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Abstract

Critical infrastructures that provide irreplaceable services are systems that contain industrial control systems
(ICS) that can cause great economic losses, security vulnerabilities and disruption of public order when the
information in it is corrupted. These ICSs, which were previously isolated, have now become systems that
contain online sensors, wireless networks, and artificial intelligence technologies. This situation has also
increased the scope of attacks by malicious people who intend to carry out industrial espionage and sabotage
these systems. In this study, water quality estimation systems and anomaly detection are comprehensively
examined. In this direction, the statistics of the studies in the literature, the methods for water quality
anomaly detection, the existing data sets, and the difficulties encountered in the water systems to achieve
better water management are discussed. Principle findings of this research can be summarized as follows: (i)
new methodologies and architectures have improved water quality assessment through anomaly detection,
(ii) different datasets including multi-modal information have been presented, and (iii) remaining challenges
and prospects have been investigated.
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1. Introduction
71% of the Earth’s surface is surrounded by water,
which is vital to all known life forms. Cleaning of
drinking water is a major task for water supply
companies around the world and it is a big problem
that drinking water is highly vulnerable to possible
attacks. In recent years, with the acceleration of
industrialization, intense human activities, agricultural
activities, and other sectors’ water demands have
increased in most countries. Due to environmental
pollution and variable climatic conditions, different
problems such as the increase in the amount of
water resources use, deterioration of water quality, and
sabotage are encountered. In addition, the subject of
water management systems is one of the research areas
that many developed countries prioritize. Accordingly,

∗Corresponding author. Email: suleyman.eken@kocaeli.edu.tr

for the sustainable management of water resources,
methods that require advanced technology in areas
such as measurement systems, monitoring, and control
systems need to be defined and put into practice [1–
3]. Therefore, water management systems are in a
very important position for the protection of critical
infrastructures due to a number of factors such as
these. The first of these factors is the quality of
the water distributed, and a slight deterioration in
water quality directly affects many people in terms
of health. Another problem is that, unlike certain
other infrastructures where it would be possible to
restrict physical access to key assets, water management
systems have a significant number of remote stations
that are challenging to control and safeguard from
unintentional or intentional contamination incidents.
Because there are very few defense mechanisms in
case of pollution. Various techniques [4, 5] can be
used to model the distribution of pollutants, but the
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large and complex topologies of water distribution
systems make these techniques difficult to apply. In
order to improve emergency response capacity and
safeguard water quality from potential risks brought
on by intentional or unintentional contamination, it
has become essential to develop an effective detection
method to spot changes and anomalies in water quality
as well as to provide rapid early warning in case of
potential hazards.

Detection of intentional/unintentional contamina-
tion events that threaten the safety of water manage-
ment systems and prevention systems is widely studied
in the literature. These studies address the issue of
water management systems security from many differ-
ent aspects such as water quality determination and
detection of anomalies, placement of water quality
sensors and SCADA (Supervisory Control and Data
Acquisition) security, pollutant detection, modeling of
intervention and mitigation methods, and the devel-
opment of artificial intelligence and machine learning
supported anomaly detection models for more complex
situations addresses [6, 7].

Water management systems are known as cyber-
physical systems where physical processes work
together with computational engineering systems.
In these systems, water quality measurement and
water management are controlled by SCADA system
composed of existing sensors, actuators, programmable
logic controllers (PLCs), remote terminal units (RTUs),
and field devices such as these. Therefore, recent cyber
physical events show that these SCADA systems water
management systems are suitable for cyber attacks
and are one of the leading critical infrastructures. At
this point, it is clear that in these water management
systems, there is a need for tools that can detect
anomalies in water quality, evaluate the risk of the
cyber-physical system, and support the prevention and
intervention of cyber-physical attacks [8].

1.1. Smart city and its water management
perspectives
The study and creation of applications for smart cities
have become hot topics in recent years. Although the
concept of the smart city—connected cities, intelligent
cities, digital cities, etc.—was first proposed in the
1990s, big data and AI-driven recent technological
advancements have accelerated the adoption of these
applications. These programs, made available by city
governments, give residents amenities that might make
daily living easier [9]. According to Bellini et al. [10],
who manually categorized the applications for smart
cities, there are eight main classes: smart governance,
smart economy, smart facilities, smart transport, smart
energy [11, 12], smart industry and production, smart
environment (like smart water), and smart healthcare.

A smart water city enhances the quality of life of
its residents by utilizing Information and Communi-
cations Technology (ICT) and other technologies to
address urban water issues at every stage of the urban
water cycle. Six categories can be used to classify
general research: (i) management of alternative water
resources and reuse, (ii) sustainability, (iii) water 4.0,
(iv) sanitation and value-adding, (v) quality, and (vi)
networks [13]. The restoration of the water cycle, water-
front use, and intelligent water management help to
improve overall water management in addition to offer-
ing individualized solutions for traditional water man-
agement practices including drainage, water treatment,
and wastewater treatment. ICT-based intelligent tech-
nologies augment and supplement existing infrastruc-
ture and water management technologies on a broad
scale in a smart water city [14].

1.2. AI-driven next-generation cyber-physical
systems
The Next Generation Cyber-Physical Systems (NG-CPS)
have become complex, autonomous, sophisticated, and
pervasive as a result of the gradual integration of
technology. As a result, both academia and business
are interested in today’s NG-CPS, which includes the
Internet of Things (IoT), cyber components, Internet
of Vehicles (IoV), Intelligent Implantable Medical
Devices (IMDs), etc. Although NG-CPS can be defined
by a number of opportunities for service providers
(stakeholders in the industry and the market) as well as
for consumers (clients). Although NG-CPS technology
has many benefits, it also presents a number of
difficulties for the involved parties, including reliability,
security, and interoperability [15].

The literature offered a number of ways to address
these issues with NG-CPS technology, however, they
don’t seem to be able to recognize recently adopted
risks. Designing trustworthy AI-driven solutions for
NG-CPS technology is therefore imperative if we are
to handle these issues profitably [16, 17]. Because AI-
driven solutions have the potential to foresee and detect
both existing dangers and those that have just been
accepted, they should be employed as a substitute
technology in the presence of existing literature. To
create new AI-driven solutions for this developing
technology, researchers and industry experts must
collaborate [18].

1.3. Anomalies and their types
There are numerous definitions of anomalies, each with
varying levels of specificity. They are typically thought
to be infrequent in comparison to non-anomalous
observations in a dataset and to deviate from the norm
in terms of their attributes. Any water-quality value
or set of data that is the result of a manufacturing
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defect in the in-situ sensor equipment is considered an
anomaly in this study. In collaboration with the end-
user, Leigh et al. [19] established the many categories of
abnormalities that are expected to arise in the water-
quality data. These include drift, clusters of spikes,
missing values, large and small abrupt spikes, low
variability, including permanent values, continuous
offsets, abrupt shifts, high variability, impossible
values, out-of-sensor-range values, and others [20].

Also, the main groups of anomalies are briefly
discussed as (i) Point anomaly: This happens when a
single data instance deviates from the overall dataset’s
typical pattern. (ii) Contextual/Conditional anomaly:
These are data occurrences that are only labeled
anomalies in a given circumstance. (iii) Collective
anomaly: A group of data instances is referred to as a
collective anomaly when they behave abnormally when
compared to the full dataset. It is possible to include
anomaly types to these groups as given in Table 1.

Table 1. Types of anomalies and their groups

Anomaly type Its group

Large sudden spike Point or collective anomaly
Low variability/persistent values Contextual anomaly
Constant offset Point or collective anomaly
Sudden shifts Point or collective anomaly
High variability Collective anomaly
Impossible values Contextual anomaly
Out-of-sensor-range values Contextual anomaly
Drift Collective anomaly
Clusters of spikes Collective anomaly
Small sudden spike Point anomaly
Missing values Point or collective anomaly

1.4. Motivations and objectives of this review
Much research that has been done in the area of out-
lier or anomaly identification has been organized and
classified in a few recent survey publications, with
a focus on the research challenges that still require
attention. The potential of tensor-based techniques as
a cutting-edge method for the detection and identi-
fication of anomalies and failures in interdisciplinary
activities is highlighted by Fanaee-T and João [21].
Sebestyen and Hangan [22] discuss the difficulties and
potential solutions associated with putting computer-
based anomaly detection systems into practice through
a number of case studies. Dogo et al. [23] conduct a
thorough literature review to determine the current ML
approaches being used to address the water quality
anomaly detection (WQAD) issue, highlight the draw-
backs and restrictions of these approaches, suggest a
hybrid DL-ELM framework for WQAD that could be
further investigated, and then suggest future research
directions. Through the use of remote sensing, Sagan et

al. [24] examine existing trends and improvements in
water quality. They also identify and assess a variety of
widely used estimating techniques across data sources
and datasets, point out the shortcomings of the system
as it stands as well as prospective improvements. Jiang
et al. [25] provide a general systematic framework to
analyze the dynamics of river water quality in depth
by incorporating high temporal resolution observations
with a combination of Fourier and wavelet spectrum
analysis. Ahmed et al. [26] examine the issue from a
number of angles, including the examination of cutting-
edge technologies like the Internet of Things (IoT) and
machine learning approaches to address water quality
as well as the traditional methods of measuring water
quality to obtain insight into the issue. After examining
the present options, the authors suggest a low-cost, IoT-
based system that uses machine learning techniques
to track trends in water quality and identify unusual
events. Gupta et al. [27] offer a summary of data ana-
lytics platforms appropriate for diverse Environmental
Science and Engineering (ESE) research applications.
Utilizing three example case cases, we demonstrate
recent ML algorithm implementations in the ESE sector.
One of these case studies is the detection of anomalies
in continuous data generated by engineered water sys-
tems. Shi et al. [28] list the management of drinking
water quality applications of online UV-Vis spectropho-
tometers over the previous two decades. Table 2 shows
the comparison with other review and survey papers.

The main objectives of the review address following
ones.

• Must do a thorough literature analysis to
determine the most recent methods for estimating
water quality and spotting anomalies.

• To draw attention to the flaws and restrictions of
these existing techniques.

• To give remaining challenges and recommend
future research directions.

1.5. Paper organization
The rest of this paper is organized as follows: Section
2 focuses on water management systems architectures
with their components and cyber security in water
quality. Section 3 describes the methodology for the
systematic review process according to PRISMA 2020.
Section 4 deals with the materials and methods for
water quality and anomaly detection. Section 5 presents
the remaining challenges and prospects. In the last
section, we conclude the paper.

2. Water Management Systems and Water Quality
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Table 2. Comparison with other review and survey papers

Paper Year Cyber-Physical System Focus

Fanaee-T and João[21] 2016 None Anomaly Detection
Sebestyen and Hangan [22] 2017 All Anomaly Detection
Dogo et al. [23] 2019 Smart Water Grids Water Quality and Anomaly Detection
Sagan et al. [24] 2020 None Water Quality
Jiang et al. [25] 2020 None Water Quality
Ahmed et al. [26] 2020 IoT-based low-cost system Water Quality
Gupta et al. [27] 2021 Engineered Water Systems Anomaly Detection
Shi et al. [28] 2022 None Water Quality
Ours 2023 Water Management Systems Water Quality and Anomaly Detection

2.1. Water management systems architecture and
components
Water management facilities under the control of
local governments managements should be organized
according to the design principles and norms deter-
mined by the World Health Organization worldwide.
For this reason, drinking water treatment plants are
made according to certain standards for the purification
of water supplied from the surface and underground
water resources and are generally monitored by SCADA
systems. All equipment is designed to be controlled
from a single center. An automation program for the
facility is prepared. All processes are in the computer
environment and under its control, and all data about
the facility are continuously recorded through this pro-
gram. Regional control panels are installed in order to
intervene in the electro-mechanical parts of the units in
the facility. In case of need, it is possible to intervene in
that unit from its own panel by means of operators.

The automation program contains all the necessary
information (flow rates, levels, pressures, temperatures,
dissolved oxygen concentration, pH values, and other
concentrations) for an effective operation. Major
automatic quality control and measurement equipment
(flow meters, pH meter, turbidity meter, residual
chlorine analyzer) are checked every day, calibrated
if necessary, and renewed and the instructions for
use are followed. In drinking water treatment plants,
all units and main equipment are connected to the
automation system. There is an alarm system in order
to take necessary measures in case of malfunction and
to deliver news to the control room.

Thanks to smart technology, traditional water
management systems can have the instrumental ability
to measure and record data, and the ability to stay
in touch with system administrators interconnected
and quickly analyze the current situation and respond
and solve problems intelligently. (Fig. 1). Smart
water management can generally be defined as
intelligent, efficient and sustainably sourced water.
Smart water systems are designed to collect all kinds

of water-related data such as flow, leakage, pressure
changes, transmission, current chemical parameters
and levels, using technologies such as sensors, wireless
communication devices and control units. In this
way, it helps the efficient use of the resource by
analyzing the collected data. In general, there are four
components of smart water management technology
as shown in Table 3. These are digital output
devices such as meters and sensors, SCADA systems,
geographical information systems (GIS), and related
software. These components are used for various
purposes. For example, with digital output devices,
water quality can be monitored instantly, leakage
and pressure can be detected in real-time, asset
management can be provided, and consumption can
be measured with smart water meters. With SCADA
systems, operations such as optimization of pumping
stations, control of treatment and drinking water
facilities, environmental controls can be performed and
processes can be controlled remotely by processing
and optimizing the information obtained. With the
Geographic information system (GIS), information
about the environment can be collected, managed or
analyzed. In this way, asset management of a water
management system, management and analysis of
environmental data can be performed, and integrated
network models can be obtained. Related software is
used to store, report or use data collected by other
components. Thanks to this software, for example,
water networks can be managed, and possible attack
situations can be detected by working in integration
with GIS and SCADA systems. Thus, decision-making
and risk management can be facilitated for modeling
the infrastructure and environmental systems of
water management systems. The fact that water
management systems become smart, that is, integrating
with information and communication technologies,
increases efficiency and performance. But it also leaves
infrastructure vulnerable to cyber threats. Because
thousands of sensors added to the system will
be controlled over a network and if an attacker
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Figure 1. Smart Water Management System

gains access to the network, the security obligations
of confidentiality, integrity, and availability will be
violated. Therefore, it can be said that recent studies
have not been able to obtain a full solution due to the
problem of testing on real systems, limited computing
resources, existing architectures not responding to
change, re-usability problems, and limitations in
communication. In summary, it is necessary to increase
safety studies on smart water management systems and
to obtain new and sustainable solutions.

2.2. Water quality process
Water quality is defined as an indicator of the
physical, biological, and chemical properties of water.
Changes in water chemistry can occur due to natural
disasters such as earthquakes, terrorist attacks, or
man-made pollution. Today, water companies use
pollution warning systems to control drinking water
quality. With these systems, they regularly monitor
the relevant water quality and environmental data at
various measurement points, using different sensors.

In other words, it has been observed that many of the
water quality parameters are measured and followed
in institutions with water management systems in real
life, but they are not analyzed together at the point
of determining the water quality, and observations are
made by looking at a few determined parameters one
by one. Therefore, the established systems also need a
monitoring system that accurately reports water quality
changes by analyzing all measurement parameters
based on measured values together. In other words, an
adequate and accurate alarm system that enables early
detection of any changes is a basic requirement for the
provision of clean and safe drinking water.

A distribution system’s water quality monitoring
process is a delicate and extremely complex process
that is influenced by a variety of factors. Because
it is difficult to anticipate the water quality at a
particular stage in the system’s life due to the varying
water quality data arriving from various sources and
treatment facilities as well as the diversity of water
pathways in the system. Additionally, there is a lot
of data pollution because the data produced differ
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Table 3. Components of Smart Water Management Technologies

Component Purpose Application Example

Digital outputs
(counter and sensor)

Collecting and transmitting
information in real time.

• Rainmeters, flow meters,
water quality monitoring and
other environmental data
• Acoustic devices for real-time leak detection
• Video camera for asset management
• Smart water meters to measure consumption
• Pressure monitoring for leak detection
and pump optimization

SCADA systems
Process information and remotely
operate and optimize systems
and processes.

• Pressure management
• Pump station optimization
• Water treatment plant control
• Sewage treatment plant control
• Environmental controls, reservoirs, flows, etc.

Geographic Information
Systems

To store, manage, process and analyze
spatial information.

• Asset mapping and asset management
• Fully integrated network models
• Environmental data analysis and management

Software

To store, use and report data.
To model infrastructure and
environmental systems to improve
design, decision making and
risk management.

• Often integrated with GIS and/or SCADA
systems to manage water networks,
control pressure, monitor leakage.
• Improved decision making and risk management
• Customer databases
• Intelligent metering, billing and collections
• Hydraulic design and optimization
• Water resources and hydrological modeling
for water security
• Cloud-based data management and hosting options

from one another. Therefore, in order to ensure
comparability in the produced data, there must be a
certain standardization. When the production methods
of water-related data, duplicate data production, and
data sharing problems are experienced, institutional
capacities in data collection, storage, and analysis at
the local level are insufficient and the data cannot
be recorded sufficiently. This situation necessitates
effective log/data management in water management
systems. In addition, the inaccessibility of data in
digital environments and such issues are the main
problems in the production and use of water-related
data in the world.

When determining the quality of water, it is necessary
to know where and for what purpose the water is
used (such as drinking water, industry, agriculture, and
energy sector) and where the water comes from (rivers,
lakes, coastal-transitional waters, and underground
waters) play a role in determining water quality
standards. For example, while determining the quality
of the water to be used for agriculture, parameters
such as salinity of the water and ion toxicity are
involved, while determining the quality of drinking
water, parameters such as the PH ratio of the water, the
amount of chlorine, and the dissolved oxygen should be
considered. At the point of water quality management,

in general, risk assessments are carried out with the
possible effects of pollutants in water resources on
human health and aquatic ecosystem, the analysis, and
rating of this risk, and the measures to be taken in
order to prevent negative effects. In order for water
resources to reach a good level of quality, general
water quality standards are determined in the world.
Environmental Protection Agency (EPA) has launched
a significant push to create powerful, thorough, and
completely integrated surveillance and monitoring
systems, including global water quality data, that allow
for the early identification and awareness of diseases,
pests, and dangerous substances [29]. In this direction,
environmental quality standards have been determined
in the reference of the World Health Organization
(WHO) for EU priority substances for water quality
in water management systems and for country-specific
pollutants [1, 2, 30, 31]. The Guidelines for drinking-
water quality (GDWQ), the first version of which was
published in 1958, is the international reference point
used to establish national and regional regulations
on water quality and includes an assessment of the
health risks posed by various microbial, chemical,
radiological, and physical contaminants that may be
present in drinking water. In the literature, drinking
water quality is generally determined by the analysis
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of various parameters. In this direction, physico-
chemical parameters, which are of vital importance for
institutions and which are decided on water quality by
direct measurement, and which are widely used in the
literature to determine water quality, are given in Table
4.

Kang et al. [32] examined big data analytics studies
applied in the field of water quality. These studies
were classified and compared according to big data
prediction models. These comparisons were made
using models such as artificial neural networks,
Radial-based Function Network (RBFN), Deep Belief
Network, Decision Trees, Improved Decision Trees, and
Least Squares Support Vector Machine. In addition,
the parameters affecting the water quality according
to the standards in the related study have been
diversified under different subheadings. Lu et al. [5]
collected data from the Tualatin River, one of the
world’s most polluted rivers, to estimate water quality
and estimated indicators such as water temperature,
dissolved oxygen, pH value, specific conductivity,
turbidity, and fluorescence dissolved in organic matter
(FDOM). XGBoost and Random Forest models with
data noise have been proposed for forecasting systems.
The proposed models are then compared with classical
models (PSO-SVM, RBFNN, LSSVM, LSTM) under
different metrics. According to the proposed RF model,
it performed best in estimating temperature, dissolved
oxygen and specific conductivity. In their study, Chawla
et al. [33] used regression and machine learning models
such as linear regression, random forest, support vector
machine (SVM) and long short-term memory (LSTM)
to predict the Salton Sea salinity level and future
trend. Parameters such as temperature, conductivity,
specific conductivity, dissolved oxygen and salinity
were studied. Selim et al. [34] present a study on
water quality analysis using the Internet of things and
big data analytics. An IoT-based model is proposed
considering the parameters affecting the quality of
water such as Oxidation Reduction Potential (ORP),
dissolved oxygen (DO), PH, Electrical Conductivity
(EC) and turbidity. In the study, the points that need
to be considered in making the data read through
these devices meaningful are mentioned. In the study
of Nemade and Shah [35], firstly, data cleaning was
performed by removing missing values and outliers
on the dataset collected using IoT sensors. Then,
the G-SMOTE technique, which hybridizes SMOTE
and genetic algorithm, is proposed to solve the
unbalanced data set problem. In the proposed system,
the usage area of water is determined by using the
modified deep learning neural network (MDLNN)
classifier. In the study of Jin et al. [36], surface
water quality estimation is made to provide real-time
early warnings based on past observation data. A
genetic algorithm (IGA) and a back propagation neural

network (BPNN) are integrated into the data-driven
model. Genetic algorithm was used to optimize suitable
initial weight parameters. BPNN was applied to adjust
suitable connection architectures and determine the
characteristics of water quality variation.

3. Methodology for Systematic Review
This systematic review’s goal is to summarize the
current state of knowledge and identify areas for
future study that should be prioritized. To ensure
a comparable and thorough outcome, the Preferred
Reporting Items for Systematic Reviews (PRISMA)
2020 technique [37] (see Fig. 2) has been specifically
created to offer detailed reporting guidelines for such
assessments. This process typically has four steps: (i)
Identification, (ii) Screening, (iii) Eligibility, and (iv)
Inclusion.

3.1. Identification of sources and search terms
Scopus, Web of Science, and DBLP were the main
online databases used in the search strategy to find
publications. These are the most popular libraries in
the field of water quality estimation and anomaly
detection in water management systems for publishing
conference proceedings and journal papers. We used
Google Scholar to find relevant publications that
appeared in other databases in addition to returning
articles that were covered in these databases. The
databases were searched using suitable keywords and
keyword combinations such as [“water quality" &&
“anomaly detection"]. The search was restricted to the
years 2012 through 2022, which narrows the scope
of our meta-analysis to more recent publications.
The search string for each database is displayed in
Table 5. Advanced searching was employed to weed
out irrelevant papers when a basic database search
produced a large number of results.

3.2. Screening
The papers from the Identification stage that received
the highest ratings were manually annotated. The
degree to which water quality and anomaly detection
were discussed/explained in each publication was
a critical and central qualifying question for the
screening procedure. The publication’s relation to the
subject of the ones described above was another
criterion for this screening phase. Using a second
keyword annotation procedure, we distributed the final
collection by classifying each manuscript according to a
more specific set of categories based on its title, abstract,
and keywords. The whole text required to be reviewed
at this point only if the categorization of publications
based on these three elements was not feasible.
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Records identified from:
Databases (n = 3,219)

Records screened
(n = 119)

Records sought for retrieval
(n = 119)

Records assessed for eligibility
(n = 88)

Studies included in review
(n=88)

Records removed before
screening:
Duplicate records removed (n =
150)
Records marked as ineligible by
automation tools (n = 0)

Records excluded
(n = 3,100)

Records not retrieved
(n = 0)

Records excluded:
Not-English (n = 12)
Type of text (n = 11)
Not closely related (n = 8)
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Figure 2. PRISMA 2020 flow diagram

3.3. Eligibility and Inclusion
This section outlines the procedures we used to select
the final group of papers for this review. The following
selection criteria were used to find publications for a
systematic review:

• Must address anomaly detection and water
quality in water management systems.

• Must have technical content.

• Must have undergone peer review and been pub-
lished in a workshop, conference, or international
journal.

3.4. Results

3,219 publications were found after searching an
online database. To facilitate further investigation,
their information was exported as a CSV file. After
removing any duplicates, the remaining peer-reviewed
articles that have appeared in internationally renowned
conferences, seminars, or publications were picked for
more in-depth analysis. The eligible list of publications
for analysis was selected by reading the title and
abstract and skimming the text in accordance with
inclusion and exclusion criteria. As a consequence, a
selection of 78 papers that would be examined in order
to address the study themes was finalized.
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Table 5. Search string used for each data source

Source Total paper Search string
Scopus 97 “water quality" && “anomaly detection"
Web of Science 65 “water quality" && “anomaly detection"
DBLP 7 “water quality" && “anomaly detection"
Google Scholar 3050 “water quality" && “anomaly detection"

A software program called VOSviewer [38] is used
to visualize and explore maps made from network
data obtained from these papers. Country-based and
abstract networks are shown in Figs. 3a and 3b,
respectively. Items are depicted with a circle and their
label. The weight of an object determines the size of the
circle and label for that item. The label and circle of an
object grow in size in proportion to its weight.

4. Materials and Methods

4.1. Global description of the datasets
It is not safe to test or implement attacks on cyber-
physical systems and the intrusion detection and intru-
sion prevention systems that can be created against
them on real physical systems. Researchers often use
platforms that simulate real systems or real cyber-
physical test environments. Cyber-physical environ-
ments called testbeds have been established in about
30 countries for various needs such as vulnerability
analysis, training, development, and testing of defense
mechanisms. iTrust [39] for cyber security research
at Singapore University of Technology and Design,
Sakarya University Critical Infrastructure National Test
Bed center (CENTER) [40] in Turkey, The Missis-
sippi State University (MSU) SCADA Security Lab
[41], Technical Assessment Research Lab, China [42],
SCADA testbed recently built at the University of New
Orleans, USA [43] are the most popular centers that
provide opportunities for studies by offering cyber-
physical environments created for critical infrastruc-
tures. Apart from these, cyber security studies are
also carried out on simulation platforms or small-scale
cyber-physical test environments (eg EpanetCDA [44],
Facies [45], WaterBox[46]) on water management sys-
tems. Among the cyber-physical test environments, the
most respected and popular are the Secure Water Treat-
ment (SWaT) and The Water Distribution (WADI™) test
environments located at the ITrust center. Therefore,
among the accessible public data sets in the literature
on water management systems, these are the data sets
in which all kinds of scenarios are tried and the most
realistic data is obtained. In the SWAT architecture,
which is designed based on the 6-stage water treatment
process, is aimed to test a small series of cyber-attacks in
the test area and develop a defense mechanism against
them, using carefully designed experiments that ensure
no damage to the physical system. In this context, the
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(a) Country-based network

(b) Abstract network

Figure 3. VOSviewer-based visualization of the papers

SWaT Dataset – 7 days in normal operation and 4 days
with attack scenarios were systematically generated
from the test area [47]. Designed as an extension of
SWAT, in addition to the attacks and defenses therein,

the WADI test environment has the capabilities to sim-
ulate the effects of physical attacks such as water leaks
and malicious chemical injections. Likewise, the WADI
dataset contains data from 123 sensors and actuators
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collected over 14 days and two days with attacks [47].
In addition to the WADI dataset, BATADAL, which is
the result of a competition to objectively compare the
performance of algorithms for detecting cyber attacks
on water distribution systems, includes one year of
normal data without attacks, 6 months of tagged attack
data [47].

4.2. Performance metrics
Performance metrics are an important part of machine
learning that gives someone an insight into whether
progress has been made as a result of the analysis.
There are several criteria we can use to evaluate
the performance of ML algorithms, classification,
and regression algorithms. How the performance
of machine learning algorithms is measured and
compared and how the importance of various features
in the result is evaluated depends entirely on the
metric chosen. Therefore, metrics must be chosen
carefully to evaluate machine learning performance
[48]. Performance metrics used for classification
problems are Confusion Matrix, Accuracy, Precision,
Recall, F1-Score

The Confusion Matrix is the easiest way to measure
the performance of a classification problem where the
output can be classes of two or more types. That is, a
confusion matrix consists of a two-dimensional table
4. There are "Actual" and "Predicted" and also "True
Positives (TP)", "True Negatives (TN)", "False Positives
(FP)", "False Negatives (FN)" in both dimensions as
shown below.

Figure 4. Confusion Matrix

The explanation of terms associated with the
confusion matrix is as follows. True Positives (TP) - A
state where both the true class and the predicted data
point class are 1. True Negatives (TN) - A situation
where both the true class and the predicted data point

class are 0. False Positives (FP) - A situation where the
actual data point class is 0 and the predicted data point
class is 1. False Negatives (FN) - A situation where the
actual data point class is 1 and the predicted data point
class is 0.

Accuracy is the most common performance metric
for classification algorithms. It can be defined as the
number of correct predictions made as the ratio of all
predictions made. The formula is as follows.

Accuracy =
T P + TN

T P + TN + FP + FN
(1)

Precision can be defined as the number of correct
results returned by our machine learning model. The
formula is as follows.

P recision =
T P

T P + FP
(2)

Recall can be defined as the number of positives
returned by our machine learning model.

Recall =
T P

T P + FN
(3)

F1_Score gives the harmonic average of precision
and recall. Mathematically, the F1 score is the weighted
average of precision and recall. The best value of F1 is
1, the worst is 0. The formula is as follows.

F1 =
2 ∗ P recision ∗ Recall
P recision + Recall

=
2 ∗ T P

2 ∗ T P + FP + FN
(4)

Performance metrics that can be used to evaluate
predictions for regression problems are Mean Absolute
Error (MAE), Mean Square Error (MSE), and R Squared
(R2).

Mean Absolute Error (MAE) is the simplest error
metric used in regression problems. It is basically the
sum of the mean of the absolute difference between the
predicted and actual values. The formula is as follows.

MAE =
D∑
i=1

|xi − yi | (5)

Here, x and y are D dimensional vectors, and xi
denotes the value on the ith dimension of x.

Mean Square Error (MSE) is like MAE except that
instead of using the absolute value, it squares the
difference of the actual and predicted output values
before adding them all. The formula is as follows.

MSE =
D∑
i=1

(xi − yi)2 (6)

The R_Square metric is often used for explanatory
purposes and provides an indication of the fitness or
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goodness of a set of predicted output values to actual
output values. The formula is as follows.

R2 = 1 −
∑D

i=1(xi − ŷi)2∑D
i=1(xi − yi)2

(7)

4.3. Traditional methods

The classical (ML) techniques that have recently drawn
the most interest in water quality management and
anomaly detection include logistic regression (LR),
support vector machines (SVM) and artificial neural
networks (ANN). Statistical techniques are also trusted
for the anomaly identification of water quality data
in addition to these conventional ML methods. In
this field of research, multivariate methods like linear
discriminant analysis and principal component analysis
have also been used.

The bulk of these classic ML approaches have
limitations due to their large computational memory
and time needs, imbalanced anomalous-to-normal data
ratios, and sensor signal processing noise. Because of
this, they have low levels of accuracy, a high rate
of false alarms, poor missing data handling, and a
lack of robustness when managing sizable real-time
datasets from numerous and diverse sensory sources
in high dimensional data search spaces. As a result,
it becomes vital to research additional cutting-edge
anomaly detection approaches in order to enhance
performance and fix these ML systems’ flaws [49, 50].

The fundamental idea behind learning from data
is to use a collection of observations to identify an
underlying process. Finding a function that, using the
data at hand, maximizes a particular score is one
approach to see this more formally. This function can
be thought of as a rough approximation of the actual,
unidentified function that specifies the data generation
process. We are in a supervised learning environment
when the training data (the available data) provides
explicit examples of what the desired output should
be. In this context, classification refers to the process
of giving a label to an observation or piece of data in
order to place it into one of several classes or categories.
An example of this method is a classifier, which may be
trained using a set of previously labeled observations to
establish the proper parameters. The anticipated label
for an observation is the result of applying a classifier to
that observation. Finding a function from a hypothesis
set, which includes all feasible functions depending on
the chosen model, is equivalent to the training process
of a classifier [51].

The techniques used for clustering are designed to
create extremely distinct clusters that are internally
cohesive. When we lack the precise labels matching to
each observation, clustering is the most popular type

of unsupervised learning. In this instance, the data’s
features will correspond with the labels. [52].

4.4. Deep learning
Starting in 2012, deep learning, a new area of machine
learning, lead to breakthrough advances. The above-
mentioned water quality and anomaly detection are
particularly well-suited to deep learning because it
has specialized network types for sequential data that
capture temporal structures, they mainly computerize
feature engineering and selection by prioritizing
and learning hierarchies of progressively abstract
representations of the inputs, making them particularly
well-suited to high-dimensional data, and they can
learn arbitrarily complex non-linear mappings [23, 53–
55].

The primary deep learning (DL) architecture models
are deep belief networks (DBN), deep Boltzmann
machines (DBM), stacked denoising autoencoders
(SDAE), convolutional neural networks (CNN), and
recurrent neural networks (RNN). These models have
been applied to the analysis of water quality and
anomaly detection [56].

4.5. Extreme learning machine
The Extreme learning machine (ELM) algorithm was
devised in response to the learning rate of feedforward
neural networks, which is typically thought to be
significantly slower than predicted due to slower
iterations and parameter tuning of the networks. The
three-layer feedforward design of the traditional ELM.
The first layer is the input layer, while the second is
the sole layer that is hidden. The input layer is then
projected to a higher dimensionality by the hidden
layer using connection weights that are randomly
generated, set, and fixed across the network. The hidden
layer’s outputs are generated using non-linear sigmoid
activation functions. With features for linear input-
output, the third layer is used as the output. In order
to train the connection weights between the hidden and
output layers, a regularized least squares technique,
such as the Moore-Penrose pseudo-inverse, is used to
calculate the hidden layer values and the desired output
[57].

In contrast to backpropagation (BP) based neural
networks, ELM does not use iterations or parameter
adjustment. The ELM algorithm’s key advantages
include quick training and strong generalization, which
is the capacity to perform well on novel inputs that
haven’t been seen before other than those used to train
the model. As a result, ML research uses the ELM
algorithm extensively. Numerous investigations have
been carried out by different scholars with the goal of
enhancing the theoretical and practical performance of
the original ELM. Researchers are paying close attention
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to ELM as a solution for anomaly detection issues in
different areas because of its quick training times and
strong generalization abilities [58].

4.6. Reinforcement learning
Nevertheless, apart from these two types, we must
distinguish another one that is very different from those
two: Reinforcement Learning (RL). In RL, instead of
having an initial training dataset from which to learn,
the learning system called an agent interacts in an
environment and it is responsible to select and perform
actions, getting rewards or penalties in return. The
agent must learn by itself the best strategy (the so-
called policy) to get the most reward over time. A policy
determines (either in a probabilistic or deterministic
way) what action the agent should take when it is
in a given situation [59, 60]. Table 6 shows different
approaches for water quality estimation and anomaly
detection with the used models with their parameters.

5. Remaining Challenges and Prospects
5.1. Future sensors
Future water management system sensors will be
more accurate, effective, and economical. These sensors
might detect, monitor, and analyze water quality using
sophisticated machine learning algorithms, which
would give more precise, current information regarding
water supplies. New sensors might also be employed
to monitor the effects of climate change on water
supplies in real-time, allowing water managers to take
preventative action to safeguard their water resources
from pollution and other environmental concerns [76,
77].

5.2. Reproducibility
Reproducibility in water management systems is the
ability to replicate the same results with the same set
of data. This allows for a greater degree of confidence
when making decisions based on the data available.
Reproducibility also enables researchers and scientists
to verify the accuracy of the results they are seeing
and make sure they are reliable. By reproducing
results, water management teams can ensure that their
decisions are based on accurate, reliable data [78, 79].

5.3. Explainable artificial intelligence
Explainability in water management systems refers to
the ability to explain the decisions and predictions that
have been made by an AI-based system. Explainability
can provide insight into why and how an AI-based
system has arrived at a certain decision, enabling users
to evaluate the accuracy and reliability of the system.
This can be used by water management teams to better

identify areas of concern and inform decisions about
how best to allocate resources and solve issues related
to water, quality, safety, and sustainability. Recent
initiatives to increase black-box models’ explainability
lie under the purview of XAI research. They include the
study’s analysis tools Deep LIFT [80], RISE [81], SHAP
[82], and LIME [83].

5.4. Contamination diffusion models
Contamination diffusion models are used in water
management systems to simulate the transport and
spread of water contaminants such as pollutants,
chemicals, and viruses. These models are used to
predict how contaminants will move over time,
allowing water managers to identify areas of potential
contamination and develop strategies to prevent or
reduce their impact. The choice of numerical model
tools for water pollution diffusion in the model base
must be established, reliable, all-encompassing, and
flexible enough to accommodate various scenarios [84].

5.5. Class imbalance problem
A dataset with the imbalanced distribution of classes,
where one or more classes contain more instances than
the others, is referred to as having a class imbalance.
For instance, in a binary-class situation, the class
having the majority of instances is referred to as the
majority class, and the class with the minority of
instances is referred to as the minority class. Real-
world anomalies in water quality are uncommon but
interesting occurrences, but forecasting them from
an unbalanced learning standpoint using conventional
machine learning algorithms is extremely difficult
[53]. To solve the class imbalance problem, it is
possible to utilize combinations of heterogeneous and
homogeneous algorithms, such as bagging, boosting,
stacking, and their variants embedded with resampling
strategies, as well as optimized DNN models. Data
level, algorithm level, and cost-sensitive level methods
can also be utilized. Robust models of increasing
class imbalance and stable models under extreme class
imbalance ratios are still gaps in the literature [85].

5.6. Optimal sensor placement problem
The sensor placement problem is an optimization
problem that attempts to find the optimal locations
for sensors in a given area in order to maximize
their effectiveness. This could involve finding the most
effective placements for traffic cameras, temperature
sensors, or any other kind of sensor. The goal is to
strategically place the sensors so they can provide the
most accurate readings and insights while minimizing
costs [86]. The number of nodes in a WDN is frequently
substantially more than the number of accessible
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Table 6. Comparison of different approaches for water quality estimation and anomaly detection

Ref.
No. Year

Computational
Model Parameters DataSet Performance

[61] 2018 BATADALs
flow rate, pressure,

pumps status,
water levels

BATADAL,
imulation

model based-0.99 Acc.
pre-solve- 0.81 Acc.

[5] 2020
CEEMDAN-XGBoost

CEEMDAN-RF

temperature, PH
dis. oxygen,conductance,

turbidity, fluorescent
dissolved organic matter.

Collected
Data

X

[62] 2018
Random Forest
Decision Tree

Logistic Regression
Naive Bayes,KNN

SCADA network traffic
Generated

Dataset

Offline / Online
RF 99.98, 99.89 Acc. / 0.01, 0 FPR

Decision Tree 100, 99.89 Acc. / 0, 0 FPR
Log. Reg. 99.86, 99.59 Acc. /0.12,0.16 FPR
N. Bayes 99.51, 99.60 Acc. / 0.50, 0.31 FPR

KNN 100, 72.29 Acc. / 0, 0.11 FPR
[4] 2021 Epanet msx

klor, organik karbon,
bakteri

OpenWater
Analytics

X

[63] 2020
SVM

Decision Trees
kNN, Kmeans

network traffic
Generated

Dataset

SVM-0.99994 Acc. /0.99991 F.Meas.
Dec. tree-0.99994, Acc./ 0.9999 F.Meas.

kNN 0.99982 Acc. /0.99664 F.Meas.
Kmeans 0.99982 Acc. /0.99667 F.Meas.

[64] 2018 [HTML]FFFFFFPCA + ANN WMS equipments BATADAL 0.968 Accuracy

[65] 2020
MLR, SVR

ELR, pDNN
BGA, Chl, fDOM,
DO, SC, turbidty

Simulation,
collected data X

[66] 2020
Bayes,

Isolation Forest Turbidity, SC, DO Collected Data 0.745 Accuracy

[67] 2017
DNN, time series,

SVM X SWAT
Precision/Recall/F.Meas.

DNN 0.98295/0.67847/0.80281
SVM 0.92500/0.69901/0.79628

[68] 2019 SVM X
Water Resources

of China X

[69] 2018 ANN

Temp,
specific conductance

dissolved oxygen (DO),
pH, turbidity (TURB),

nitrate + nitrite nitrogen

Collected
Data >0.98 Accuracy

[70] 2019
logistic regression,

linear discriminant analy.,
SVM, ANN, DNN, LSTM

Temp, Cl, PH,
Turbidity

Collected
Data

98.8 Accuracy
SVM 0.9485 F.Meas.

LSTM 0.9023 F.Meas.
RNN 0.8345 F.Meas.

Log.Reg. 0.6027 F.Meas.
LDA 0.0820 F.Meas.

[71] 2021 CUSUM, RF
pH, turbidity,
iron, chlorine Collected Data

0.82 Accuracy
0.84 F.Measure

[72] 2022 statistical methods, DL flow, pressure
Generated

Dataset X

[73] 2021
Weighted kNN, C5.0,
Discriminant Analysis

pH, turbidity, redoks,
temp, TOC, Chl

Generated
Dataset 0.97 Accuracy

[33] 2021
Linear regression,
RF, SVM, LSTM

Temp, DO, pH, turbidity,
phosphorus Collected Data Multivariate Linear 0.97 Accuracy

[36] 2019 GA, BPNN
Nitrogen, turbidity,

electro-conductibility
Generated

Dataset X

[74] 2021 FFNN, GEP+ PSO

magnesium, chloride,
sulfate, bicarbonates,
specific conductivity,

temp

Generated
Dataset X

[19] 2019 ARIMA
turbidity, conductivity,

level
Generated

Dataset
Turbidty- 0.86 Accuracy

Conductivity-0.93 Accuracy

[75] 2019

Attention-based
Spatio-Temporal

Autoencoder,
ConvLSTM-ED

X SWAT
Precision/Recall/F.Meas.

ConvLSTM-ED 0.98/0.422/0.578
STAE-AD 0.96/0.815/0.880

sensors. In order to deliver network-wide, globally
relevant information, sensors must be positioned in this
manner. Moving sensors are utilized in real applications

more frequently rather than static ones. It should
be considered that this raises the problem’s level of
complexity, though.
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5.7. Anomaly event localization
Not only are anomalies and behavioral changes of
sensor data in water distribution networks to be
detected but also the correct position and source
of faults that result in anomalous behaviors at
the water distribution networks are to be found
(fault localization/anomaly event localization). The
hydraulic model must be built with nodal demands
that are sufficiently accurate to reflect actual water
consumption, accurate elevations at locations (nodes)
where pressure data are recorded, and accurate
boundary conditions, such as service reservoirs, tanks,
and pumps, in order to produce good results for
an anomaly hotspot localization process [72]. Not
only pressure-based anomalies but also other types of
anomalies should be investigated. Identification of the
source of contamination can be another hotspot that
needs to be localized. This addresses the requirement
to respond as soon as the contamination is discovered
and to implement the necessary defenses to isolate the
system component that has been affected.

5.8. Anomaly correction
Anomaly correction is a process of detecting, diagnos-
ing, and correcting anomalies in data. It helps identify
any unusual patterns or behavior in datasets that may
indicate an error or irregularity. Anomaly correction
can be used to improve the accuracy and reliability
of data-driven decision-making [87]. The value of the
data directly affects the relevance of the detection and
correction methods. Sensor data, often known as the
information produced by sensors, can be either numeri-
cal or categorical. The former behave like numbers that
can execute mathematical operations and are contin-
uous, scalable, and have a zero. The latter, however,
lack all mathematical operations and are discrete. Since
categorical data are displayed as a string of symbols,
any anomaly may be caused by an unknown symbol
or symbol sequence. It should be noted that as pro-
cessing power improves, the appeal of sensors with
categorical output is rising. The inability to perform
statistical analysis due to the nature of the problem
makes anomaly detection and correction much more
difficult.

5.9. Visualization and GUI design
Data visualization is the use of visual components to
effectively communicate the relevance of large datasets
and to find undiscovered data trends. Charts, graphs,
maps, tables, and other visual representations of data
are all examples of data visualization. Interactive data
visualization, on the other hand, allows users to directly
alter plot elements and create connections between
several plots. Decision makers can more easily and

swiftly understand analytical data with the help of data
visualization, especially those without a background
in computer science or statistical analysis. In most
cases, the Graphical user interface (GUI) is provided by
the user interface layer of water management systems,
from which users can export and view data, produce
summary statistics, and edit data quality [88]. To
visualize water management-related data, some issues
should be regarded: (i) The data organization and
analysis process must be done initially. (ii) When
working with massive datasets, it might be intimidating
to try to spot trends by simply looking at the raw
data. And when working with data, it is crucial to
present the data in an objective manner. (iii) The
third phase involves monitoring data and analyzing
trends. (iv) It’s crucial to identify the audience before
starting to produce infographics, social media posts,
or academic outputs using the findings. (v) Science-
congruent narratives that are values-driven can help us
communicate with the right audiences. (vi) By its most
basic definition, graphic design is the art of producing
visual content, principally conveying messages through
the use of visual hierarchy and page layout strategies.
It’s ideal to adhere to fundamental design visual
guidelines and principles when creating graphics. (vii)
The results should be announced to the public. In
science, consistency and replication are crucial [89].

5.10. Parallel and distributed computing
Only IoT data is expected to have 50 billion connected
sensors worldwide by 2025, whereas the size of
data is expanding quickly at a rate of millions per
second. In order to extract knowledge or make an
accurate prediction, integrating, analyzing, and mining
enormous amounts of data requires an effective and
efficient framework and an algorithm[90]. Due to
the continuous evolution of data streams, predicting
anomaly detection and monitoring water quality at
high speed are crucial and challenging challenges
[91]. The majority of current and traditional anomaly
detection techniques rely significantly on stationary
data, and it can take centralized algorithm hours or
even days to compute and identify accurate results.
Thus, parallel and distributed computing is critical in
reducing execution time, which can fit the need for real-
time or near-real-time detection and monitoring [92].

5.11. Water quality in social multimedia
Social media platforms have emerged as a reliable
means of communication and information transmission
during the past ten years. They are a favored
forum to discuss and express concerns over various
domestic and international difficulties because of their
capacity to reach sizable audiences globally. Security,
disaster response, disease outbreaks [93], and consumer
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happiness are all monitored on social media by law
enforcement, emergency management agencies, the
public health community, and businesses [94, 95].
Although social media monitoring is still relatively
new to the water industry, it might be utilized for
comparable objectives given that consumer complaints
are a good source for spotting distribution system issues
early on.

The Water Research Foundation’s 2017 project1,
Social Media for Water Utilities, showed how the water
industry lagged behind other sectors in embracing
social media, such as the electric industry. According to
the survey, just a small portion of the 60 drinking water
and wastewater utilities in the United States with social
media profiles were actually using it, and of those who
did, only a small portion was able to successfully reach
their customer base.

Nowadays, various studies are carried out to monitor
water quality through social media [96]. One of them is
“Water Quality in Social Multimedia [95]". The analysis
of social media tweets on water quality, security, and
safety is the focus of the WaterMM Task. In order to
download the text, the accompanying image, and the
metadata of tweets that were chosen using a keyword-
based search that included words or phrases about the
quality of drinking water, participants in this task are
given a set of Twitter post IDs (e.g., strange color,
odor or taste, related illnesses, etc.). Participants can
tackle the task using text features, image features,
metadata, or a combination of the above. You can
review some papers using WaterMM benchmark dataset
[97–99]. Using other social media platforms, collecting
multimodal and cross-data will be the main focus of
future works.

6. Conclusion
In this study, water management systems and water
quality issues from critical infrastructures, cyber
security studies on water quality, past cyber attacks on
water quality processes, and security requirements are
systematically examined. The studies reviewed in this
paper are promising, but more work is required for
implementation and validation on real water systems.
Monitoring water quality in water systems is a highly
complicated and critical process influenced by many
factors. Therefore, methods that require advanced
technology should be defined and applied. It has
become compulsory to develop an efficient detection
method for improving the emergency response capacity
in the event of a possible attack, protect against
potential hazards caused by intentional/unintentional

1https://www.nacwa.org/docs/default-source/conferences-
events/older-events/2017-summer/stratcomm-h2o/laura-
ganus.pdf?sfvrsn=18c1f561_4

contamination, classify water quality changes and
anomalies, and ensure early warning in case of potential
hazards. It’s not easy to create a static set of rules or
restrictions that catch major attacks clearly and quickly.
Therefore, the use of learning-based anomaly detection
techniques is essential for water quality detection in
water management systems. In this way, the anomaly
detection system will provide a defense mechanism
to water management systems, while simultaneously
maintaining, repairing, and developing similar critical
infrastructures. With the work to be done by developing
models based on artificial intelligence and machine
learning techniques, predicting more stealthy attacks
and implementing a defense mechanism can be
possible. In fact, these intrusion detection systems need
to be evaluated against real-time water management
systems.
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