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Abstract 

Food crops are important for nations and human survival. Potatoes are one of the most widely used foods globally.  But there 
are several diseases hampering potato growth and production as well. Traditional methods for diagnosing disease in potato 
leaves are based on human observations and laboratory tests which is a cumbersome and time-consuming task. The new age 
technologies such as artificial intelligence and deep learning can play a vital role in disease detection. This research proposed 
an optimized deep learning model to predict potato leaf diseases. The model is trained on a collection of potato leaf image 
datasets.  The model is based on a deep convolutional neural network architecture which includes data augmentation, transfer 
learning, and hyper-parameter tweaking used to optimize the proposed model. Results indicate that the optimized deep 
convolutional neural network model has produced 99.22% prediction accuracy on Potato Disease Leaf Dataset. 
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1. Introduction

In recent years, food production has been heavily impacted 
due to plant diseases. Plant diseases are caused by climate 
change, adverse impact on the environment, heavy usage of 
fertilizers and so on. Climate change has severely impacted 
potato yield due to a variety of diseases. The most destructive 
diseases in potato leaves are late blight and early blight. 
These diseases have largely emerged in the last few years [1] 
due to many reasons including climate change. The infections 
that damage plants, starting in the leaves before spreading to 
the entire plant, are the major causes of the yield decline in 
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potato production. Potatoes are a largely consumed food item 
in the world. According to a report published in Statista, over 
376 million metric tons of potatoes were produced in 2021 
which is down 2% from 2020 crop [2].  Farmers heavily rely 
on human inspection to identify potato leaves diseases which 
are time consuming and have a high chance of error. In the 
present technological era, the use of new age technologies 
such as artificial intelligence (AI), deep learning, and 
computer vision (CV) etc. are very advantageous to speed up 
the potato disease prediction process. AI and deep learning 
have witnessed immense surge in the agriculture domain due 
to its capabilities of image identification, processing, image 
classification and image prediction [3].   

A kind of machine learning [4-6] called deep learning 
(DL) has been demonstrated to be particularly good at
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classifying images [5-9]. Convolutional Neural Network 
(CNN) is used in a variety of tasks, including object 
identification and image classification [10-13]. To predict 
potato leaf diseases, an optimized deep learning model is 
tuned in this work. It is also called an optimized deep 
convolution-al neural network (ODCNN). The model 
performance is refined using methods including data 
augmentation, transfer learning, and hyper-parameter tuning 
after being trained on a dataset of potato leaf pictures. Metrics 
like performance accuracy and loss are used to assess the 
model performance [14-16]. Since early disease identification 
is essential for crop management, the requirement for an 
accurate and effective approach to predict potato leaf disease 
is the driving force behind our research. The suggested 
methodology is used for the management of potato fields and 
the early identification of illnesses in potato plants. The 
article is structured into distinct sections, with section 2 
providing an overview of related literature, section 3 
outlining the methodology employed, section 4 analysing the 
obtained results, and section 5 presenting the conclusion and 
potential avenues for further research. 

 
 

2. Related Work 

CNN has proven beneficial in a number of applications, 
including object recognition and image recognition. In 
several research studies, CNNs have demonstrated 
remarkable accuracy and resilience in the categorization of 
plant diseases. In recent years, disease prediction in potato 
leaves has received significant scientific attention, several 
strategies and procedures have been put forth to increase the 
precision and effectiveness of disease detection. Using DL 
models, which have proven to be incredibly successful in 
image-based illness prediction tasks, is one of the most often 
used strategies. 

Several researchers have conducted investigations 
pertaining to illnesses affecting potato crops, while 
simultaneously employing the PlanVillage dataset to train 
their models. Khalifa et al. (2021) introduced a Convolutional 
Neural Network (CNN) model for the identification of early 
blight (EB), late blight (LB) disorders, as well as a healthy 
class. The model was trained on the PlantVillage dataset 
(PVD), which was limited to crops particular to certain 
locations [17]. Sanjeev et al. (2021) introduced a Feed-
Forward Neural Network (FFNN) [18] as a means of 
identifying EB, LB diseases, as well as healthy leaves. The 
approach under consideration was trained and evaluated 
using the PlantVillage dataset. Rozaqi and Sunyoto (2020) 
introduced a convolutional neural network (CNN) model 
designed for the classification of EB, and LB illness in potato 
leaves. The algorithm was trained using the PlantVillage 
dataset in order to identify diseases within a certain 
geographic area [19]. Barman et al. (2018) introduced a self-
build CNN (SBCNN) model for the purpose of detecting EB, 
LB, and healthy classes of potato leaf diseases. The PVD was 
utilised throughout the training and assessment of the 
considered strategy. To classify EB and LB diseases in potato 

leaves, Rozaqi and Sunyoto (2020) presented a convolutional 
neural network (CNN) model. The system for disease 
detection in a given region was trained using the PlantVillage 
dataset [19]. In order to distinguish between the EB, LB, and 
healthy categories of potato leaf diseases, Barman et al. 
(2018) presented a self-build CNN (SBCNN) model. The 
model was fine-tuned with regionally specific data from the 
PlantVillage dataset. Unfortunately, the researchers didn't put 
their model to the test with any novel data [20]. Lee et al.'s 
(2020) CNN model was developed to identify potato plants 
with early blight, late blight infections, and healthy leaves. 
The researchers also made use of a PVD specific to a certain 
region. Evaluation of the model did not include testing on 
novel data [21]. Using a segment-based method and a multi-
SVM architecture, Islam et al. (2017] presented a model for 
the detection of a variety of potato diseases, including EB, 
LB, and healthy leaves. The researchers' methodology 
incorporated PVD but needs additional precision 
improvements [22].  For their feature extraction, Tiwari et al. 
(2020) used a VGG19 model that has already been pre-
trained. After that, they used a number of classifiers like 
Support Vector Machines (SVM), K-Nearest Neighbours 
(KNN), and neural networks to sort the data. To further 
improve its ability to detect EB, and LB infections in potato 
leaves, the model was trained with data collected from the 
PlantVillage dataset. The effectiveness of the researchers' 
model was not assessed using novel data [23]. A 
comprehensive summary of deep leaning model to classify 
potato disease on PLD is presented in Table 1. 

 
Table 1: Summary of deep leaning model to classify 

potato disease on PlantVillage dataset 
  

Algorithm Disease 
Name 

Accuracy 
(%) 

Reference 

Deep CNN Multiple 96.46 [24] 
ResNet50 Multiple 98 [25] 
Modified 
MobileNet 

Multiple 98.34 [26] 

CNN EB, LB 98 [17] 
FFNN EB, LB 96.6 [18] 
CNN EB, LB 99 [21] 
SVM, KNN 
and ANN 

EB, LB 97.8 [23] 

 
In conclusion, current research has demonstrated that 

convolutional neural networks or deep learning models, have 
been particularly successful in identifying illnesses of potato 
leaves. It has also been demonstrated that using transfer 
learning enhances the effectiveness of these models. 
In this article, authors have explored to make a model by 
utilizing transfer learning, deep CNN, and optimized model 
performance by hyperparameter tuning.   
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  Early Blight    Late Blight      Healthy 

 
Figure 1. Sample image of potato leaves of each 
class. 

3. Methods 

3.1. Dataset 

This research work has used potato leaf images from an open 
source Kaggle dataset repository [27, 28]. Images of both 
healthy leaves and leaves afflicted by the two major potato 
illnesses, LB, and EB, are included in the collection. Plant 
pathology specialists assigned labels to the images indicating 
the late blight, early blight or healthy [29]. This research work 
used two datasets namely PlantVillage [27] and Potato 
Disease Leaf Dataset (PDLD) [28]. The PlantVillage dataset 
comprises 2162 well-labeled images of potato leaves in the 
three categories viz a viz early blight, late blight, and healthy 
whereas PDLD consists of 4071 labeled images of potato 
leaves. A total of 80% of the data is used for training, 10% 
for validating, and 10% for testing. The sample size of the 
datasets is shown in Table 2 and Table 3. Figure 1 depicts a 
sample image of potato leaves of` each class. 

Table 2. Sample size and train-validation-test-split of 
PlantVillage dataset 

Category Label Number of Images 
Early Blight 1 1000 
Late Blight 2 1000 
Healthy 3 162 

Table 3. Sample size and train-validation-test-split of 
PDLD dataset 

Category Label Number of Images 
Early Blight 1 1627 
Late Blight 2 1424 
Healthy 3 1020 
 

3.2. Data pre-processing 

The dataset size was expanded using techniques for data 
augmentation including random horizontal flipping, and 
random rotation for model performance enhancement. The 
VGG19 model is applied for feature extraction. The VGG19 
method was developed by K. Simonyan and A. Zisserman 
[30] and is built on convolutional neural networks. ImageNet, 
a collection consisting of over 15 million annotated high-
resolution pictures across 22,000 categories, was used to train 
this model. This model used 1.3 million training pictures, 50 
thousand validation images, and 100 thou-sand test images 
while being learned for the ImageNet LargeScale Visual 
Recogni-tion Competition (ILSVRC) [30]. VGG19 [31] 
performs a simple preparation step, which consists of 
removing the mean RGB value from each pixel. When com-
pared to AlexNet, the VGG19 model’s improved 
categorization accuracy can be attributed to the fact that it 
swaps out all the massive kernel-sized filters for a collection 
of smaller ones measuring just 3*3. Pooling is performed over 
2*2 frames with a stride size of 2. This model ends with a 
softmax layer. The ReLU function has been used to add non-
linearity across all of the model’s hidden levels. The 1*1 
filters necessary for linear translation were incorporated into 
the model as well. One pixel is padded around each edge to 
keep the spatial resolution constant. The spatial sharing is 
performed only on the last 5 convolution layers. 

3.3. Architecture of CNN 

Artificial neural networks, of which Convolutional Neural 
Networks [32] are one type, have found widespread 
application in a variety of fields, including categorization, 
picture processing, segmentation, etc. Convolution is a filter 
learning technique where the filter is dragged over the picture 
to pick up on key characteristics. Because we know that a 
picture is just a grid with some numbers in it, represented by 
the letter I. Figure 2 shows how these filters, denoted by the 
letter K, are convolved over the incoming picture to assist 
with learning the crucial information or features. The 
resulting feature map values are computed using the formula 
expressed in equation 1, where f represents the input image, 
h represents our kernel, and m and n represent the indexes of 
rows and columns, respectively, of the result matrix. 
 
𝐹𝐹[𝑚𝑚,𝑛𝑛] = 𝑓𝑓 ∗ ℎ [𝑚𝑚,𝑛𝑛] =  �  

𝑖𝑖

�ℎ[𝑗𝑗, 𝑘𝑘] 𝑓𝑓[𝑚𝑚 − 𝑗𝑗,𝑛𝑛 − 𝑘𝑘]
𝑗𝑗

 

              ……..(1) 
 
The "hidden" layer of a CNN consists of various types of 

processing units, including convolutional layers, pooling 
layers, fully connected layers, and a normalisation layer. 
where the activation function is provided with data from the 
buried layers. The activation function boosts the network's 
performance, allowing it to express non-linear, complex, 
arbitrary functional mappings between inputs and outputs and 
to learn more intricate structures from data. We used a 
nonlinear activation to create nonlinear mappings from inputs 
to outputs. The model employs ReLU activation for the 
hidden layers and softmax activation for the output layers. 
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Convolution is something we've already discussed. 
Downsampling, often known as pooling, is a method for 
decreasing the dimensionality of an input representation. 
Minimal pooling, maximum pooling, and average pooling are 
only a few examples of the many pooling methods available. 
The functions of these classes are indicated by their names. 
The terms min-pooling and max-pooling refer, respectively, 
to retrieving the least and maximum values from a matrix of 
a given dimension. In Figure 3, we see a 2*2 window example 
of maximum pooling. 

 
To average pool is to calculate an average of all the 

numbers in the given matrix. When a layer is fully linked, all 
of the neurons in the subsequent layer receive the weights 
from the one below. By using the normalization layer, we can 
guarantee that the average activation of the layer below is 
very near to 0. 

 
 

Figure 2. Convolution 3x3 filter over the image 
 

 
 

Figure 3. Max Pooling from 2X2 window 
 
 
 

3.4. Optimized Deep Convolutional Neural 
Network Model 

Deep CNN (DCNN) is used a lot these days in fields like 
medicine, agriculture, and more [33]. In this work, we 
employed a VGG19 pre-trained model to pull out the 
important features of the image. This way, we can use what 
we've learned before instead of starting from scratch. This is 
also called transfer learning. There are models that have 
already been trained, like VGG19 [31] and InceptionV3 [34]. 
Model extracts features from images by feeding them into 
models like VGG19 which had already been trained. Figure 
4 presents feature extraction using transfer learning.  Now the 
features are extracted by the VGG19 model and fed into the 
DCNN model, and the model is optimized. Figure 5 shows 
the workflow of the proposed optimized DCNN model. There 
are several methods applied to optimize DCNN. These 
methods consist of: 
 
Data augmentation 
To expand the training dataset and lessen overfitting, data 
augmentation entails adding different modifications to the 
pictures such as rotation, scaling, and flipping [35]. 
 
Dropout  
It is a regularization method that, in order to avoid overfitting, 
randomly eliminates (i.e., sets to zero) a certain proportion of 
the neurons during training [36]. 
 
Batch normalization 
This method standardises neuronal activations across layers 
to improve training consistency and efficiency [37]. 
 
Early stopping 
Using this strategy, training is stopped as soon as the model's 
performance on a validation dataset begins to deteriorate [29]. 
 
Hyper-parameter tuning 
It entails employing methods like grid search or random 
search to get the ideal settings for the model's numerous 
hyper-parameters e.g., learning rate, number of filters in the 
convolutional layers, etc. [33-35].

 
 

Figure 4. Feature extraction using VGG19 model. 
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Figure 5. Workflow of proposed optimized DCNN model. 
 
 

Table 4. Performance Evaluation Metrics of ODCNN Model 
 

 
Dataset Training  

Accuracy 
(%) 

Training 
Loss 

Validation  
Accuracy (%) 

Validation 
Loss 

Prediction  
Accuracy (%) 

Prediction 
Loss 

PlantVillage 99.88 0.0042 98.96 0.0116 98.26 0.0257 
PDLD 98.99 0.0284 99.22 0.0360 99.22 0.0325 

 
 

  

Figure 6(a). Training VS Validation Accuracy and 
Training VS Validation Loss for Plant Village dataset 

Figure 6(b). Training VS Validation Accuracy and 
Training VS Validation Loss for PDLD 
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Table 5. Performance comparison with others work 

 
Reference Model  

 
Dataset Accuracy 

(%) 
[36] 
 
[37] 
 
Proposed 
Work 

VGG16, 
VGG19 
CNN 
 
VGG19,  
ODCNN 

PlantVillage 
 
PlantVillage 
 
PlantVillage 
PDLD 

91 
 
98 
 
98.26 
99.22 

 
 
 

4. Results and Discussion 

The ODCNN model is trained on PVD [27] and PDLD [28] 
datasets. The PlantVillage [26] dataset includes 1000 
images of EB, 1000 images of LB, and 162 images of 
healthy potato leaves. Similarly, PDLD [28] consists of 
1626 images of EB, 1424 images of LB, and 1020 images 
of healthy potato leaves. For feature extraction, the pre-
trained model VGG19 [19] was employed. The proposed 
ODCNN model was trained on both the datasets.  The 
accuracy of the model's predictions was measured by 
comparing data from the validation set and the test set. The 
model utilized strategies like data augmentation, dropout, 
batch normalization, and early stopping, the model 
improved as it is being trained. Additionally, hyper-
parameter tweaking was performed to determine the ideal 
values for the model's numerous hyper-parameters (e.g., 
learning rate (0.001), number of filters in the convolutional 
layers, epochs etc.). Finally, the test set was used to predict 
the disease in the potato leaves. To assess the model 
performance on unobserved data, utilize the test set and k-
fold validation employed to make sure that the model 
performance is resilient and generalized. The ODCNN 
achieved the best accuracy 99.22% on 50 epochs.  The 
performance metrics, training accuracy, training loss, and 
validation accuracy were computed to assess the 
effectiveness of the model (refer Table 4). Table 5 shows a 
comparison with others’ work, and it delineates that the 
ODCNN has better accuracy than the model proposed by 
Sholihati et al. [36] and Krishna et al. [37]. 

5. Conclusion and Future Work 

In this work an optimized deep CNN is designed to predict 
disease in the potato leaves. Transfer learning is applied for 
feature extraction then the proposed ODCNN model is 
optimized, and hyper tuning is applied to achieve the best 
performance of the model. The model is trained and tested 
on two datasets namely PlantVillage [26] and Potato 
Disease Leaf Dataset (PDLD) [31]. The proposed model 
delineates prediction accuracy of 98.26% and 99.22% on 
PlantVillage, and PDLD      dataset respectively. The data 
augmentation procedure improves the robustness of the 

CNN model. This model can assist farmers in identifying 
illnesses in potato leaves at an early stage, Hence, 
increasing crop yields.  

In future work, researchers would like to design a 
mobile-based application in which the ODCNN model will 
be used to predict Potato leaf images. Farmers can take leaf 
pictures from a mobile camera and the model will predict 
the disease in potato leaves and also recommend 
appropriate medicine to control the disease. 
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