
EAI Endorsed Transactions
on Internet of Things Research Article

1

POX and RYU Controller Performance Analysis on
Software Defined Network

Naimullah Naim1, Muhammad Imad1, Muhammad Abul Hassan 2,*, Muhammad Bilal Afzal 3, Shabir
Khan 1 and Amir Ullah Khan 3

1Department of Computing and Technology, Abasyn University Peshawar Pakistan
2Department of Information Engineering and Computer Science, University of Trento Italy
3Pakistan Council of Scientific and Industrial Research, Peshawar, Pakistan

Abstract

From the last decades different types of network schemes are pitched to enhance the user performance. Software Defined
Networks (SDN) is also considered as important factor for different network schemes and its proper administration or
management. Due to major deployment in today’s networking era SDN are further sub divided in to commercial and open-
source controllers. Commercial and open-source controllers are utilized in different type of businesses. According to our
knowledge considerable amount of literature is available on these controllers but did not provide or analyse performance of
these controllers on different network parameters. This paper evaluates and compares the performance of two well-known
SDN open-source controllers POX and RYU with two performance assessments. The first assessment is the implementation
of optimal path by using Dijkstra's algorithm from source to destination. Second assessment is the creation of a custom
topology in our desired tool (MiniNet emulator). Then, the performance in terms of QoS parameters such as Jitter,
throughput, packet loss, and packet delivery ratio are computed by two end hosts in each network. After the assessments,
the performance of POX are optimal as compare to the RYU and best suited to be deployed in any scenario.

Keywords: SDN, POX, RYU, Packet Loss, Packet Delivery Ratio, Jitter, Throughput, MiniNet

Received on 30 October 2023, accepted on 20 July 2023, published on 05 September 2023

Copyright © 2023 N. Naim et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons
Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly
cited.

doi: 10.4108/eetiot.v9i3.2821

*Corresponding author. Email: muhammadabul.hassan@unitn.it

1. Introduction

Tremendous volumes of data have contributed to massive
data centres. Large-scale Processing and storage across these
data centres have resulted in new market models. More
complex computer networks have also increased the
complexity of computing and storage. Well-developed
conventional network infrastructure is a good candidate for
domain networking for network engineers. They have limited
access to customize new network policies by converting high-
level dynamic firmware into a new network policy. Low-level
configuration commands that require manual intervention.
Because of this limitation has become extremely difficult for
the internet to evolve from advanced protocols and efficient
performance. This challenge could result in network

management and control capacities confinement, requiring
manual improvements to lead to error-prone tasks. This
challenge is referred to as 'Internet ossification' by researchers
and network engineers [1]. Thus, the current Internet situation
is limited to addressing emerging technological trends in
networking [2] [36] [37].

To facilitate new network developments, the concept of
programmable networks has been proposed [3]. Software-
Defined Networks (SDN) are a relatively new programmable
network organization technique. Software-Defined
Networking (SDN) facilitates control and data plane
isolation [4]. This paradigm shift in networking architecture
promises to solve several large-scale networks, particularly
data centers. SDN has three essential features: first, it can
isolate core networking devices' data and control functions

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:muhammadabul.hassan@unitn.it

N. Naim et al.

2

using a well-defined application programming interface
(API) (generally referred to as Southbound APIs) [5].
Second, SDN offers a single control plane feature, such that
a specific software application can conveniently manage
different elements of the data plane (usually referred to as
Network Operating System) (NOS) [6]. Thirdly, SDN
facilitates hierarchical controls, and this architecture offers a
global vision of an entire underlying physical network to
network engineers or network operators who can improve
globally. A well-defined open API (usually called
Northbound APIs between control planes and network
running applications) enables innovation and efficient
network control. Different types of SDN controllers provide
various services with different criteria for quality of service
(QoS) and scalability. The controller can also alter the
network's configuration and facilities at runtime [7]. SDN
controllers are mainly implemented in large-scale
environments where performance is a key concern.
Therefore, an extensive assessment framework is required to
select the well-liked controller in each scenario based on the
quality of service (QoS) requirement, custom topology,
routing protocols, and workload, impacting the controller
performance tremendously [39] [40].

This research paper has analysed two well-known open-
source SDN controllers with the help of MiniNet command-
line interface tools for simulation. We implemented
Dijkstra's shortest route algorithm in the POX and RYU SDN
controllers and compared these controllers' performance
based on various metrics like delay, throughput, packet
delivery ratio, jitter, and bitrate to identify the best
controllers.

This research article is organized such that the next section
defines different terms and definition related to SDN. In
section III, we study some related work done in software-
defined networking controller assessment.

1.1 Software-Defined Network Architecture
The primary idea of the software-defined network is
elementary. The SDN architecture has three key components
described in the below section.

The first is the management plan, which consists of a
collection of network programs that handle the software-
defined network control logic. SDN-enabled networks use
programmability rather than command-line interfaces to
offer simplicity and ease in deploying new software and
facilities, including routing, policy enforcement, load
balancing, or custom service provider applications. The
network's automation and orchestration are also possible
through the current API [8].

The control plane is the second and most clever and critical
aspect of the fundamental SDN architecture. This layer
contains a controller that manages the packet transmission
through the Southbound interface, forwarding various rules
and policies to the infrastructure layer [8].

The infrastructure layer, also known as the data plane, is the
third level, and it represents network communication devices
such as switches, routers, and load balancers.). The
southbound APIs link to the control plane by gathering
policies, forwarding rules, and applying them to the relevant
equipment [9].

Figure 1: SDN Architecture

1.2 SDN Controller
In a software-defined network, SDN controllers’ function as
the network's "brain." It is the network's operating system
(os). It is an intermediate SDN architecture layer, as seen in
Figure.1. It is a strategic control point that uses northbound
APIs to handle networking appliances or business
applications and uses southbound APIs to transfer control
information to the underlying routers or switches. An SDN
controller (also referred to as an OpenFlow controller) uses
the OpenFlow Protocol (OFP) in the SDN architecture to
configure the underlying core network equipment and select
the right route for data traffic forwarding. Since the control
plane is typically a centrally controllable software program,
it can handle network traffic dynamically. Several open-
source SDN controller programs (NOS) are currently used to
deploy the architecture; these are Floodlight [10], POX [11],
Trema [12], Beacon [13], Ryu [14], Maestro [15], etc.

1.3 POX Controller
The POX is an SDN controller built on a python inherited
from the NOX controller. The POX controller may be easily
implemented using the OpenFlow protocol, which is the de
facto communication protocol between controllers and
switches. Using the POX control, you can run multiple
programs, such as a switch, hub, load balancer, and firewall.
The POX controller and switches communicate through a
communication protocol such as OpenFlow. POX is built
into MiniNet and is also available for download from GitHub
[5, 16].

1.4 RYU Controller
RYU is an SDN networking framework built on components.
Ryu provides well-defined API platform modules that allow
developers to create new network management and control
applications. Ryu follows multiple network interface control
protocols, such as Netconf, OpenFlow, OF-config, etc. Ryu
completely supports 1.0, 1.2, 1.3, 1.4, 1.5, and Nicira Plugins

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

POX and RYU Controller Performance Analysis on Software Defined Network

3

for OpenFlow. The complete code is available free of charge
under the Apache 2.0 license [17].

2. Literature Review

The POX and Floodlight controller's performance was
compared based on delay and throughput. Experiments were
carried out in MiniNet for various network topologies. This
investigation was also narrowed to two controllers, rather
than any other java or python developed controllers; just a
few network variables were computed [18].

The performance compression of ONOS, Open Daylight,
POX, and RYU controllers was done based on bandwidth
and end-to-end delay parameters. A fixed four-level tree
topology with 16 hosts was employed to test the controllers'
performance. The analysis concluded that RYU had the least
end-to-end delay of these four controllers, and ONOS had the
maximum bandwidth. Depending on the aims or needs of the
outcome, the best-qualified controllers were frequently
chosen. The POX controller was adopted as the most
acceptable set of configuration simplicity as the highest
priority. Still, performance is not equivalent to Open
Daylight, RYU, and ONOS controllers [19].

They differentiated the performance of well common
OpenFlow controllers such as POX, NOX, RYU,
FloodLight, and OpenFlow reference controllers based on
their packet handling capability by changing the packet size
and coming pattern in the IP traffic flows. The distributed
internet traffic flow generator tool has been used to compute
throughput, jitter, packet loss, and delay. Their
experimentation outcomes display that Floodlight has better
throughput and less delay when differentiated from other
controllers [20].

The performance of five controllers (POX, ONOS, Open
Daylight, RYU, libfluid) is evaluated using the linear
topology in a MiniNet emulator with different switches. Ping
and Iperf commands perform the performance assessment.
This paper provides a new contribution to measuring and
comparing the delay in and throughput responses of the five
controllers while increasing the load on the linear topology
and stopping responding to the network load (number of
switches). Finally, the findings demonstrate that libfluid
provides the best throughput performance, and POX offers
the best delay performance [21].

The performance of SDN controllers such as Floodlight,
Beacon, Open-MUL, and Open-IRIS was assessed. The
assessment used three types of traffic: TCP, ICMP, and UDP
using Iperf and Ping commands. A method to improve the
network's performance by using the QoS technique was the
Floodlight controller [22].

The exploration and comparison analysis of POX, RYU, and
Open Daylight on network performance parameters such as
packet loss, throughput, and jitter are done in this article.
Although, using an open-source simulation tool called

MiniNet to create different topologies. The data's assessment
clearly shows that Ryu has higher throughput relative to
Floodlight in all topologies. In all topologies, except Torus,
Ryu performs best in cases of latency and jitter [23].

This paper discusses and analyzes POX characteristics, and
Floodlight controllers and contrasts their performance
parameters to select the popularly known SDN open-source
controllers. The parameters are evaluated in various
topologies. When varying the number of measurements and
the data rate, it is found that, in terms of the packet
transmitting time, Floodlight results are much quicker (31
times faster) in all topologies when compared to POX [24].

In terms of available delay and packet forwarding capacity,
the implementation of two well-known SDN controllers,
Open Daylight and Floodlight, was compared. The simulation
modelling was based on a network flow, and the shortest or
lowest path technique was also applied. The load-balancing
algorithm's introduction has made it possible to optimize the
Software-Defined Networking's QoS activity, reduce
response times, and optimally spread the load from the
connections. Consequently, the proposed load-balancing
algorithm dramatically improves the performance of the
Open Daylight-based controller in terms of QoS given [25].
3. Proposed Approach
This section describes SDN open-source controllers,
Dijkstra's shortest route algorithm, and the simulation tool
used for experimentation.

Figure 2: Flow Chart

3.1Dijkstra'sAlgorithm
The majority of the issues that contemporary networks that
prohibit adequate load balancing are connected to the routing
algorithm itself. The present routing technique is based on
the shortest path algorithm. Each packet seeks a route that
can cover the fewest number of hops, and this is the same for
all packets, even though alternative routes are higher but
considerably faster. To simulate the traffic behavior and

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

N. Naim et al.

4

evaluate the network performance based on the regular
algorithm Dijkstra's shortest routing in SDN [26].

The Dijkstra algorithm is called the shortest single-source
route. It calculates the length of the shortest route from the
source to each of the vertices remaining in the graph. The
shortest route problem for a single source can be defined as
follows: Let G= be a weighted graph directed with V having
the vertices set. The special vertex in V, where s is the source
and can be used for any edge in E, Edge Cost (e) is the length
of edge e. It should be non-negative for all weights in the
graph.

3.2 Experimental Setup

The POX and RYU controllers are run in a virtual
environment created by VMware Workstation Pro. Ubuntu
18.04 is installed in Virtual Box to construct the simulation's
operating environment. The network simulation employs a
MiniNet simulator, which can create the network

environment and the accompanying simulation within the
scope of the virtual environment. For comparison, we build
a Python-based RYU, POX controller. The available
throughput and PDR of ICMP queries are measured for a
situation in which the shortest path technique is used [27].

3.2.1 MiniNet

MiniNet is the open-source network emulator for the SDN in
a virtual environment to simulate an extensive network. The
most important reason for using the MiniNet is supporting
the Open Flow Protocol, a better environment to simulate
software Defined Networking controller and test custom
network topologies.

3.2.2 Iperf

The iperf network testing program is widely used for
measuring bandwidth and network connections. The
program can create TCP and UDP data streams as well as
assess network throughput, bandwidth, and network quality
for these streams [28]. The iperf utility may assess uni-
directional or bi-directional throughput between the two end-
hosts and perform client and server functions. It enhances the
tuning of multiple buffers, protocols, and timing parameters.
It calculates the failure of packets, latency jitters, etc., and
supports several simultaneous links.

Figure 3: Iperf Flow

4. Results and Discussion

In this chapter, we simulate and show the simulation
outcomes in graphs. We evaluate the network's performance
with a custom network topology to measure the algorithm's
nature with the simulation results. The parameters used to
evaluate the network's performance were throughput, packet
delivery ratio, jitter, and packet loss. The parameters have
been graphically displayed concerning the number of times.
4.1 Comparison Parameters

Comparison parameters played a vital role in evaluating
routing protocol algorithms in different network scenarios.

Algorithm: DIG-RYU-POX
Problem: shortest route finding
Input: Number of (k), all possible paths, S, D
Output: The best path from S to D using the controller
1 Start
2 Connectivity matrix G (I, J)
3 Network matrix C (S, D)
4 INF= all possible path
5 IF (Failure>0)
6 Remove spam node between S and D
7 G (I, j) = possible, matrix=0
8 End if
9 Dijkstra (K, S, D, G, C)
10 While (n<k)
11 Dijkstra (S, D, G, C)
12 Save all possible path
13 Subtract connectivity matrix
14 n++

15 End while
16 For n pass to controllers
17 For possible path in all paths
18 For S, D, all paths
19 Adjacency [S], [D]
20 End For
21 End For
22 End For

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

POX and RYU Controller Performance Analysis on Software Defined Network

5

In this research study network performance evaluation of
POX and RYU SDN controllers are carried out in terms of:

i. Throughput
ii. Packet Delivery Ratio
iii. Jitter iv.
iv. Packet Loss

4.2 Performance Evaluation

This section describes the results obtained by RYU and POX
controllers when the shortest path algorithms mentioned in
the preceding section are used. It is worth noting that both
SDN controllers operate on the same customized network
topology.
4.2.1 Throughput
The amount of data transferred in a unit of time is measured
in bites per second (kbps). The throughput can be calculated
mathematically by processing several bits per unit of time.
Average throughput is calculated according to the following
formula [29]:
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝛴𝛴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟)/𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟 (𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠) (1)

The iperf utility is a well-known network testing tool for
measuring bandwidth and network connections. The program
can create TCP and UDP data streams and calculate network
performance for these streams. The iperf tool performs both
server and client features and can measure uni-directionally
or bidirectionally throughput between the two end-hosts. The
network throughput is computed in bits per second or data
packets per second using the iperf real-time technique
between source and destination nodes with and without
Dijkstra's algorithm implementation and various topologies in
the RYU SDN controller. The iperf program was used to
assess the controller throughput performance by creating a
TCP node-to-node connection where one node acts as the
server and the other as the client. To figure out TCP
throughput, iperf has carried out in 10 s on the client side, and
data have been obtained every 1 s on the server side.
4.2.2 RYU Controller Throughput
The throughput result between source and destination nodes
of the RYU SDN controller in Dijkstra’s algorithm and
normal flow is measured and tabulated in Table 1 and is
displayed graphically in Figure. 5.1. The throughput graph
helps in discovering end-to-end performance.

Table 1: RYU Controller Throughput

Figure 4: Throughput of SDN RYU Controller.

4.2.3 POX Controller Throughput

The throughput test between source and destination nodes of
POX SDN controller in Dijkstra’s algorithm and normal flow
is measured and tabulated in Table 2 and is displayed
graphically in Figure. 5. The throughput graph helps in
discovering end-to-end performance.

Table2: POX Controller Throughput
S.
No

Time Interval(sec) Throughput (Gbp/S)
Dijkstra’s
Algorithm

Normal Flow

1 0.0-1.0 13 8.22
2 1.0-2.0 13.3 7.54
3 2.0-3.0 12.9 8.31
4 3.0-4.0 13 8.02
5 4.0-5.0 12.7 8.08
6 5.0-6.0 11.9 8.12
7 6.0-7.0 12.9 8.12
8 7.0-8.0 12.6 8.02
9 8.0-9.0 13 7.99

10 9.0-10.0 12.9 7.49
Average Throughput 12.82 7.991

0
1
2
3
4
5
6
7
8

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

RYU Throughput

Dijkstra Algorithm Normal Flow

S.
No

Time
Interval(sec)

Throughput (Gbp/S)
Dijkstra

Algorithm
Normal

Flow
1 0.0-1.0 7.16 5.01
2 1.0-2.0 7.2 5.56
3 2.0-3.0 7.14 5.56
4 3.0-4.0 7.21 5.3
5 4.0-5.0 7.16 4.62
6 5.0-6.0 7.16 4.76
7 6.0-7.0 6.81 4.39
8 7.0-8.0 7.34 4.69
9 8.0-9.0 7.23 4.73
10 9.0-10.0 7.25 5.17
Average Throughput 7.166 4.979

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

N. Naim et al.

6

Figure 5: Throughput of SDN POX Controller

4.2.4 POX and RYU Controller Throughput

The throughput test between source and destination nodes of
the RYU SDN controller is measured and tabulated in Table
3 and is displayed graphically in Figure. 6. The throughput
graph helps in discovering end-to-end performance.

Table 3: RYU & POX Controller Throughput
S.No Time

Interval(sec)

RYU-Throughput
(Gbp/S)

POX-Throughput
(Gbp/S)

Dijkstra’s
Algorithm

Normal
Flow

Dijkstra’s
Algorithm

Normal
Flow

1 0.0-1.0 7.16 5.01 13 8.22
2 1.0-2.0 7.2 5.56 13.3 7.54
3 2.0-3.0 7.14 5.56 12.9 8.31
4 3.0-4.0 7.21 5.3 13 8.02
5 4.0-5.0 7.16 4.62 12.7 8.08
6 5.0-6.0 7.16 4.76 11.9 8.12
7 6.0-7.0 6.81 4.39 12.9 8.12
8 7.0-8.0 7.34 4.69 12.6 8.02
9 8.0-9.0 7.23 4.73 13 7.99

10 9.0-10.0 7.25 5.17 12.9 7.49
Average Throughput 7.166 4.979 12.82 7.991

Figure 6: Throughput of RYU vs. POX Controllers.

The results of the observations are displayed; the test was
performed on the open-source controllers RYU and POX
SDN. Figures 4 to 6 display the throughput values RYU and
POX for each controller in (Gbp/s). Figure 6 shows a
comparison of the average network throughput of various
controllers. Consequently, when compared to RYU, a
controller across customized and conventional network

topologies, the POX controller has the greatest throughput
value. When evaluating the effects of network overload on
various numbers of switches, the POX controller outperforms
RYU. In comparison, the RYU controller demonstrates the
lowest throughput value.
4.2.5 Packet Delivery Ratio
The packet delivery ratio (PDR) is s major indicator for
evaluating the efficiency of a routing mechanism in any
network. The Packet Delivery Ratio is an essential
characteristic for measuring the performance of a routing
system in any network. The protocol's performance is
determined by the simulation settings chosen. The packet
delivery ratio is determined by dividing the total number of
data packets arriving at destinations by the total number of
data packets transmitted from sources. When there is a high
PDR, performance improves. In this research study packet
received ratio is derived from the following formula [30].

 (2)
4.2.6 RYU Controller PDR (%)
Figure 5.4. illustrate the packet delivery ratio (PDR) of the
RYU controller in Dijkstra’s and normal flow. The X-axis
represents the number of times for each experiment, and the
y-axis represents Packet Delivery Ratio (%).

Table 4: RYU Controller PDR%
S.N

o
Time

Interval

(sec)

RYU PDR in Dijkstra's RYU PDR in Normal Flow

Total
Packet

Packet

Lost

Receive
d

PDR(

%)

Total
Packet

Packet

Lost

Receive
d

PDR(

%)
1 0.0-1.0 89208 1514 87694 98.30 43647 1566 42081 96.41

2 1.0-2.0 89166 557 88609 99.37 20660 321 20339 98.44

3 2.0-3.0 89145 315 88830 99.64 38220 47 38173 99.87

4 3.0-4.0 89185 406 88779 99.54 41521 365 41156 99.12

5 4.0-5.0 89156 251 88905 99.71 39176 646 38530 98.35

6 5.0-6.0 89173 327 88846 99.63 36327 965 35362 97.34

7 6.0-7.0 89164 178 88986 99.80 43565 315 43250 99.27

8 7.0-8.0 88525 72 88453 99.91 43839 834 43005 98.09

9 8.0-9.0 89797 207 89590 99.76 45491 434 45057 99.04

10 9.0-

10.0

89130 146 88984 99.83 43320 278 43042 99.35

Average PDR 89164.9 397.3 88767.6 99.54 39576.6 577.1 38999.5 98.52

Figure 7: RYU Controller Packet Delivery Ratio

0
2
4
6
8

10
12
14

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

POX Throughput

Dijkstra Algorithm Normal Flow

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

RYU and POX Throughput

RYU-Throughput(Gbp/S) Dijkstra Algorithm RYU-Throughput(Gbp/S) Normal Flow
POX-Throughput(Gbp/S) Dijkstra Algorithm POX-Throughput(Gbp/S) Normal Flow

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

POX and RYU Controller Performance Analysis on Software Defined Network

7

4.2.7 POX Controller PDR (%)

Figure 8, illustrates the packet delivery ratio (PDR) of the
POX controller in Dijkstra’s algorithm and normal flow. The
X-axis represents the number of times for each experiment,
and the y-axis represents Packet Delivery Ratio (%).

Table 5: POX Controller PDR (%)
S.

No

Time

Interval
 sec)

POX-PDR
in Dijkstra's

 POX-PDR in Normal Flow

Total
Packet

Packet

Lost

Received PDR

(%)

Total
Packet

Packet

Lost

Received PDR

(%)

1 0.0-1.0 450936 22989 427947 94.90 23981 1726 22255 92.80

2 1.0-2.0 400557 18188 382369 95.45 26629 1280 25349 95.19

3 2.0-3.0 489888 15437 474451 96.84 85326 1703 83623 98.01

4 3.0-4.0 1281242 11401 1269841 99.11 75525 4774 70751 93.67

5 4.0-5.0 567057 12468 554589 97.80 82945 3460 79485 95.82

6 5.0-6.0 1471233 10979 1460254 99.25 85998 3430 82568 96.01

7 6.0-7.0 656060 13354 642706 97.96 82485 1210 81275 98.53

8 7.0-8.0 1335629 11310 1324319 99.15 84643 5630 79013 93.34

9 8.0-9.0 529291 15494 513797 97.07 84910 1105 83805 98.69

10 9.0-10.0 483453 20118 463335 95.83 82493 1700 80793 97.93

Average PDR 766534.6 15173.8 751360.8 97.33 71493.5 2601.8 68891.7 95.99

Figure 8: POX Controller Packet Delivery Ratio.

4.2.8 RYU and POX Controller PDR (%)

Figure 9, illustrates the comparison packet delivery ratio of
RYU and POX controller. The X-axis represents the number
of times for each experiment, and the y-axis displays Packet
Delivery Ratio (%).

Table 6: POX & RYU Controller PDR%
S.No Time

Interval(sec)

RYU Packet
Delivery Ratio(%)

POX Packet
Delivery Ratio(%)

Dijkstra's
algorithm

Normal
Flow

Dijkstra's
Algorithm

Normal
Flow

1 0.0-1.0 98.30 94.9 94.9 92.8
2 1.0-2.0 99.37 95.45 95.45 95.19
3 2.0-3.0 99.64 96.84 96.84 98.01
4 3.0-4.0 99.54 99.11 99.11 93.67
5 4.0-5.0 99.71 97.8 97.8 95.82
6 5.0-6.0 99.63 99.25 99.25 96.01
7 6.0-7.0 99.80 97.96 97.96 98.53
8 7.0-8.0 99.91 99.15 99.15 93.34
9 8.0-9.0 99.76 97.07 97.07 98.69

10 9.0-10.0 99.83 95.83 95.83 97.93
Average PDR 99.549 98.528 97.336 5.99

Figure 9: RYU PDR vs. POX PDR

Figures 7 to 9 show the Packet Delivery Ratio (PDR) as a
percentage. Figure 9 depicts a comparison of these two
controllers. Finally, the DRR performance of the RYU
controller is better than a POX controller.
4.2.9 Jitter
In the last experiment, the jitter is the variance in the time
delay or the packet delay between when a packet is
transmitted and when it is received, the measuring of jitter by
making UDP connection between server and client of POX
and RYU controller for the various number of times in
standard and custom MiniNet topology [31].
4.2.10 RYU Jitter
Below is the jitter table for the value collected for different
packets of the RYU controller in Dijkstra’s algorithm and
normal flow. The X-axis displays the number of times in
seconds for each experiment and the y-axis displays the
average jitter calculated for different packets.

Table 7: RYU Controller Jitter

S.No Time
Interval(sec)

RYU-Jitter in
Dijkstra
Algorithm

RYU-Jitter in
Normal Flow

Total
Packet

Jitter(ms) Total
Packet

Jitter(ms)

1 0.0-1.0 89208 0.001 43647 0.065
2 1.0-2.0 89166 0.002 20660 0.015
3 2.0-3.0 89145 0.002 38220 0.014
4 3.0-4.0 89185 0.001 41521 0.019
5 4.0-5.0 89156 0.002 39176 0.021
6 5.0-6.0 89173 0.001 36327 0.025
7 6.0-7.0 89164 0.001 43565 0.019
8 7.0-8.0 88525 0.001 43839 0.011
9 8.0-9.0 89797 0.003 45491 0.026

10 9.0-10.0 89130 0.001 43320 0.013
 Average Jitter 89164.9 0.0015 39576.6 0.0228

0
10
20
30
40
50
60
70
80
90

100

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

POX Packet Delivery Ratio

Dijkstra's Algorithm Normal Flow

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

N. Naim et al.

8

Figure 10. RYU Controller Jitter

4.2.11 POX Jitter

Below is the table of jitter for the value collected for different
packets of the POX controller in Dijkstra’s algorithm and
normal flow. The X-axis displays the number of times in
seconds for each experiment and the y-axis represents the
average jitter calculated for different packets.

Table 8:POX Controller Jitter
S.No Time

Interval(sec)

POX-Jitter in Dijkstra

Algorithm

POX-Jitter in
Normal Flow

Total
Packet

Jitter(ms) Total
Packet

Jitter(ms)

1 0.0-1.0 450936 0.003 23981 0.008
2 1.0-2.0 400557 0.004 26629 0.062
3 2.0-3.0 489888 0.005 85326 0.017
4 3.0-4.0 1281242 0.014 75525 0.02
5 4.0-5.0 567057 0.003 82945 0.021
6 5.0-6.0 1471233 0.003 85998 0.012
7 6.0-7.0 656060 0.002 82485 0.017
8 7.0-8.0 1335629 0.003 84643 0.026
9 8.0-9.0 529291 0.005 84910 0.015

10 9.0-10.0 483453 0.002 82493 0.017
Average Jitter 766534.6 0.0044 71493.5 0.0215

Figure 11: POX Controller Jitter

4.2.12 RYU and POX Controller Jitter

Figure 12, illustrates the comparison jitter of RYU and POX
controller. The X-axis displays the number of average jitter
times for each experiment, and the y-axis represents the
number of packets.

Table 9: RYU and POX Controller Jitter
S.N o Time

Interval(sec)

RYU Jitter(ms) POX-Jitter(ms)

Dijkstra's
Algorithm

Normal
Flow

Dijkstra's
Algorithm

Normal
Flow

1 0.0-1.0 0.001 0.065 0.003 0.008

2 1.0-2.0 0.002 0.015 0.004 0.062

3 2.0-3.0 0.002 0.014 0.005 0.017

4 3.0-4.0 0.001 0.019 0.014 0.02

5 4.0-5.0 0.002 0.021 0.003 0.021

6 5.0-6.0 0.001 0.025 0.003 0.012

7 6.0-7.0 0.001 0.019 0.002 0.017

8 7.0-8.0 0.001 0.011 0.003 0.026

9 8.0-9.0 0.003 0.026 0.005 0.015

10 9.0-10.0 0.001 0.013 0.002 0.017

Average Jitter 0.0015 0.0228 0.0044 0.0215

Figure 12: RYU vs POX Controller Jitter

Figures 10 to 12 demonstrate the jitter. Figure 5.9 depicts a
comparison of these two controllers. Finally, the Jitter
performance of the RYU controller is better than a POX
controller.
4.2.13 Packet Loss
Data is sent and retrieved in small units known as packets in
every network system. Packet loss refers to data packets that
do not arrive at their destination after being transmitted
through a computer network and the number of packets lost
or discarded during their journey through a computer
network [32] [33].
4.2.14 RYU Controller Packet Loss
The Bellow table is of packet loss ratio variability of RYU
SDN controller in Dijkstra’s algorithm and normal flow
(without Dijkstra’s), measuring packet loss by making UDP
connection between server and client of RYU for the
different number of times in custom MiniNet topology [34]
[35].

0.001
0.011
0.021
0.031
0.041
0.051
0.061

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TIme Interaval(sec)

RYU Jitter

Dijkstra's Algorithm Normal flow

0.001

0.011
0.021

0.031

0.041

0.051

0.061

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

POX Jitter

Dijkstra's Algorithm Normal flow

0.001
0.011
0.021
0.031
0.041
0.051
0.061
0.071

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

RYU and POX Controller Jitter

RYU Jitter(ms) Dijkstra's Algorithm RYU Jitter(ms) Normal Flow
POX-Jitter(ms) Dijkstra's Algorithm POX-Jitter(ms) Normal Flow

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

POX and RYU Controller Performance Analysis on Software Defined Network

9

Table 10: RYU Controller Packet Loss
S.N

o
Time

Interval(sec)

RYU Packet-Lost in Dikstra's
algorithm

RYU Packet-Lost in Normal
Flow

 Total
Packet

Packet

Lost

Packet-

Lost(%)

Total
Packet

Packet

Lost

Packet-

Lost(%)
1 0.0-1.0 89208 1514 1.69 43647 1566 3.58

2 1.0-2.0 89166 557 0.62 20660 321 1.55

3 2.0-3.0 89145 315 0.35 38220 47 0.12

4 3.0-4.0 89185 406 0.45 41521 365 0.87

5 4.0-5.0 89156 251 0.28 39176 646 1.64

6 5.0-6.0 89173 327 0.36 36327 965 2.65

7 6.0-7.0 89164 178 0.19 43565 315 0.72

8 7.0-8.0 88525 72 0.08 43839 834 1.90

9 8.0-9.0 89797 207 0.23 45491 434 0.95

10 9.0-10.0 89130 146 0.16 43320 278 0.64

Average Packet
Lost

89164.9 397.3 0.441 39576.6 577.1 1.462

Figure 13: RYU Controller Packet Loss

4.2.15 POX Controller Packet Loss
The Bellow table is of packet loss ratio variability of POX
SDN controller in Dijkstra’s algorithm and normal flow, the
measuring of packet loss by making UDP connection
between server and client of POX for the different number of
times in custom MiniNet topology.

Table 11:POX Controller Packet Loss
S.No Time

Interval(sec)

POX Packet Lost in Dijkstra's

Algorithm

POX Packet Lost in Normal
Flow

Total
Packet

Packet
lost

Packet-

Lost(%)

Total
Packet

Packet
Lost

Packet-

Lost(%)
1 0.0-1.0 450936 22989 5.09 23981 1726 7.19

2 1.0-2.0 400557 18188 4.54 26629 1280 4.80

3 2.0-3.0 489888 15437 3.15 85326 1703 1.99

4 3.0-4.0 1281242 11401 0.88 75525 4774 6.32

5 4.0-5.0 567057 12468 2.19 82945 3460 4.17

6 5.0-6.0 1471233 10979 0.74 85998 3430 3.98

7 6.0-7.0 656060 13354 2.03 82485 1210 1.46

8 7.0-8.0 1335629 11310 0.84 84643 5630 6.65

9 8.0-9.0 529291 15494 2.92 84910 1105 1.30

10 9.0-10.0 483453 20118 4.16 82493 1700 2.06

Average Packet

Lost

766534.6 15173.8 2.654 71493.5 2601.8 3.992

Figure 14: POX Controller Packet Lost

4.2.16 RYU and POX Controller Packet Loss
Figure 15, illustrates the comparison packet loss of RYU and
POX controller. The X-axis represents the number of times
of packet losses for each experiment, and the y-axis
represents the number of packets.

Table 12: RYU vs POX Controller Packet Loss
S.No Time

Interval(sec)

RYU Packet Lost(%) POX Packet Lost(%)

Dijkstra's
Algorithm

Normal
Flow

Dijkstra's
Algorithm

Normal
Flow

1 0.0-1.0 1.69 3.58 5.09 7.19

2 1.0-2.0 0.62 1.55 4.54 4.80

3 2.0-3.0 0.35 0.12 3.15 1.99

4 3.0-4.0 0.45 0.87 0.88 6.32

5 4.0-5.0 0.28 1.64 2.19 4.17

6 5.0-6.0 0.36 2.65 0.74 3.98

7 6.0-7.0 0.19 0.72 2.03 1.46

8 7.0-8.0 0.08 1.90 0.84 6.65

9 8.0-9.0 0.23 0.95 2.92 1.30

10 9.0-10.0 0.16 0.64 4.16 2.06

Average Packet Lost 0.441 1.462 2.654 3.992

Figure 15: RYU vs POX Controller Packet Loss

Figures 13 to 15 demonstrate the Packet loss. Figure 15
depicts a comparison of these two controllers. Finally, the
RYU controller outperforms the POX controller in packet
loss.

5. Conclusion

0.01
1.01
2.01
3.01
4.01
5.01
6.01
7.01
8.01

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

POX Packet Lost

POX Packet Lost Dijkstra's Algorithm POX Packet Lost Normal Flow

0.01
1.01
2.01
3.01
4.01
5.01
6.01
7.01
8.01

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time Interval(sec)

RYU and POX Packet Lost

RYU Packet Lost Dijkstra's Algorithm RYU Packet Lost Normal Flow
POX Packet Lost Dijkstra's Algorithm POX Packet Lost Normal Flow

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

N. Naim et al.

10

Software-Defined Networking is a new concept which exists
for about 20 years. However, it has become relevant in the
network area in the last few years. This is due to the
increasing necessities in network programmability and traffic
that have been driven by the development of other areas such
as network virtualization, mobile devices, and others. A
controller is the principal construction of SDN. In this paper,
the performance evaluation of two open-source controllers
(POX, and RYU) was compared based on jitter, packet loss,
throughput, and packet delivery ratio for custom topology in
the MiniNet emulator. The performance evaluation of POX
and RYU shows that the POX controller provides a better
result in terms of throughput. In the packet delivery ratio,
jitter, and packet loss the RYU controller provides better
performance.

References
[1] E. Rojas, "From software-defined to human-defined

networking: Challenges and opportunities," IEEE Network,
vol. 32, pp. 179-185, 2017.

[2] N.Ullah, S. I. Ullah, A. W. Ullah, A. Salam, M. Imad, and F.
Ullah, "Performance Analysis of POX and RYU Based on
Dijkstra’s Algorithm for Software Defined Networking," in
European, Asian, Middle Eastern, North African Conference
on Management & Information Systems, 2021: Springer, pp.
24-35.

[3] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, "Software
defined networking (SDN) challenges, issues and solution," Int
J Comput Sci Eng, vol. 7, pp. 884-889, 2019.

[4] S. Barguil, V. Lopez, and J. P. F.-P. Gimenez, "Towards an
open networking architecture," in 2020 International
Conference on Optical Network Design and Modeling
(ONDM), 2020, pp. 1-3.

[5] I. Z. Bholebawa and U. D. Dalal, "Performance analysis of
SDN/OpenFlow controllers: POX versus floodlight," Wireless
Personal Communications, vol. 98, pp. 1679-1699, 2018.

[6] B. Pandya, S. Parmar, Z. Saquib, and A. Saxena, "Framework
for securing SDN southbound communication," in 2017
International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), 2017, pp.
1-5.

[7] M. A. Hassan, S. I. Ullah, A. Salam, A. W. Ullah, M. Imad, and
F. Ullah, "Energy efficient hierarchical based fish eye state
routing protocol for flying ad-hoc networks," Indonesian
Journal of Electrical Engineering and Computer Science, vol.
21, no. 1, pp. 465-471, 2021.

[8] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley,
et al., "Advancing software-defined networks: A survey," IEEE
Access, vol. 5, pp. 25487-25526, 2017.

[9] T. G. Robertazzi, "Software-defined networking," in
Introduction to Computer Networking, ed: Springer, 2017, pp.
81-87.

[10] S. Asadollahi, B. Goswami, A. S. Raoufy, and H. G. J.
Domingos, "Scalability of software defined network on
floodlight controller using OFNet," in 2017 International
Conference on Electrical, Electronics, Communication,
Computer, and Optimization Techniques (ICEECCOT), 2017.

[11] M. A. Hassan, M. Imad, T. Hassan, F. Ullah, and S. Ahmad,
"Impact of Routing Techniques and Mobility Models on Flying
Ad Hoc Networks," in Computational Intelligence for
Unmanned Aerial Vehicles Communication Networks:
Springer, 2022, pp. 111-129.

[12] A. Hussain, M. Imad, A. Khan, and B. Ullah, "Multi-class
Classification for the Identification of COVID-19 in X-Ray
Images Using Customized Efficient Neural Network," in AI
and IoT for Sustainable Development in Emerging Countries:
Springer, 2022, pp. 473-486.

[13] M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf,
"Enabling ICN in IP networks using SDN," in 2013 21st IEEE
International Conference on Network Protocols (ICNP), 2013,
pp. 1-2.

[14] D. Erickson, "The beacon openflow controller," in Proceedings
of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, 2013, pp. 13-18.

[15] S. Lateef, M. Rizwan, and M. A. Hassan, "Security Threats in
Flying Ad Hoc Network (FANET)," Computational
Intelligence for Unmanned Aerial Vehicles Communication
Networks, pp. 73-96, 2022.

[16] Z. M. Imad, S. I. Ullah, A. Salam, W. U. Khan, F. Ullah, and
M. A. Hassan, "Automatic Detection of Bullet in Human Body
Based on X-Ray Images Using Machine Learning Techniques,"
International Journal of Computer Science and Information
Security (IJCSIS), vol. 18, no. 6, 2020.

[17] S. Kaur, J. Singh, and N. S. Ghumman, "Network
programmability using POX controller," in Proc.

[18] M. Imad, A. Hussain, M. A. Hassan, Z. Butt, and N. U. Sahar,
"IoT Based Machine Learning and Deep Learning Platform for
COVID-19 Prevention and Control: A Systematic Review," AI
and IoT for Sustainable Development in Emerging Countries,
pp. 523-536, 2022.

[19] M. A. Hassan, A. R. Javed, T. Hassan, S. S. Band, R.
Sitharthan, and M. Rizwan, "Reinforcing Communication on
the Internet of Aerial Vehicles," IEEE Transactions on Green
Communications and Networking, 2022.

[20] M. Darianian, C. Williamson, and I. Haque, "Experimental
evaluation of two openflow controllers," in 2017 IEEE 25th
International Conference on Network Protocols (ICNP), 2017,
pp. 1-6.

[21] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, "A survey on
software defined networking with multiple controllers,"
Journal of Network and Computer Applications, vol. 103, pp.
101-118, 2018.

[22] A. V. Priya and N. Radhika, "Performance comparison of SDN
OpenFlow controllers,"

[23] International Journal of Computer Aided Engineering and
Technology, vol. 11, pp. 467-479, 2019.

[24] M. Z. Abdullah, N. A. Al-awad, and F. W. Hussein,
"Performance Comparison and Evaluation of Different
Software Defined Networks Controllers," International Journal
of Computing and Network Technology, vol. 6, 2018.

[25] A. Jasim and D. Hamid, "Enhancing the performance of
OpenFlow network by using QoS," International Journal of
Scientific & Engineering Research (IJSER), vol. 7, pp. 950-
955, 2016.

[26] R. K. Chouhan, M. Atulkar, and N. K. Nagwani, "Performance
Comparison of Ryu and Floodlight Controllers in Different
SDN Topologies," in 2019 1st International Conference on
Advanced Technologies in Intelligent Control, Environment,
Computing & Communication Engineering (ICATIECE),
2019, pp. 188-191.

[27] C. Fancy and M. Pushpalatha, "Performance evaluation of SDN
controllers POX and floodlight in MiniNet emulation
environment," in 2017 International Conference on Intelligent
Sustainable Systems (ICISS), 2017, pp. 695-699.

[28] J. P. Duque, D. D. Beltrán, and G. P. Leguizamón,
"OpenDaylight vs. Floodlight: Comparative Analysis of a Load
Balancing Algorithm for Software Defined Networking,"

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

POX and RYU Controller Performance Analysis on Software Defined Network

11

International Journal of Communication Networks and
Information Security, vol. 10, pp. 348-357, 2018.

[29] H. Sufiev and Y. Haddad, "A dynamic load balancing
architecture for SDN," in 2016 IEEE International Conference
on the Science of Electrical Engineering (ICSEE), 2016, pp. 1-
3.

[30] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani,
"Sdn controllers: Benchmarking & performance evaluation,"
arXiv preprint arXiv:1902.04491, 2019.

[31] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu,
"iPerf-The ultimate speed test tool for TCP, UDP and SCTP,"
línea]. Available: https://iperf. fr.[Último acceso: 23 Mayo
2018], 2014.

[32] S. I. Ullah, A. Salam, W. Ullah, and M. Imad, "COVID-19 lung
image classification based on logistic regression and support
vector machine," in European, Asian, Middle Eastern, North
African Conference on Management & Information Systems,
2021: Springer, pp. 13-23.

[33] M.Imad, N. Khan, F. Ullah, M. A. Hassan, and A. Hussain,
"COVID-19 classification based on Chest X-Ray images using
machine learning techniques," Journal of Computer Science
and Technology Studies, vol. 2, no. 2, pp. 01-11, 2020.

[34] A. Salam, F. Ullah, M. Imad, and M. A. Hassan, "Diagnosing
of Dermoscopic Images using Machine Learning approaches
for Melanoma Detection," in 2020 IEEE 23rd International
Multitopic Conference (INMIC), 2020: IEEE, pp. 1-5.

[35] M. Imad, F. Ullah, and M. A. Hassan, "Pakistani Currency
Recognition to Assist Blind Person Based on Convolutional
Neural Network," Journal of Computer Science and
Technology Studies, vol. 2, no. 2, pp. 12-19, 2020.

[36] M. Rizwan et al., "Risk monitoring strategy for confidentiality
of healthcare information," Computers and Electrical
Engineering, vol. 100, p. 107833, 2022.

[37] R. V Boppana, R. Chaganti, and V. Vedula. "Analyzing the
vulnerabilities introduced by ddos mitigation techniques for
software-defined networks." National Cyber Summit.
Springer, Cham, 2019.

[38] V. Ravi, R. Chaganti and M. Alazab, "Deep Learning Feature
Fusion Approach for an Intrusion Detection System in SDN-
Based IoT Networks", IEEE Internet of Things Magazine, vol.
5, no. 2, pp. 24-29, 2022. Available:
10.1109/iotm.003.2200001.

[39] M. A. Hassan, S. Ali, M. Imad and S. Bibi, “New
Advancements in Cybersecurity: A Comprehensive
Survey” Big Data Analytics and Computational Intelligence
for Cybersecurity,pp. 3-17, 2022.

[40] M. Imad, M. A. Hassan, S. H Bangash, “A Comparative
Analysis of Intrusion Detection in IoT Network Using Machine
Learning” In Big Data Analytics and Computational
Intelligence for Cybersecurity, pp. 149-163, 2022. Springer,
Cham.

EAI Endorsed Transactions on
Internet of Things

| Volume 9 | Issue 3 | e5

	1.4 RYU Controller

