sampling one, which 
is generally a weighting operator. With regard to a  (target 

location) and  (the corresponding square region) 

centered at , the following mathematical formula 
demonstrates the calculation: 

Where 

3.2.3 Neck Finishing Process 
Firstly, three feature maps C5, C4, and C3 from the backbone 
are received. Moreover, the three feature maps are up-sampled, 
feature extracted, and feature fused to obtain P7, P6, P5, P4, 
and P3 for downstream target detection, which is expressed by 
the mathematical formula: 

Where  refers to the Conv2 module, containing 
a conversion layer (kernel size = 1 × 1, stride size = 1, channels 
= 256). 

Where  refers to Conv5 module containing a 
conversion layer (kernel size = 3 × 3, stride size = 1, channels 

= 256).  refers to Conv6 module containing a 
conversion layer (kernel size = 3 × 3, stride size = 2, channels 

= 256).  refers to Conv7 module containing a 
conversion layer (kernel size = 3 × 3, stride size = 2, channels 
= 256). 

Where  refers to Conv4 module containing a 
conversion layer (kernel size = 3 × 3, stride size = 1, channels 

= 256).  refers to Conv3 module containing a 

conversion layer (kernel size = 3 × 3, stride size = 2, channels 

= 256).  refers to Carafe up-sampling. 

3.2.4 Head and Loss 
The target detection probe and the loss we use will be 
introduced here. Same as the traditional Retinanet, the target 
detection probe used in this paper is a weight-sharing predictor 
based on convolution operation. It is divided into two branches, 
which respectively predict each anchor’s category and the 
regression parameters of the target bounding box. 

Positive and negative samples is the same as Retinanet in 
matching strategy usage. Comparing each anchor with the pre-

labeled GT box, the positive sample is more than 0.5. If 

the value of the anchor and all GT boxes is less than 0.4, 
it is negative. The rest are discarded. 

Total loss consists of classification loss and regression loss. 
Both positive and negative samples will calculate the 
classification loss. But only the positive ones will be calculated 
for the regression loss. 

Where  indicates the Sigmoid Focal loss. 

indicates the L1 loss.  denotes the number of positive 
samples. all the positive samples. all the negative samples. 

4. Experiment

4.1 Dataset 

The NWPU VHR-10 data set published by Northwestern 
University in 2014 [23, 24, 25] contains 10 categories of 
objects, that is, aircraft, ships, storage tanks, baseball 
diamonds, tennis courts, basketball courts, ground orbital 
fields, ports, bridges, and vehicles. The dataset contains 800 
very high resolution (VHR) RSI derived from the Google Earth 
and Vaihingen datasets, which are annotated by experts in 
person. We randomly divided 640 pictures into training sets 
and the remaining 160 pictures were test sets. 

RSOD is an open target detection dataset used for target 
detection in RSI. There are four kinds of objects, including 
airplanes, fuel tanks, sports fields, and overpasses. It includes 
4,993 aircraft in 446 images, 191 playgrounds in 189 images, 
180 overpasses in 176 images, and 1,586 fuel tanks in 165 
images. 885 pictures have been divided as training sets and the 
remaining 216 pictures test sets. 
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4.2 Implementation Details 

We train the TRCNet by using PyTorch on a PC with 4 kernels 
Intel (R) Xeon (R) Silver 4110 CPU @ 2.10 GHz, 16-GB 
RAM, and an NVIDIA GTX 2080Ti GPU. We adopt data 
argumentation - Random flip before training. In the training, 
this network shoulders the pretrained weights of the backbone 

and the remaining parameters are randomly initiated by Xavier. 
Besides, the mesoscale is (1,000, 600) and the keep ratio is true, 
the max epoch is 72, the batch size is 4, and the optimizer is 
Adam W. Meanwhile, the learning rate and the weight decay 

are both . We adopt the operation of warm-up. VOC2007 
11-point metric [33] is applied to evaluate the proposed
method’s performance. s show in Figure 4.5.6.

Figure 4. Detection Examples of the Proposed Method and Baseline in NWPU VHR-10 

1
Figure 5. Detection Examples of the Proposed Method in RSOD2 
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Figure 6. The Loss Curve of Training Process 

4.3 Comparison Results with the Latest 
Methods 

Its Performance will be evaluated quantitatively in this body. 
We compared it with some advanced methods on the NWPU 

VHR-10 data set, pertinent results are in Table 1. We use 
several general target detection algorithms (FCOS [26], R-
FCN [27], Cascade R-CNN [28], AugFPN [29]), and methods 
of remote sensing image object detection (MS-FF [30], 
HRBM [31], SHDET [32]. The experienced results (mAP, 
AP) in the below tables are converted to percent (%). 

Table 1 Accuracy Comparison of Different Object Detection Methods on The NWPU VHR-10 Dataset1 

Method Map AP_1 AP_2 AP_3 AP_4 AP_5 AP_6 AP_7 AP_8 AP_9 AP_10 
R-FCN 87.74 99.80 80.82 90.48 97.88 90.69 72.38 98.99 87.18 70.44 88.62
Cascade 
R-CN 89.15 99.90 80.05 90.67 98.06 89.49 76.71 98.21 80.76 87.67 89.92

AugFPN 89.16 90.91 71.83 90.62 98.59 90.77 84.24 99.24 91.66 84.71 89.06 
FCOS 85.84 90.47 73.72 90.36 98.94 89.38 80.82 96.74 87.91 61.92 88.16 
MS-FF 85.64 95.79 72.50 70.90 97.83 85.62 97.20 98.82 92.40 81.74 64.64 
HRBM 87.12 99.70 90.80 90.61 92.91 90.29 80.13 90.81 80.29 68.53 87.17 
SHDet 90.04 100.00 81.36 90.90 98.66 90.84 82.57 98.68 91.11 76.43 89.82 

XXXNet 92.70 90.90 77.50 96.60 90.70 90.20 99.00 99.80 98.40 95.10 88.90 

AP1 to AP10 Successfully Correspond to Airplanes, Ships, 
Storage Tanks, Baseball Diamonds, Tennis Courts, Basketball 
Courts, Ground Track Fields, Harbor, Bridges, and Vehicles 
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Table 2. Ablation Study of Pvtv2 Backbone2 

Method mAP 

Baseline 84.3% 

Baseline + PVTv2_b0 89.5% 

Table 3. Ablation study of The Depth of Pvtv2 Backbone 
3 

Method mAP 

Baseline 84.3% 

Baseline + PVTv2_b0 89.5% 

Baseline + PVTv2_b1 90.0% 

Baseline + PVTv2_b2 91.7% 

Table 4. Ablation Study of the Carafe4 

Method mAP 

Baseline 84.3% 

Baseline + Carafe 87.0% 

Table 5. Ablation Study of the Carafe and PVTv2 
Backbone5 

Dataset Method mAP 

NWPU-
VAR-10 

Baseline 84.3% 
Baseline + PVTv2_b2 

+ Carafe 92.7% 

RSOD 
Baseline 91.3% 

Baseline + PVTv2_b2 
+ Carafe 92.9% 

4.4 Ablation Study 

To test whether the TRCNet works or not, we designed four 
ablation experiments premised on the NWPU-VHR-10 data 
set, and finally tested the TRCNet validity premised on the 
RSOD data set. We use Rtinanet-Resnet 50 as the baseline. 

4.4.1 Analysis of TRCNet Backbone 
We replaced the traditional Retinanet backbone based on 
Resnet50 with PVTv2-b0 based on the transformer. After 
training epoch=72 on the NWPU-VHR-10 data set, we can find 
in Table 2 that the mAP of baseline is 0.843, while the mAP of 
the baseline_PVTv2_b0 is 0.917, which increases by 7.4%. 
This is because the transformer has a large receptive field, 
which can be used for long-range modeling. It is more efficient 
than cnn structure to extract features in satellite remote sensing 
images when the background interference is large and the 
distribution of objects is messy. 

4.4.2 Analysis of Different Depths of TRCNet 
Backbone 
We replaced Retinanet’s backbone with PVTv2 modules of 
different depths to explore the performance of PVTv2 modules 
of different depths. We use PVTv2_b0, PVTv2_b1, and 
PVTv2_b2 respectively. The mAP of PVTv2_b0, PVTv2_b1, 
and PVTv2_b2 in Table 3 are 0.895, 0.900, and 0.917 
respectively. In the wake of increasingly advanced network 
depth, the mAP heralds an upward trend. Apart from that, the 
backbone feature extraction is enhanced and the obtained 
feature information is more abundant. Considering the size of 
network parameters, this paper only goes deep into b2. 

4.4.3 Analysis of FPN_carafe 
On the basis of the baseline, we introduce the Carafe operator 
into the up-sampling feature fusion module of FPN, train it, and 
compare it with the baseline. Through Table 4, we can find that 
after introducing the Carafe operator, the mAP of baseline 
_FPNcarafe is 0.870, which is 2.7% higher than 
baseline_PVTv2_b2. This is because the Carafe operator can 
guide feature fusion more efficiently when FPN is fused with 
up-sampling features. At the same time, the fused features 
obtained are more accurate and richer than those obtained by 
FPN fusion alone, which makes it possible to obtain better 
performance in multi-scale target detection. 

4.4.4 Analysis of backbone and FPN_carafe 
On the basis of the baseline, we introduce the Carafe operator 
into the up-sampling feature fusion module of FPN and replace 
its backbone with PVTv2_b2, training and comparing with 
baseline. Through Table 5, we can find that after introducing 
the Carafe operator and replacing backbone, the mAP of the 
baseline_PVTv2_b2_FPNcarafe on the NWPU-VAR-10 data 
set is 0.927, which is 8.4% higher than baseline. Meanwhile, 
that of baseline_PVTv2_b2_FPNcarafe on the RSOD data set 
is 0.929, which is 1.6% higher than the baseline. It shows that 
the introduction of PVTv2_b2 and carafe can play a role at the 
same time. 

4.4.5 Figures that still need to be supplemented 
(1) The comparison figure between the NWPU baseline model 
and XXNET detection results is generally divided into two
rows. The previous row is four figures of baseline, and the next 
row is the corresponding detection figure with a better XXNET 
effect than the baseline.

(2) It’s enough to give 4 pictures with a score of about 0.9
for the ROSD test result diagram, and the box test is relatively 
accurate. 

(3) The loss curve graph

Section that needs to be added:

Compared with the state-of-the-art

Comparison with other networks.
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5. Conclusion

This paper explores the feasibility of a target detection
algorithm based on a new transformer structure in RSI with 
serious background interference, different target sizes, and 
uneven distribution of geospatial objects. Targeting at further 
boosting the accuracy of remote sensing target detection, the 
weakening performance caused by insufficient global 
modeling ability of traditional CNN-based model and the low 
efficiency of feature fusion caused by uniform up-sampling of 
the FPN network is solved. In the proposed TRCNet, we 
introduce a hierarchical PVTv2_b2 module based on a 
transformer as a backbone to extract features, so as to obtain 
more accurate and richer feature maps than the backbone based 
on CNN. Then Carafe operator is introduced in the multi-level 
features fusion of the FPN network. This operator can use the 
semantics in the upper feature map to guide the up-sampling 
process, instead of uniform up-sampling, which makes the 
feature fusion of the FPN network efficient and accurate, 
perfecting the performance of multi-scale target detection. 
Finally, compared with Retinanet, the mAP of TRCNet on 
NWPU-VHR-10 and RSOD increased by 8.4% and 1.7% 
respectively. Furthermore, we also compare the results of the 
network on NWPU VHR-10 with other advanced networks, 
which proves its advanced nature. 
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