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Abstract 

From the last decades different types of network schemes are pitched to enhance the user performance. Software Defined 
Networks (SDN) is also considered as important factor for different network schemes and its proper administration or 
management. Due to major deployment in today’s networking era SDN are further sub divided in to commercial and open-
source controllers. Commercial and open-source controllers are utilized in different type of businesses. According to our 
knowledge considerable amount of literature is available on these controllers but did not provide or analyse performance of 
these controllers on different network parameters. This paper evaluates and compares the performance of two well-known 
SDN open-source controllers POX and RYU with two performance assessments. The first assessment is the implementation 
of optimal path by using Dijkstra's algorithm from source to destination. Second assessment is the creation of a custom 
topology in our desired tool (MiniNet emulator). Then, the performance in terms of QoS parameters such as Jitter, 
throughput, packet loss, and packet delivery ratio are computed by two end hosts in each network. After the assessments, 
the performance of POX are optimal as compare to the RYU and best suited to be deployed in any scenario. 
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1. Introduction

Tremendous volumes of data have contributed to massive 
data centres. Large-scale Processing and storage across these 
data centres have resulted in new market models. More 
complex computer networks have also increased the 
complexity of computing and storage. Well-developed 
conventional network infrastructure is a good candidate for 
domain networking for network engineers. They have limited 
access to customize new network policies by converting high-
level dynamic firmware into a new network policy. Low-level 
configuration commands that require manual intervention. 
Because of this limitation has become extremely difficult for 
the internet to evolve from advanced protocols and efficient 
performance. This challenge could result in network 

management and control capacities confinement, requiring 
manual improvements to lead to error-prone tasks. This 
challenge is referred to as 'Internet ossification' by researchers 
and network engineers [1]. Thus, the current Internet situation 
is limited to addressing emerging technological trends in 
networking [2] [36] [37].  

To facilitate new network developments, the concept of 
programmable networks has been proposed [3]. Software-
Defined Networks (SDN) are a relatively new programmable 
network organization technique. Software-Defined 
Networking (SDN) facilitates control and data plane 
isolation [4]. This paradigm shift in networking architecture 
promises to solve several large-scale networks, particularly 
data centers. SDN has three essential features: first, it can 
isolate core networking devices' data and control functions 
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using a well-defined application programming interface 
(API) (generally referred to as Southbound APIs) [5]. 
Second, SDN offers a single control plane feature, such that 
a specific software application can conveniently manage 
different elements of the data plane (usually referred to as 
Network Operating System) (NOS) [6]. Thirdly, SDN 
facilitates hierarchical controls, and this architecture offers a 
global vision of an entire underlying physical network to 
network engineers or network operators who can improve 
globally. A well-defined open API (usually called 
Northbound APIs between control planes and network 
running applications) enables innovation and efficient 
network control. Different types of SDN controllers provide 
various services with different criteria for quality of service 
(QoS) and scalability. The controller can also alter the 
network's configuration and facilities at runtime [7]. SDN 
controllers are mainly implemented in large-scale 
environments where performance is a key concern. 
Therefore, an extensive assessment framework is required to 
select the well-liked controller in each scenario based on the 
quality of service (QoS) requirement, custom topology, 
routing protocols, and workload, impacting the controller 
performance tremendously [39] [40].  

This research paper has analysed two well-known open-
source SDN controllers with the help of MiniNet command-
line interface tools for simulation. We implemented 
Dijkstra's shortest route algorithm in the POX and RYU SDN 
controllers and compared these controllers' performance 
based on various metrics like delay, throughput, packet 
delivery ratio, jitter, and bitrate to identify the best 
controllers.   

This research article is organized such that the next section 
defines different terms and definition related to SDN. In 
section III, we study some related work done in software-
defined networking controller assessment.    
 
1.1 Software-Defined Network Architecture 
The primary idea of the software-defined network is 
elementary. The SDN architecture has three key components 
described in the below section.  

The first is the management plan, which consists of a 
collection of network programs that handle the software-
defined network control logic. SDN-enabled networks use 
programmability rather than command-line interfaces to 
offer simplicity and ease in deploying new software and 
facilities, including routing, policy enforcement, load 
balancing, or custom service provider applications. The 
network's automation and orchestration are also possible 
through the current API [8].  

The control plane is the second and most clever and critical 
aspect of the fundamental SDN architecture. This layer 
contains a controller that manages the packet transmission 
through the Southbound interface, forwarding various rules 
and policies to the infrastructure layer [8].  

The infrastructure layer, also known as the data plane, is the 
third level, and it represents network communication devices 
such as switches, routers, and load balancers.). The 
southbound APIs link to the control plane by gathering 
policies, forwarding rules, and applying them to the relevant 
equipment [9].

Figure 1: SDN Architecture 
 
1.2 SDN Controller  
In a software-defined network, SDN controllers’ function as 
the network's "brain." It is the network's operating system 
(os). It is an intermediate SDN architecture layer, as seen in 
Figure.1. It is a strategic control point that uses northbound 
APIs to handle networking appliances or business 
applications and uses southbound APIs to transfer control 
information to the underlying routers or switches. An SDN 
controller (also referred to as an OpenFlow controller) uses 
the OpenFlow Protocol (OFP) in the SDN architecture to 
configure the underlying core network equipment and select 
the right route for data traffic forwarding. Since the control 
plane is typically a centrally controllable software program, 
it can handle network traffic dynamically. Several open-
source SDN controller programs (NOS) are currently used to 
deploy the architecture; these are Floodlight [10], POX [11], 
Trema [12], Beacon [13], Ryu [14], Maestro [15], etc.  

1.3 POX Controller 
The POX is an SDN controller built on a python inherited 
from the NOX controller. The POX controller may be easily 
implemented using the OpenFlow protocol, which is the de 
facto communication protocol between controllers and 
switches. Using the POX control, you can run multiple 
programs, such as a switch, hub, load balancer, and firewall. 
The POX controller and switches communicate through a 
communication protocol such as OpenFlow. POX is built 
into MiniNet and is also available for download from GitHub 
[5, 16].  

1.4 RYU Controller  
RYU is an SDN networking framework built on components. 
Ryu provides well-defined API platform modules that allow 
developers to create new network management and control 
applications. Ryu follows multiple network interface control 
protocols, such as Netconf, OpenFlow, OF-config, etc. Ryu 
completely supports 1.0, 1.2, 1.3, 1.4, 1.5, and Nicira Plugins 
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for OpenFlow. The complete code is available free of charge 
under the Apache 2.0 license [17].  

2. Literature Review

The POX and Floodlight controller's performance was 
compared based on delay and throughput. Experiments were 
carried out in MiniNet for various network topologies. This 
investigation was also narrowed to two controllers, rather 
than any other java or python developed controllers; just a 
few network variables were computed [18].  

The performance compression of ONOS, Open Daylight, 
POX, and RYU controllers was done based on bandwidth 
and end-to-end delay parameters. A fixed four-level tree 
topology with 16 hosts was employed to test the controllers' 
performance. The analysis concluded that RYU had the least 
end-to-end delay of these four controllers, and ONOS had the 
maximum bandwidth. Depending on the aims or needs of the 
outcome, the best-qualified controllers were frequently 
chosen. The POX controller was adopted as the most 
acceptable set of configuration simplicity as the highest 
priority. Still, performance is not equivalent to Open 
Daylight, RYU, and ONOS controllers [19].  

They differentiated the performance of well common 
OpenFlow controllers such as POX, NOX, RYU, 
FloodLight, and OpenFlow reference controllers based on 
their packet handling capability by changing the packet size 
and coming pattern in the IP traffic flows. The distributed 
internet traffic flow generator tool has been used to compute 
throughput, jitter, packet loss, and delay. Their 
experimentation outcomes display that Floodlight has better 
throughput and less delay when differentiated from other 
controllers [20].  

The performance of five controllers (POX, ONOS, Open 
Daylight, RYU, libfluid) is evaluated using the linear 
topology in a MiniNet emulator with different switches. Ping 
and Iperf commands perform the performance assessment. 
This paper provides a new contribution to measuring and 
comparing the delay in and throughput responses of the five 
controllers while increasing the load on the linear topology 
and stopping responding to the network load (number of 
switches). Finally, the findings demonstrate that libfluid 
provides the best throughput performance, and POX offers 
the best delay performance [21].  

The performance of SDN controllers such as Floodlight, 
Beacon, Open-MUL, and Open-IRIS was assessed. The 
assessment used three types of traffic: TCP, ICMP, and UDP 
using Iperf and Ping commands. A method to improve the 
network's performance by using the QoS technique was the 
Floodlight controller [22].  

The exploration and comparison analysis of POX, RYU, and 
Open Daylight on network performance parameters such as 
packet loss, throughput, and jitter are done in this article. 
Although, using an open-source simulation tool called 

MiniNet to create different topologies. The data's assessment 
clearly shows that Ryu has higher throughput relative to 
Floodlight in all topologies. In all topologies, except Torus, 
Ryu performs best in cases of latency and jitter [23].  

This paper discusses and analyzes POX characteristics, and 
Floodlight controllers and contrasts their performance 
parameters to select the popularly known SDN open-source 
controllers. The parameters are evaluated in various 
topologies. When varying the number of measurements and 
the data rate, it is found that, in terms of the packet 
transmitting time, Floodlight results are much quicker (31 
times faster) in all topologies when compared to POX [24].  

In terms of available delay and packet forwarding capacity, 
the implementation of two well-known SDN controllers, 
Open Daylight and Floodlight, was compared. The simulation 
modelling was based on a network flow, and the shortest or 
lowest path technique was also applied. The load-balancing 
algorithm's introduction has made it possible to optimize the 
Software-Defined Networking's QoS activity, reduce 
response times, and optimally spread the load from the 
connections. Consequently, the proposed load-balancing 
algorithm dramatically improves the performance of the 
Open Daylight-based controller in terms of QoS given [25]. 
3. Proposed Approach
This section describes SDN open-source controllers, 
Dijkstra's shortest route algorithm, and the simulation tool 
used for experimentation. 

Figure 2: Flow Chart 

3.1Dijkstra'sAlgorithm 
The majority of the issues that contemporary networks that 
prohibit adequate load balancing are connected to the routing 
algorithm itself. The present routing technique is based on 
the shortest path algorithm. Each packet seeks a route that 
can cover the fewest number of hops, and this is the same for 
all packets, even though alternative routes are higher but 
considerably faster. To simulate the traffic behavior and 
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evaluate the network performance based on the regular 
algorithm Dijkstra's shortest routing in SDN [26].  

The Dijkstra algorithm is called the shortest single-source 
route. It calculates the length of the shortest route from the 
source to each of the vertices remaining in the graph. The 
shortest route problem for a single source can be defined as 
follows: Let G= be a weighted graph directed with V having 
the vertices set. The special vertex in V, where s is the source 
and can be used for any edge in E, Edge Cost (e) is the length 
of edge e. It should be non-negative for all weights in the 
graph.  

 

 

3.2  Experimental Setup  

The POX and RYU controllers are run in a virtual 
environment created by VMware Workstation Pro. Ubuntu 
18.04 is installed in Virtual Box to construct the simulation's 
operating environment. The network simulation employs a 
MiniNet simulator, which can create the network 

environment and the accompanying simulation within the 
scope of the virtual environment. For comparison, we build 
a Python-based RYU, POX controller. The available 
throughput and PDR of ICMP queries are measured for a 
situation in which the shortest path technique is used [27].   

3.2.1 MiniNet  

MiniNet is the open-source network emulator for the SDN in 
a virtual environment to simulate an extensive network. The 
most important reason for using the MiniNet is supporting 
the Open Flow Protocol, a better environment to simulate 
software Defined Networking controller and test custom 
network topologies.  

3.2.2 Iperf  

The iperf network testing program is widely used for 
measuring bandwidth and network connections. The 
program can create TCP and UDP data streams as well as 
assess network throughput, bandwidth, and network quality 
for these streams [28]. The iperf utility may assess uni-
directional or bi-directional throughput between the two end-
hosts and perform client and server functions. It enhances the 
tuning of multiple buffers, protocols, and timing parameters. 
It calculates the failure of packets, latency jitters, etc., and 
supports several simultaneous links.  

 

Figure 3: Iperf Flow 

4. Results and Discussion 

In this chapter, we simulate and show the simulation 
outcomes in graphs. We evaluate the network's performance 
with a custom network topology to measure the algorithm's 
nature with the simulation results. The parameters used to 
evaluate the network's performance were throughput, packet 
delivery ratio, jitter, and packet loss. The parameters have 
been graphically displayed concerning the number of times.  
4.1 Comparison Parameters   

Comparison parameters played a vital role in evaluating 
routing protocol algorithms in different network scenarios.  

Algorithm: DIG-RYU-POX 
Problem: shortest route finding   
Input: Number of (k), all possible paths, S, D  
Output: The best path from S to D using the controller   
1  Start  
2  Connectivity matrix G (I, J)  
3  Network matrix C (S, D)  
4  INF= all possible path   
5  IF (Failure>0)  
6    Remove spam node between S and D  
7    G (I, j) = possible, matrix=0  
8  End if    
9  Dijkstra (K, S, D, G, C)  
10  While (n<k)  
11    Dijkstra (S, D, G, C)  
12    Save all possible path   
13    Subtract connectivity matrix  
14    n++  
      
15  End while    
16  For n pass to controllers   
17    For possible path in all paths   
18      For S, D, all paths   
19        Adjacency [S], [D]   
20      End For     
21    End For       
22  End For        
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In this research study network performance evaluation of 
POX and RYU SDN controllers are carried out in terms of:  

i. Throughput  
ii. Packet Delivery Ratio  
iii. Jitter iv.   
iv. Packet Loss  
 

4.2 Performance Evaluation   

This section describes the results obtained by RYU and POX 
controllers when the shortest path algorithms mentioned in 
the preceding section are used. It is worth noting that both 
SDN controllers operate on the same customized network 
topology.  
4.2.1 Throughput 
The amount of data transferred in a unit of time is measured 
in bites per second (kbps). The throughput can be calculated 
mathematically by processing several bits per unit of time. 
Average throughput is calculated according to the following 
formula [29]:   
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝛴𝛴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟)/𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟 (𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠)                         (1) 
 
The iperf utility is a well-known network testing tool for 
measuring bandwidth and network connections. The program 
can create TCP and UDP data streams and calculate network 
performance for these streams. The iperf tool performs both 
server and client features and can measure uni-directionally 
or bidirectionally throughput between the two end-hosts. The 
network throughput is computed in bits per second or data 
packets per second using the iperf real-time technique 
between source and destination nodes with and without 
Dijkstra's algorithm implementation and various topologies in 
the RYU SDN controller. The iperf program was used to 
assess the controller throughput performance by creating a 
TCP node-to-node connection where one node acts as the 
server and the other as the client. To figure out TCP 
throughput, iperf has carried out in 10 s on the client side, and 
data have been obtained every 1 s on the server side.   
4.2.2 RYU Controller Throughput  
The throughput result between source and destination nodes 
of the RYU SDN controller in Dijkstra’s algorithm and 
normal flow is measured and tabulated in Table 1 and is 
displayed graphically in Figure. 5.1. The throughput graph 
helps in discovering end-to-end performance.  

 

 

 

 

 

 

Table 1: RYU Controller Throughput  

 

 

Figure 4: Throughput of SDN RYU Controller. 

4.2.3 POX Controller Throughput  
 
The throughput test between source and destination nodes of 
POX SDN controller in Dijkstra’s algorithm and normal flow 
is measured and tabulated in Table 2 and is displayed 
graphically in Figure. 5. The throughput graph helps in 
discovering end-to-end performance.  

Table2: POX Controller Throughput  
S. 
No  

Time Interval(sec)  Throughput (Gbp/S)  
Dijkstra’s 
Algorithm  

Normal Flow  

1  0.0-1.0  13  8.22  
2  1.0-2.0  13.3  7.54  
3  2.0-3.0  12.9  8.31  
4  3.0-4.0  13  8.02  
5  4.0-5.0  12.7  8.08  
6  5.0-6.0  11.9  8.12  
7  6.0-7.0  12.9  8.12  
8  7.0-8.0  12.6  8.02  
9  8.0-9.0  13  7.99  

10  9.0-10.0  12.9  7.49  
Average Throughput  12.82  7.991  

 

 

  

 

0 
1 
2 
3 
4 
5 
6 
7 
8 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
Time Interval(sec) 

RYU Throughput 

Dijkstra Algorithm Normal Flow 

S. 
No  

Time 
Interval(sec)  

Throughput (Gbp/S)  
Dijkstra 

Algorithm  
Normal 

Flow  
1  0.0-1.0  7.16  5.01  
2  1.0-2.0  7.2  5.56  
3  2.0-3.0  7.14  5.56  
4  3.0-4.0  7.21  5.3  
5  4.0-5.0  7.16  4.62  
6  5.0-6.0  7.16  4.76  
7  6.0-7.0  6.81  4.39  
8  7.0-8.0  7.34  4.69  
9  8.0-9.0  7.23  4.73  
10  9.0-10.0  7.25  5.17  
Average Throughput  7.166  4.979  
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Figure 5: Throughput of SDN POX Controller 

4.2.4 POX and RYU Controller Throughput  

The throughput test between source and destination nodes of 
the RYU SDN controller is measured and tabulated in Table 
3 and is displayed graphically in Figure. 6. The throughput 
graph helps in discovering end-to-end performance.  

Table 3: RYU & POX Controller Throughput  
S.No  Time  

Interval(sec)  

RYU-Throughput 
(Gbp/S)  

POX-Throughput 
(Gbp/S)  

Dijkstra’s 
Algorithm  

Normal 
Flow  

Dijkstra’s 
Algorithm  

Normal 
Flow  

1  0.0-1.0  7.16  5.01  13  8.22  
2  1.0-2.0  7.2  5.56  13.3  7.54  
3  2.0-3.0  7.14  5.56  12.9  8.31  
4  3.0-4.0  7.21  5.3  13  8.02  
5  4.0-5.0  7.16  4.62  12.7  8.08  
6  5.0-6.0  7.16  4.76  11.9  8.12  
7  6.0-7.0  6.81  4.39  12.9  8.12  
8  7.0-8.0  7.34  4.69  12.6  8.02  
9  8.0-9.0  7.23  4.73  13  7.99  

10  9.0-10.0  7.25  5.17  12.9  7.49  
Average Throughput  7.166  4.979  12.82  7.991  

 

 
Figure 6: Throughput of RYU vs. POX Controllers.  

The results of the observations are displayed; the test was 
performed on the open-source controllers RYU and POX 
SDN. Figures 4 to 6 display the throughput values RYU and 
POX for each controller in (Gbp/s). Figure 6 shows a 
comparison of the average network throughput of various 
controllers. Consequently, when compared to RYU, a 
controller across customized and conventional network 

topologies, the POX controller has the greatest throughput 
value. When evaluating the effects of network overload on 
various numbers of switches, the POX controller outperforms 
RYU. In comparison, the RYU controller demonstrates the 
lowest throughput value.    
4.2.5  Packet Delivery Ratio 
The packet delivery ratio (PDR) is s major indicator for 
evaluating the efficiency of a routing mechanism in any 
network. The Packet Delivery Ratio is an essential 
characteristic for measuring the performance of a routing 
system in any network. The protocol's performance is 
determined by the simulation settings chosen. The packet 
delivery ratio is determined by dividing the total number of 
data packets arriving at destinations by the total number of 
data packets transmitted from sources. When there is a high 
PDR, performance improves. In this research study packet 
received ratio is derived from the following formula [30].  

   (2)  
4.2.6 RYU Controller PDR (%)  
Figure 5.4. illustrate the packet delivery ratio (PDR) of the 
RYU controller in Dijkstra’s and normal flow. The X-axis 
represents the number of times for each experiment, and the 
y-axis represents Packet Delivery Ratio (%).  

Table 4: RYU Controller PDR%  
S.N 

o  
Time  

Interval  

(sec)  

RYU PDR in Dijkstra's   RYU PDR in Normal Flow   

Total 
Packet  

Packet  

Lost  

Receive 
d  

PDR( 

%)  

Total 
Packet  

Packet  

Lost  

Receive 
d  

PDR( 

%)  
1  0.0-1.0  89208  1514  87694  98.30  43647  1566  42081  96.41  

2  1.0-2.0  89166  557  88609  99.37  20660  321  20339  98.44  

3  2.0-3.0  89145  315  88830  99.64  38220  47  38173  99.87  

4  3.0-4.0  89185  406  88779  99.54  41521  365  41156  99.12  

5  4.0-5.0  89156  251  88905  99.71  39176  646  38530  98.35  

6  5.0-6.0  89173  327  88846  99.63  36327  965  35362  97.34  

7  6.0-7.0  89164  178  88986  99.80  43565  315  43250  99.27  

8  7.0-8.0  88525  72  88453  99.91  43839  834  43005  98.09  

9  8.0-9.0  89797  207  89590  99.76  45491  434  45057  99.04  

10  9.0- 

10.0  

89130  146  88984  99.83  43320  278  43042  99.35  

Average PDR  89164.9  397.3  88767.6  99.54  39576.6  577.1  38999.5  98.52  

Figure 7: RYU Controller Packet Delivery Ratio 
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4.2.7 POX Controller PDR (%)  
 
Figure 8, illustrates the packet delivery ratio (PDR) of the 
POX controller in Dijkstra’s algorithm and normal flow. The 
X-axis represents the number of times for each experiment, 
and the y-axis represents Packet Delivery Ratio (%).   

Table 5: POX Controller PDR (%)  
S. 

No  

Time  

Interval 
 sec)  

POX-PDR 
in Dijkstra's  

 POX-PDR in Normal Flow  

Total 
Packet  

Packet  

Lost  

Received  PDR 

(%)  

Total 
Packet  

Packet  

Lost  

Received  PDR 

(%)  

1  0.0-1.0  450936  22989  427947  94.90  23981  1726  22255  92.80  

2  1.0-2.0  400557  18188  382369  95.45  26629  1280  25349  95.19  

3  2.0-3.0  489888  15437  474451  96.84  85326  1703  83623  98.01  

4  3.0-4.0  1281242  11401  1269841  99.11  75525  4774  70751  93.67  

5  4.0-5.0  567057  12468  554589  97.80  82945  3460  79485  95.82  

6  5.0-6.0  1471233  10979  1460254  99.25  85998  3430  82568  96.01  

7  6.0-7.0  656060  13354  642706  97.96  82485  1210  81275  98.53  

8  7.0-8.0  1335629  11310  1324319  99.15  84643  5630  79013  93.34  

9  8.0-9.0  529291  15494  513797  97.07  84910  1105  83805  98.69  

10  9.0-10.0  483453  20118  463335  95.83  82493  1700  80793  97.93  

Average PDR  766534.6  15173.8  751360.8  97.33  71493.5  2601.8  68891.7  95.99  

Figure 8: POX Controller Packet Delivery Ratio. 

4.2.8 RYU and POX Controller PDR (%)  
 
Figure 9, illustrates the comparison packet delivery ratio of 
RYU and POX controller. The X-axis represents the number 
of times for each experiment, and the y-axis displays Packet 
Delivery Ratio (%).    

Table 6: POX & RYU Controller PDR%  
S.No  Time  

Interval(sec)  

RYU Packet 
Delivery Ratio(%)  

POX Packet 
Delivery Ratio(%)  

Dijkstra's 
algorithm  

Normal 
Flow  

Dijkstra's 
Algorithm  

Normal 
Flow  

1  0.0-1.0  98.30  94.9  94.9  92.8  
2  1.0-2.0  99.37  95.45  95.45  95.19  
3  2.0-3.0  99.64  96.84  96.84  98.01  
4  3.0-4.0  99.54  99.11  99.11  93.67  
5  4.0-5.0  99.71  97.8  97.8  95.82  
6  5.0-6.0  99.63  99.25  99.25  96.01  
7  6.0-7.0  99.80  97.96  97.96  98.53  
8  7.0-8.0  99.91  99.15  99.15  93.34  
9  8.0-9.0  99.76  97.07  97.07  98.69  

10  9.0-10.0  99.83  95.83  95.83  97.93  
Average PDR  99.549  98.528  97.336  5.99  

 

 
Figure 9: RYU PDR vs. POX PDR 

Figures 7 to 9 show the Packet Delivery Ratio (PDR) as a 
percentage. Figure 9 depicts a comparison of these two 
controllers. Finally, the DRR performance of the RYU 
controller is better than a POX controller.  
4.2.9  Jitter  
In the last experiment, the jitter is the variance in the time 
delay or the packet delay between when a packet is 
transmitted and when it is received, the measuring of jitter by 
making UDP connection between server and client of POX 
and RYU controller for the various number of times in 
standard and custom MiniNet topology [31].  
4.2.10 RYU Jitter  
Below is the jitter table for the value collected for different 
packets of the RYU controller in Dijkstra’s algorithm and 
normal flow. The X-axis displays the number of times in 
seconds for each experiment and the y-axis displays the 
average jitter calculated for different packets.  

Table 7: RYU Controller Jitter  

S.No  Time 
Interval(sec)  

RYU-Jitter in 
Dijkstra 
Algorithm  

RYU-Jitter in 
Normal Flow  

Total 
Packet  

Jitter(ms)  Total 
Packet  

Jitter(ms)  

1  0.0-1.0  89208  0.001  43647  0.065  
2  1.0-2.0  89166  0.002  20660  0.015  
3  2.0-3.0  89145  0.002  38220  0.014  
4  3.0-4.0  89185  0.001  41521  0.019  
5  4.0-5.0  89156  0.002  39176  0.021  
6  5.0-6.0  89173  0.001  36327  0.025  
7  6.0-7.0  89164  0.001  43565  0.019  
8  7.0-8.0  88525  0.001  43839  0.011  
9  8.0-9.0  89797  0.003  45491  0.026  

10  9.0-10.0  89130  0.001  43320  0.013  
 Average Jitter  89164.9  0.0015  39576.6  0.0228  
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Figure 10. RYU Controller Jitter 

4.2.11 POX Jitter  

Below is the table of jitter for the value collected for different 
packets of the POX controller in Dijkstra’s algorithm and 
normal flow. The X-axis displays the number of times in 
seconds for each experiment and the y-axis represents the 
average jitter calculated for different packets.  

Table 8:POX Controller Jitter  
S.No  Time  

Interval(sec)  

POX-Jitter in Dijkstra  

Algorithm  

POX-Jitter in 
Normal Flow  

Total 
Packet  

Jitter(ms)  Total 
Packet  

Jitter(ms)  

1  0.0-1.0  450936  0.003  23981  0.008  
2  1.0-2.0  400557  0.004  26629  0.062  
3  2.0-3.0  489888  0.005  85326  0.017  
4  3.0-4.0  1281242  0.014  75525  0.02  
5  4.0-5.0  567057  0.003  82945  0.021  
6  5.0-6.0  1471233  0.003  85998  0.012  
7  6.0-7.0  656060  0.002  82485  0.017  
8  7.0-8.0  1335629  0.003  84643  0.026  
9  8.0-9.0  529291  0.005  84910  0.015  

10  9.0-10.0  483453  0.002  82493  0.017  
Average Jitter  766534.6  0.0044  71493.5  0.0215  

Figure 11: POX Controller Jitter  

4.2.12 RYU and POX Controller Jitter  

Figure 12, illustrates the comparison jitter of RYU and POX 
controller. The X-axis displays the number of average jitter 
times for each experiment, and the y-axis represents the 
number of packets.   

 

 

 

Table 9: RYU and POX Controller Jitter  
S.N o  Time  

Interval(sec)  

RYU Jitter(ms)  POX-Jitter(ms)  

Dijkstra's 
Algorithm  

Normal 
Flow  

Dijkstra's 
Algorithm  

Normal 
Flow  

1  0.0-1.0  0.001  0.065  0.003  0.008  

2  1.0-2.0  0.002  0.015  0.004  0.062  

3  2.0-3.0  0.002  0.014  0.005  0.017  

4  3.0-4.0  0.001  0.019  0.014  0.02  

5  4.0-5.0  0.002  0.021  0.003  0.021  

6  5.0-6.0  0.001  0.025  0.003  0.012  

7  6.0-7.0  0.001  0.019  0.002  0.017  

8  7.0-8.0  0.001  0.011  0.003  0.026  

9  8.0-9.0  0.003  0.026  0.005  0.015  

10  9.0-10.0  0.001  0.013  0.002  0.017  

Average Jitter  0.0015  0.0228  0.0044  0.0215  

 

Figure 12: RYU vs POX Controller Jitter 

Figures 10 to 12 demonstrate the jitter. Figure 5.9 depicts a 
comparison of these two controllers. Finally, the Jitter 
performance of the RYU controller is better than a POX 
controller.  
4.2.13  Packet Loss  
Data is sent and retrieved in small units known as packets in 
every network system. Packet loss refers to data packets that 
do not arrive at their destination after being transmitted 
through a computer network and the number of packets lost 
or discarded during their journey through a computer 
network [32] [33].  
4.2.14 RYU Controller Packet Loss  
The Bellow table is of packet loss ratio variability of RYU 
SDN controller in Dijkstra’s algorithm and normal flow 
(without Dijkstra’s), measuring packet loss by making UDP 
connection between server and client of RYU for the 
different number of times in custom MiniNet topology [34] 
[35]. 
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Table 10: RYU Controller Packet Loss  
S.N 

o  
Time  

Interval(sec)  

RYU Packet-Lost in Dikstra's 
algorithm  

RYU Packet-Lost in Normal 
Flow  

  Total 
Packet  

Packet  

Lost  

Packet- 

Lost(%)  

Total 
Packet  

Packet  

Lost  

Packet- 

Lost(%)  
1  0.0-1.0  89208  1514  1.69  43647  1566  3.58  

2  1.0-2.0  89166  557  0.62  20660  321  1.55  

3  2.0-3.0  89145  315  0.35  38220  47  0.12  

4  3.0-4.0  89185  406  0.45  41521  365  0.87  

5  4.0-5.0  89156  251  0.28  39176  646  1.64  

6  5.0-6.0  89173  327  0.36  36327  965  2.65  

7  6.0-7.0  89164  178  0.19  43565  315  0.72  

8  7.0-8.0  88525  72  0.08  43839  834  1.90  

9  8.0-9.0  89797  207  0.23  45491  434  0.95  

10  9.0-10.0  89130  146  0.16  43320  278  0.64  

Average Packet 
Lost  

89164.9  397.3  0.441  39576.6  577.1  1.462  

   

Figure 13: RYU Controller Packet Loss 

4.2.15 POX Controller Packet Loss  
The Bellow table is of packet loss ratio variability of POX 
SDN controller in Dijkstra’s algorithm and normal flow, the 
measuring of packet loss by making UDP connection 
between server and client of POX for the different number of 
times in custom MiniNet topology.   

Table 11:POX Controller Packet Loss  
S.No  Time  

Interval(sec)  

POX Packet Lost in Dijkstra's  

Algorithm  

POX Packet Lost in Normal 
Flow  

Total 
Packet  

Packet 
lost  

Packet- 

Lost(%)  

Total 
Packet  

Packet 
Lost  

Packet- 

Lost(%)  
1  0.0-1.0  450936  22989  5.09  23981  1726  7.19  

2  1.0-2.0  400557  18188  4.54  26629  1280  4.80  

3  2.0-3.0  489888  15437  3.15  85326  1703  1.99  

4  3.0-4.0  1281242  11401  0.88  75525  4774  6.32  

5  4.0-5.0  567057  12468  2.19  82945  3460  4.17  

6  5.0-6.0  1471233  10979  0.74  85998  3430  3.98  

7  6.0-7.0  656060  13354  2.03  82485  1210  1.46  

8  7.0-8.0  1335629  11310  0.84  84643  5630  6.65  

9  8.0-9.0  529291  15494  2.92  84910  1105  1.30  

10  9.0-10.0  483453  20118  4.16  82493  1700  2.06  

Average Packet  

Lost  

766534.6  15173.8  2.654  71493.5  2601.8  3.992  

Figure 14: POX Controller Packet Lost 

4.2.16 RYU and POX Controller Packet Loss   
Figure 15, illustrates the comparison packet loss of RYU and 
POX controller. The X-axis represents the number of times 
of packet losses for each experiment, and the y-axis 
represents the number of packets.  

Table 12: RYU vs POX Controller Packet Loss  
S.No  Time  

Interval(sec)  

RYU Packet Lost(%)  POX Packet Lost(%)  

Dijkstra's 
Algorithm  

Normal 
Flow  

Dijkstra's 
Algorithm  

Normal 
Flow  

1  0.0-1.0  1.69  3.58  5.09  7.19  

2  1.0-2.0  0.62  1.55  4.54  4.80  

3  2.0-3.0  0.35  0.12  3.15  1.99  

4  3.0-4.0  0.45  0.87  0.88  6.32  

5  4.0-5.0  0.28  1.64  2.19  4.17  

6  5.0-6.0  0.36  2.65  0.74  3.98  

7  6.0-7.0  0.19  0.72  2.03  1.46  

8  7.0-8.0  0.08  1.90  0.84  6.65  

9  8.0-9.0  0.23  0.95  2.92  1.30  

10  9.0-10.0  0.16  0.64  4.16  2.06  

Average Packet Lost  0.441  1.462  2.654  3.992  

 

Figure 15: RYU vs POX Controller Packet Loss 

Figures 13 to 15 demonstrate the Packet loss. Figure 15 
depicts a comparison of these two controllers. Finally, the 
RYU controller outperforms the POX controller in packet 
loss. 

5. Conclusion 
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Software-Defined Networking is a new concept which exists 
for about 20 years. However, it has become relevant in the 
network area in the last few years. This is due to the 
increasing necessities in network programmability and traffic 
that have been driven by the development of other areas such 
as network virtualization, mobile devices, and others. A 
controller is the principal construction of SDN.  In this paper, 
the performance evaluation of two open-source controllers 
(POX, and RYU) was compared based on jitter, packet loss, 
throughput, and packet delivery ratio for custom topology in 
the MiniNet emulator. The performance evaluation of POX 
and RYU shows that the POX controller provides a better 
result in terms of throughput. In the packet delivery ratio, 
jitter, and packet loss the RYU controller provides better 
performance. 
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