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Abstract 

Interference has always been the main threat to the performance of traditional WiFi networks and next-generation moving 

forward. The problem can be solved with transmit power control(TPC). However, to accomplish this, an information-

gathering process is required. But this brings overhead concerns that decrease the throughput. Moreover, mitigation of 

interference relies on the selection of transmit powers. In other words, the control scheme should select the optimum 

configuration relative to other possibilities based on the total interference, and this requires an extensive search. Furthermore, 

bidirectional communication in real-time needs to exist to control the transmit powers based on the current situation. Based 

on these challenges, we propose a complete solution with Digital Twin WiFi Networks (DTWN). Contrarily to other studies, 

with the agent programs installed on the APs in the physical layer of this architecture, we enable information-gathering 

without causing overhead to the wireless medium. Additionally, we employ Q-learning-based TPC in the Brain Layer to 

find the best configuration given the current situation. Consequently, we accomplish real-time monitoring and management 

thanks to the digital twin. Then, we evaluate the performance of the proposed approach through total interference and 

throughput metrics over the increasing number of users. Furthermore, we show that the proposed DTWN model outperforms 

existing schemes. 
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1. Introduction

The performance degradation in both traditional and next-

generation WiFi networks becomes inevitable due to 

interference issues. We see the performance effect that 

distance between access points (APs) creates in Figure 1. 

As the AP deployments get closer, the chance of 

*Corresponding author. Email: cakirl18@itu.edu.tr 

interference among stations (STAs), APs, and between APs 

and STAs increases. The growing demand and the apparent 

reduction in performance require a mechanism that can 

mitigate this interference. Moreover, since the interference 

among APs and STAs mainly originates from the locations 

of devices, in this paper, we focus on the AP to STA 

interference. 

Transmit Power Control (TPC) mechanisms can resolve 

the interference issues. Such a solution must gather 
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information from the overall network. Then, process it to 

determine the transmit powers of APs. Then, apply these 

decisions to the network. Despite the rigorous studies on 

dynamical adjustment of TPC, some problems are not fully 

resolved, and the solutions are not entirely applicable. This 

is mainly because AP-based, and controller-based schemes 

use the wireless medium for the information-gathering, 

bringing overhead that decreases the throughput. 

Figure 1. Overall normalized throughput vs. inter-AP 
distance [1] 

Moreover, AP-based schemes remain insufficient due to 

scarce resources on APs preventing complex algorithms 

from running. Due to the vast number of possible 

configurations, an extensive search is required to find the 

one that will result in the least interference. Using rule-

based methods for such algorithms is insufficient compared 

to Machine Learning (ML) techniques. Moreover, due to 

networks' dynamic nature, it needs to be monitored 

continuously and adjustments applied to them whenever 

required [16]. In other words, real-time monitoring and 

management capabilities should be present in the solution. 

However, current attempts, including AP-based and 

controller-based approaches, either fail or partially 

consider real-time monitoring and bi-directional data and 

control flows. 

Accordingly, the Digital Twin approach offers an 

excellent foundation for such architecture. Briefly, the 

Digital Twin (DT) [15] models have been used for their 

real-time monitoring, management, and analytical 

capabilities [2], [3]. Moreover, the DT refers to a virtual 

mirror of a physical entity with continuous bi-directional 

flows. Thus, it enables controlling the underlying WiFi 

network topology through the twin without making 

additional overhead caused by TPC control messages. 

Based on these, we utilize DT technology for WiFi 

networks and propose a Digital Twin WiFi Network 

(DTWN) architecture. Moreover, we use Q-learning-based 

TPC to manage interference. The main contributions of this 

paper are listed as follows:  

• We present a digital twin-aided WiFi network named

DTWN that gives us real-time monitoring and

management capabilities. Then, we evaluate twining

frequency and its effects on performance and CPU

consumption.

• The proposed DTWN brain layer runs Q-learning-

based TPC that is able to learn continuously by

interacting with the network. Consequently, we show

that our approach gives promising results over

baselines.

• By the agent programs deployed to the APs in the

physical layer of the proposed architecture, we acquire

interference-related data without causing overhead to

the wireless medium. Moreover, we introduce the

interference indicator $phi$ and separate clients into

requirement and performance classes based on this

value. Then use all this information to define the state

of the network.

The rest of this paper is organized as follows. Section 2 

investigates the literature related to the topics of this paper. 

Then, the problem formulation is given in Section 3. 

Section 4 explains the Physical Network Layer. The Digital 

Twin Network Layer is presented in Section 5 with 

implementation details. Section 6 defines the Q-learning 

based TPC mechanism on Brain Layer. The performance 

of the proposed DTWN architecture is evaluated in Section 

7. Then we conclude the paper with Section 8.

Additionally, the key notations that have been used

throughout this paper is given in Table 1.

Table 1. Key Notations 

Notation Explanation 

𝜃 Transmit Power 

𝜙 Signal-to-Interference 

Indicator 

𝑃𝑥→𝑦 Received signal strength of x 

at y 

𝑓 Twining Frequency 

𝑀 Number of APs 

𝐶 Performance breakdown 

matrix 

𝐼 Interference matrix 

𝑈 Matrix of ones 

λ reward factor 

2. Related Works

 In the IEEE 802.11ax standard [4], spatial reuse 

mechanisms are introduced, and they include Transmit 

Power Control (TPC) and Carrier Sensitivity Threshold 

(CST) adjustments to detect transmissions of other Basic 
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Service Sets (BSSs). [8] proposes a two-scale control in 

which CST is adaptively adjusted at STAs and parameters 

for CST are adjusted using Artificial Intelligence at APs. 

While such advancements on 11ax SR mechanisms might  

increase resource utilization, it is limited because they 

work without communication among neighbouring APs. 

To address the issues, the IEEE802.11be standard 

introduced Multi-AP coordination concept which includes 

coordinated spatial reuse (CSR) and several others [5]. In 

[6], two different CSR options are compared with 11ax SR 

and simulation results shown that CSR achieves better 

throughput. However, the CSR protocols’ [7] use of the 

wireless medium may result in overhead which should be 

taken into consideration. Moreover, the transmission 

powers of all APs are calculated with a rule-based approach 

by an AP. Thus, it is challenged by scarce resources on APs 

such as computational and memory resources. 

The proposed power control mechanism in [9], 

allocations are done with a rule-based approach using 

characteristics of users. Moreover, in [10] a coordinated 

power control scheme is proposed which is also a rule-

based method. While such algorithms might perform well 

under predefined conditions, they might be unable to adapt 

to real word examples. 

Additionally, in [12] performances of TPC, CST tuning, 

and TPC with CST tuning is investigated. The results show 

that out of these three methods, setting Transmit Power to 

a value just over the required value for a successful 

transmission gives the most performance improvement in 

terms of throughput. The paper concludes that performance 

gain is dependent on the network topology meaning 

adapting to the change of the network is needed. This might 

limit the effectiveness of rule-based TPC schemes.  

The study in [11] proposes a centralized controller that 

adjusts the transmit power and channel of APs based on Q-

Learning. They define the state of the network using two-

dimensional STA locations that are presumably collected 

from the devices. However, this collection requires 

additional communication over the wireless medium, 

which may result in an overhead. Moreover, deducting 

interference from locations might be inaccurate [19]. 

Furthermore, while the proposed solution bares desirable 

results, the use of offline learning strategy might prevent 

achieving lower interference. 

 Digital twins (DTs) give promising results in data 

analysis with machine learning [2]. Also, DTs have been 

used to iteratively optimize latency [3]. Moreover, digital 

twin network (DTN) is an emerging concept in its drafting 

stage [13]. Although the applications of DTN technology 

are prominent in smart manufacturing and several other 

fields [14], to the best of our knowledge, DTN technology 

has not been applied to WiFi networks for the purpose of 

solving interference issues by adjusting transmit power. 

3. Problem Formulation

We define the WiFi network as an undirected weighted 

graph 𝐺 = (𝑉, 𝐸, 𝑤), where 𝑉 is a set of vertices consisting 

of clients and APs that are denoted as 𝑉𝑐 and 𝑉𝐴𝑃. 𝐸 is a set

of edges that corresponds to reached signal from an AP to 

a client. We separate the edges formed between 𝑣𝑐 and 𝑣𝐴𝑃

into two groups as signal (𝐸𝑠) and interference (𝐸𝑖). The

signal type edge is formed when 𝑣𝐴𝑃  is serving to 𝑣𝑐 and

interference type is formed when there is interference 

between them. Moreover, 𝑤 is the weight function, and the 

weights are the received signal strength of APs at clients. 

Wireless communication quality is measured with a 

signal-to-interference-plus-noise ratio (SINR). Therefore, 

we assume SINR can represent users' quality of service, 

Figure 2. The proposed Digital Twin WiFi Network (DTWN) architecture 
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consequently, performance. However, we cannot do 

measurements on station side, we define a signal-to-

interference indicator using 𝐺. 

3.1. Signal-to-Interference Indicator (𝜙) 

It is calculated for client vertices 𝑉𝑐. A client vertex

𝑐𝑙𝑖𝑒𝑛𝑡 ∈ 𝑉𝑐  was shown in Figure 3. It forms edges with 𝑚
different APs where 𝐴𝑃𝑖 ∈ 𝑉𝐴𝑃 . One of these edges must be

of signal type, and in this case, it is the one with 𝐴𝑃𝑚.

Figure 3. Example Client Vertex 

The 𝜙 for the vertex 𝑐𝑙𝑖𝑒𝑛𝑡 in the Figure 3 is calculated 

as 

𝜙 = 𝑤𝑚 − 10 log10 ∑ 10𝑤𝑖/10

𝑚−1

𝑖=1

(1) 

where 𝑤𝑖  is the weight of the edge 𝑒 = (𝐴𝑃𝑖 , 𝑐𝑙𝑖𝑒𝑛𝑡).

The weights are in decibels, so to get the ratio, total 

interference is subtracted from the weight of the signal type 

edge (𝑤𝑚). As for the total interference, weights are

summed after converting units from 𝑑𝐵𝑚 to 𝑚𝑊. Then, 

the total value is converted back into 𝑑𝐵𝑚. Moreover, if 

there is no interference type edge, interference is taken 

equal to the thermal noise power which is −100 𝑑𝐵𝑚. 

3.1. Requirement Classes 

The 𝜙 values also give an insight into the performance of 

the vertex. Depending on the clients' traffic characteristics, 

their perceptions will change. Therefore, we need to 

identify how low is too low for a client. For this purpose, 

we define requirement classes in Table 2. Requirement 

Classes  and assign clients to these based on their analyzed 

traffic patterns that were acquired through the analytics 

from the DTN. 

Table 2. Requirement Classes 

Requirement Class Threshold 

𝐴 ϕ >  35𝑑𝐵 

𝐵 35𝑑𝐵 > 𝜙 >  25𝑑𝐵 

𝐶 𝜙 <  25𝑑𝐵 

The level of performance degradation on the WiFi 

network caused by AP to STA interference is mainly a 

result of transmit powers of APs. We denote the transmit 

power of 𝐴𝑃𝑖 as θ𝐴𝑃𝑖
. We further define the configuration

of the APs in a given time as 

𝚯(𝒕) = [𝜃𝐴𝑃0

(𝑡) , 𝜃𝐴𝑃1

(𝑡) , … , 𝜃𝐴𝑃𝑚

(𝑡) ] (2) 

where 𝑚 is the number of APs in the network. 

In general, the goal is to find the optimal vector Θ(𝑡) so

that clients can have adequate levels of ϕ. 

4. Physical Network Layer

The physical network layer consists of a WiFi network as 

shown in Figure 2. 

Here, APs are deployed close to each other, so the 

interference issues threaten the performance. In such 

networks, interference may be in 3 types: AP to AP, AP to 

STA, and STA to STA. In this paper, we focus on 

mitigating AP to STA interference. To do so, we need to 

gather information continuously. Then, using this, decide 

on the transmit powers APs and later apply the decided 

actions. This process depends on APs providing an 

information flow to the next layer and them receiving 

feedback flow from it. To enable these, we deploy agent 

programs to APs. 

The information flow contains the configuration of the 

AP, details about clients and their traffic, and the sensed 

Figure 4. Sample network and example 
sensed packet logs 
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packet log that is kept by the agent program. We explain 

the logging procedure by a use case that was shown in 

Figure 4. It contains two APs (𝐴𝑃1 and 𝐴𝑃2) and seven

client stations. For example, at time t0, 𝑆𝑇𝐴3

communicates with 𝐴𝑃1, in the meantime, the sent packet

is also received by 𝐴𝑃2. Both APs log the timestamp, the

source address, whether the packet was from its client, and 

the received signal power strength in 𝑑𝐵𝑚. 

In addition, the periodicity of the information flow will 

affect the accuracy of the digital twin. In other words, the 

digital twins' performance depends on how often it receives 

information from the real world. This nature brings the 

agent to send information periodically. Moreover, agents 

should send simultaneously to obtain the DTN as a whole 

twin of the physical network. Based on this, we introduce 

the twining frequency 𝑓 as a parameter of DTWN. 𝑓 should 

be tuned according to the topology at hand because of it 

can affect the timeliness of our proposed approach and the 

resource consumption on the physical network by agent 

programs. 

5. Digital Twin Network Layer

In this layer of the architecture, we construct the twin of the 

physical WiFi network using the information flow from the 

previous layer. Then, we use this for monitoring and 

management purposes in the next layer, called as Brain 

Layer in Section 6. 

5.1. Microsoft Azure 

As for the implementation, we utilize Microsoft Azure IoT 

Hub as a gateway to the Physical Network Layer. We have 

installed agent programs to the APs, and these agents send 

information to their IoT Hub instances. Next, we used 

Azure Digital Twins (ADT) to form the DTN. Then, we use 

Event Hubs to capture a stream of data and Azure 

Functions to link all services together. 

In detail, ADT is used to represent the physical objects 

using models coded with Digital Twins Definition 

Language (DTDL) [17]. Moreover, we defined two 

interfaces, AP and STA, that was shown in the Figure 2. 

They contain the following fields: 

• Property fields represent physical object's status. The

SSID and Channel information is stored for AP

interfaces. In STAs, received and transmitted packet

count is stored.

• Telemetry represents measurements that are not

stored in the digital twin. Furthermore, telemetries

compose the output stream of data from the DTN

layer. For AP, CPU utilization and for STA, all the

received power and AP Mac is streamed.

• Relationship is formed between AP and client

models. It is directly mapped to the sensed packet log.

The relationship contains the last timestamp of the

signal sensed by the AP.

• Component is a part of the model that does not

require separate identification. Since APs and clients

are both equipped with network interface controller

(NIC) cards for receiving and transmitting signals, we

model a NIC interface and include it in the models as

a component. The component contains transmit power

and MAC address as a property.

6. Brain Layer

Figure 5. Brain Layer 
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In this layer, we utilize the DTN to form transmission 

power adjustments of APs for managing interference. This 

layer consists of Admission Control, Topology Extraction, 

and Q-learning-based Transmit Power Control as it was 

shown in Figure 5. 

6.1. Admission Control 

Whenever, a new client enters to the network, it is detected 

at the brain layer with a delay based on the twining 

frequency. After detection, an optimal adjustment-seeking 

process begins. In this process, the 𝐺𝑡 is converted to 𝑠𝑡 and

is given to the reinforcement learning agent. Then, the 

agent decides on an action which is then applied. This 

process is repeated until the decided action is to do nothing. 

6.2. Topology Extraction 

As mentioned earlier, we represented the network using 

graph 𝐺. We retrieve transmission power configurations 

and the most recent sensed packet log telemetries from the 

DTN. We use this information to construct the graph 𝐺. 

The transmission power configurations of the devices 

within the network are not all known. In other words, APs 

are sending their configuration through the information 

flow, but configurations of the clients are not accessible in 

this setting. Therefore, we assume that all clients are 

transmitting at the same level. We denote the transmission 

power as θ. In detail, for the 𝐴𝑃𝑖 it is θ𝐴𝑃𝑖
 and for the

clients, it is θ𝑐.

The sensed log telemetries are used alongside θ values 

to form the edges. For example, a log was taken by the 𝐴𝑃𝑖

regarding the client 𝑐𝑗 ∈ 𝑉𝑐 . We represent the "P" column

of the log as 𝑃𝑐𝑗→𝐴𝑃𝑖
. We map this information either to a

signal type edge or an interference type edge, depending on 

the "Is Client?" column. As previously mentioned, the 

weights of the edges will be the received signal strength at 

the client, meaning it is denoted as 𝑃𝐴𝑃𝑖→𝑐𝑗
. Therefore, we

calculate 𝑃𝐴𝑃𝑖→𝑐𝑗
 using the (3.

𝑃𝐴𝑃𝑖→𝑐𝑗
= θ𝐴𝑃𝑖

− θ𝑐𝑗
+ 𝑃𝑐𝑗→𝐴𝑃𝑖 (3) 

As a result, an edge  𝑒 = (𝐴𝑃𝑖 , 𝑐𝑗) with the weight

𝑃𝐴𝑃𝑖→𝑐𝑗
 is put to the graph with the following condition: In

case the edge is type interference, the 𝑃𝐴𝑃𝑖←𝑣𝑗
 needs to be

higher than a significance level. 

6.3. Q-learning based Transmit Power 
Control 

RL problems are described as Markov Decision Process 

(MDP) and expressed in (𝑆, 𝐴, 𝑝, 𝑟) tuple where  𝑆 is the 

state space, 𝐴 is the action space, 𝑝 is the probability of 

transition from a state to the another after an action is 

applied, and 𝑟 is the immediate reward. The goal of the RL 

agent is to find the optimal policy that maximizes the 

reward. The policy is a map of state to action, 𝜋: 𝐴 × 𝑆 →
[0,1].  

In our solution, we use Q-learning algorithm. Q refers 

to the quality function that calculates the expected reward 

for action in a given state, also referred to as Q-Table. The 

algorithm updates Q-Table based on interactions with the 

environment. 

State Space 

The 𝑆 ∈ 𝑅𝑀×(𝑀+3), where 𝑀 is the number of APs,

represents the state space, and the value 3 equals to number 

of performance classes. The 𝑠𝑡, the observed state at time

𝑡, constitutes of 2 parts, 𝐶𝑡 and 𝐼𝑡. 𝐶𝑡 is the performance

breakdown matrix and 𝐼𝑡 is the interference matrix.

State Generation 
We construct the 𝑠𝑡, using 𝐺𝑡 and 𝜙. Initially, we find 𝜙
values for client vertices and categorize clients into 

performance classes that were shown in Table 3. We use 

the number of clients in these classes while denoting it as 

𝐶𝑖,𝑘 where 𝑘 is the performance class. Then, we determine

how many of the clients that are connected to a given 𝐴𝑃𝑖

experience interference from 𝐴𝑃𝑗; we denote this value as

𝐼𝑖,𝑗.

Table 3. Performance Classes 

Performance Class Limits 

1 ϕ >  40𝑑𝐵 

2 40𝑑𝐵 > 𝜙 > ϕ𝑡ℎ𝑟𝑒𝑠ℎ 

3 𝜙 < ϕ𝑡ℎ𝑟𝑒𝑠ℎ 

Consequently, we define the state 𝑠𝑡 as

𝑠𝑡 =

[

𝐶𝑡
1,1 𝐶𝑡

1,2 𝐶𝑡
1,3 𝐼𝑡

1,1 𝐼𝑡
1,2 ⋯ 𝐼𝑡

1,𝑀

𝐶𝑡
2,1 𝐶𝑡

2,2 𝐶𝑡
2,3 𝐼𝑡

2,1 𝐼𝑡
2,2 ⋯ 𝐼𝑡

2,𝑀

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝑡

𝑀,1 𝐶𝑡
𝑀,2 𝐶𝑡

𝑀,3 𝐼𝑡
𝑀,1 𝐼𝑡

𝑀,2 ⋯ 𝐼𝑡
𝑀,𝑀

]
       (4) 

Action Space 
The action space is denoted as 𝐴 and for a given st the RL

agent decides on the action 𝑎𝑡 ∈ 𝐴. We define the action

vector 𝑎𝑡 as in Equation 5 where θ ∈ [0𝑑𝐵𝑚, 30𝑑𝑏𝑀]is
the transmit power. 

𝒂𝒕 = [𝐴𝑃𝑖, 𝜃] (5) 

Reward Function 
After each action applied, we calculate the reward for the 

state and action pair (𝑠𝑡 , 𝒂𝒕). In this calculation, we use the

change between states. We subtract 𝑠𝑡+1 from 𝑠𝑡.
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 𝑠𝑑 = 𝑠𝑡+1 − 𝑠𝑡

= [𝐶𝑡+1|𝐼𝑡+1] − [𝐶𝑡|𝐼𝑡]
=  [𝐶𝑑|𝐼𝑑]

(6) 

Reward calculation is made using 𝐶𝑑 and 𝐼𝑑 matrices

alongside of the reward factor λ. The reward factor is the 

mapping of desirability of change in performance classes. 

Consequently, we define the reward 𝑟(𝑠𝑡 , 𝑎𝑡) as

𝑟(𝑠𝑡, 𝒂𝒕) = 𝐶𝑑𝜆𝑈𝐶 − 𝑈𝑇𝐼𝑑𝑈𝐼 (7) 

where 𝑈 is all-ones matrices, 𝑈𝐶  is the size 3 × 1 and 𝑈𝐼

is the size 𝑀 × 1. 

Reward Factor Calculation 
We assume that while the actions are applied, the network 

topology remains unchanged so the change in the number 

of clients in the performance classes corresponds to 

transitioning between clients. Therefore, the sum of the 𝐶𝑑

entries will always be equal to 0. 

Since the goal is to have adequate levels of 𝜙 over the 

network, a trade-off dynamic appears; therefore, 

minimizing the performance class 3 is more desirable than 

increasing the performance class 1. Based on these, the 

reward factor 𝝀 = [𝜆1, 𝜆2, 𝜆3]
𝑇 should be selected with the

constraints: 𝜆3 < 0 < 𝜆1, ∣ 𝜆1 ∣>∣ 𝜆3. Moreover, we take

the 𝜆2 as 0 to avoid repeating the calculation for the same

transition between classes.  

Update Formula 
The Q-learning algorithm has a function 𝑄 that map state-

action pairs to respective rewards. 

𝑄: 𝑆 × 𝐴 → 𝑅 (8) 

Whenever the agent selects an action 𝒂𝒕 for a given state

𝑠𝑡, it receives the next state 𝑠𝑡+1 and a reward 𝑟𝑡. Then, 𝑄
is updated based on these values with the following 

iterative update formula. 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡)

+α [𝑟𝑡 + γmax
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]  (9)

where α is the learning rate and γ is the discount factor. 

Exploration vs. Exploitation 
Exploration enables the agent to learn more about the 

environment and creates accurate estimates. On the other 

hand, exploitation selects the action that yields to most 

reward and may get more reward than the exploration. In 

order to leverage the benefits of the two methods, we use 

the ϵ-greedy action selection mechanism that balances 

those two by randomly choosing between them. 

In a given time, the agent takes a random action with the 

probability of ϵ. Or it takes the max
𝑎

𝑄(𝑠𝑡 , 𝑎) action with

the probability of 1 − ϵ. 

7. Performance Evaluation

For simulations we used ns-3 network simulator [18]. 

Moreover, we simulated on 20Mhz channels while the APs 

channel assignments done beforehand. Other simulation 

parameters are shown in the Table 4. We first tune twining 

frequency and greedy rate parameters for the proposed 

DTWN architecture. Then we compare our results to Power 

Control [9], Coordinated Power Control [10], Joint Power 

Control Reinforcement Learning [11] mechanism to 

validate the performance of our proposed Q-learning-based 

TPC for DTWN. 

Table 4. Parameters 

Parameters Value 

Number of APs, 𝑀 5 

Transmit Power of 𝐴𝑃𝑖, θ𝐴𝑃𝑖
[0𝑑𝐵𝑚, 30𝑑𝐵𝑚] 

Transmit power of clients, θ𝐶𝑖
12𝑑𝐵𝑚 

Carrier Frequency 5Ghz 

Bandwidth of the channel 20Mhz 

Learning Rate, α 0.001 

Discount Factor, γ 0.7 

Reward Factor [1,0, −2]𝑇 

7.1. Tuning of Twining Frequency and 
Greedy Rate 

We first conduct the set of experiments to optimally find 

twining frequency and greedy rate parameters for the given 

WiFi topology. These two parameters are then utilized in 

the proposed DTWN model. 

Figure 6 shows detection delays of new clients entering 

the topology in different twinning frequencies, 𝑓. The 

detection delay of new clients entering originate from the 

admission control in Section 6.1. If the digital twin is 

updated less frequently, changes in the physical network 

may be mirrored with a delay, consequently affecting the 

response of our mechanism. However, higher 𝑓 settings 

cause greater consumption of APs CPU resources as seen 

in Figure 7. Therefore, we set twining frequency 𝑓 as 0.2 

through the remaining simulations for the proposed DTWN 

approach.  
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Figure 6. Detection delay comparison with different 
twinning frequencies 

Figure 7. Average detection delay and CPU 
utilization 

Moreover, in Figure 8, it is seen that higher greedy rates 

converge quicker but lower average rewards. In other 

words, learning speed increases with greedy rate while 

quality of strategies decreases. This is because when 

greedy rate is higher, the algorithm is able to explore more 

under the same number of iterations leading to faster 

learning. However, a random action’s return might be 

negative meanwhile in exploitation always the action with 

the highest reward is selected. Due to this, average rewards 

converge to lower values when the exploration is higher. 

As a result, we set 𝜖 as 0.4 for Q-learning-based TPC for 

DTWN brain layer. 

Figure 8. The average reward with the different 
exploration rates 𝜖 

7.2 Performance Comparison 

We perform comparisons based on average throughput of 

users and total interference metrics. We compare our 

proposed DTWN approach to PC, Coordinated PC and 

JPCRL mechanisms.  

As seen in Figure 9, our proposed scheme performs 

substantially better than PC and Coordinated PC. This is 

mainly due to the enabled learning and adaptation 

capabilities of Q-learning approach. However, the JPCRL 

method also leverages Q-learning, but the proposed 

approach outperforms it by achieving better state to action 

pairing which is a result of the interference focused state 

representation in Equation (4). Additionally, the other 

methods throughput decreases might be a result of the 

introduced overhead by the information-gathering. 

Figure 9. Average throughput versus number of 
users 

We observe the average throughput considerably 

decreases as the number of users rises. This is clearly due 

to the fact that interference may not be mitigated fully even 

the transmit powers adjusted optimally. Moreover, the AP 

to AP and STA to STA interference is still in existence 

which are included in the total interference. The 

measurement of total interference over growing number of 
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users in also prove the previous observation. In other 

words, Figure 10 shows that the least raise is obtained in 

the proposed approach. Main reasons of this are that the 

proposed approach is able to monitor and manage the 

network in real-time and the Q-learning TPC can continue 

to learn thanks to digital twin. To put it another way, the 

proposed interference indicator 𝜙, requirement classes and 

performance classes used in the state representation of Q-

learning-based TPC to represent the interference in the 

WiFi topology. 

Figure 10. Total interference(dBm) versus number 
of users 

8. Conclusion

In this paper, we proposed a Q-learning-based TPC to 

mitigate AP to STA interference in WiFi networks.  With 

the reinforcement learning-based approach, we adjusted 

the transmit powers based on the current state while 

continued the learning of the TPC. We avoided overhead 

to the wireless medium preventing performance decrease. 

We achieved live analysis and management of the WiFi 

network, thanks to Digital Twin technology. Finally, we 

showed the performance of our proposed approach under 

different conditions, and it resulted in substantial 

advancements in total interference and throughput. As a 

future direction, deep learning can be leveraged in the TPC 

mechanism to handle the complicated state spaces formed 

in larger networks. For this purpose, a Deep Q-learning-

based TPC mechanism can be developed and compared to 

the Q-learning-based TPC. 
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