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Abstract

Offshore Jacket Platforms (OJPs) are often affected by environmental components that lead to damage, and the
early detection system can help prevent serious failures, ensuring safe operations and mining conditions, and
reducing maintenance costs. In this study, we proposed a prediction model based on Convolutional Neural
Networks (CNNs) aimed at determining the early stage of the OJP structure’s abnormal status. Additionally,
the EfficientNet-B0 Deep Neural Network classifies normal and abnormal states, which may cause problems,
by using displacement signal analysis at specific areas taken into account throughout the test. Displacement
data is transferred to a 2D scalogram image by applying a continuous Wavelet converter that shows the state
of the work. Finally, the scalogram image data set is used as the input of the neural network, and feasibility
experimental results compared with other typical neural networks such as GoogLeNet and ResNet-50 have
verified the effectiveness of the approach.
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1. Introduction

Offshore Jacket Platforms (OJPs) are constantly sub-
jected to environmental excitations such as sea waves,
vessel acting, helicopter landing, and current wind
loads. The dynamic reaction of the jacket platform
under these loadings can be observed by installing
devices such as accelerometer sensors. It should be
noted that the weight of the top side of the OJP is
significantly more than the weight of the other ele-
ments. Furthermore, the wave and vessel impact load
pattern is remarkably close to the first mode shape of
jacket constructions. The fact that structures are always
subject to excitations is a distinguishing feature of the

∗Corresponding author. Email: kien.dang@ut.edu.vn

maritime environment. Data processing and monitor-
ing methods used to identify the abnormal status of
offshore platforms must be capable of handling these
kinds of excitations [1–4]. It is not possible to apply a
conventional input-output framework since the input
is frequently uncertain. Therefore, we need to find a
solution to overcome this challenge.

Early detection of marine structural damage is
necessary to avoid causing production disruptions and
possible damage while reducing maintenance costs
for the business in the long run. Therefore, the
development of a structural status detection system to
detect marine incidents promptly is an urgent task.
To identify damage, a pyramidal structure is usually
considered. The authors in [5] proposed an innovative
damage typology approach. The damage states were
divided into four levels: detection of the existence

1
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 11 | Issue 2 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<kien.dang@ut.edu.vn>


L. A-H. Ho et al.

of destruction, location, severity, and prediction of
the harm. To determine the total deterioration of
the system, information from the preceding level is
required, and machine learning (ML) can be used
as an effective algorithm. Therefore, algorithm based
on Bayesian matrix learning is used for structural
monitoring data imputation and response forecasting
[6] to accomplish effective imputation and long-
term structural response prediction. Furthermore,
information is extracted from measurements using
several conventional techniques that are based on
mathematical principles; conversely, non-traditional
approaches do not make any assumptions and rely
on computational resources while using experimental
principles. The simulated annealing technique [7]
flexibility sensitivity-based approaches for evaluation
in jacket-platform structures [8], and the artificial
neural network (ANN) method [9–13] are both
instances of these novel strategies. According to the
analysis outcomes, mechanical technical experts may
find this computationally advanced system beneficial
in predicting the state of marine structures with a high
degree of accuracy.

Vibration-based assessment is the most comprehen-
sive way of predicting the structural health of offshore
jet platforms (OJPs), and fluctuations in frequency were
formerly considered indicators of degradation [14, 15].
As a result, a large number of studies have demon-
strated that vibration is useful for determining the
extent of structural damage, with frequencies chang-
ing essentially due to variations in mass and stiffness.
On the topside of the OJP (Figure 1), accelerometers
are naturally positioned to continuously monitor the
vibration response to wave loadings. Actually, impor-
tant requirements include ambient excitation to iden-
tify resonant frequencies, long-term vibration spectrum
stability, the instruments’ resilience in challenging con-
ditions, and the ability to identify mode shapes from
measurements performed above water level [16]. Unfor-
tunately, this method only detects global faults, and
it is unable to identify local fatigue cracks and tiny
defects, which means that it frequently fails to reach
the four standards mentioned in the text above. To solve
these difficulties, modal forms are used as a frequency
substitution and filtered using the Wavelet transformer
due to their excessive sensitivity to Eigen frequencies.

Convolutional Neural Networks (CNNs) have been
utilized more and more in recent years in order for
the classification and detection of risks to construction
structures by reducing the amount of input data based
on the extraction of object properties [17–20]. However,
during earthquakes and ocean waves, [17] employed
a particular inertial damper to mitigate vibration on
jacket offshore platforms. Furthermore, the method has
been able to classify and predict the damage to the
structure via the service of gathering neuron networks

in vibration-based harm assessment for construction
structures [21–23]. The algorithm of a one-dimensional
CNN automatically extracts damage-sensitive features
from raw strain response data of a structure under
specific excitation conditions without the need for
manually generated feature extraction [24]. However,
there have not been many experimental studies based
on new CNN theories to increase prediction accuracy,
especially not applying multiple-case testing to OJPs.

This paper represents an extension of the work
described in [25]. In particular, we extend our
previous work by using the EfficientNet-B0 neural
network architecture to construct an early state
prediction model (ESPM) to test the actual operation,
showing how the performances of the proposed system
compare. The results of this study are intended
to support opportunities for both fixed and mobile
offshore platforms to extend their lives, as well as
to recommend localized maintenance strategies that
minimize environmental and operational risk while
saving energy output. Then, the main contributions of
this work can be summarized as follows:

1. We collected the transmission signals on the fixed
frame structure, and conducted experiments using the
UT-OJP 02 model to collect displacement data sets from
a sensor network. The raw data set can be represented
as a data matrix.

2. We apply the continuous wavelet transform
based on the data matrix and convert it to 2D
scalogram images, which are used as inputs to train the
EfficientNet-B0 network, which operates using a multi-
target neural network structure to optimize accuracy.

3. Finally, we trained convolutional networks and
tested, evaluation measures, which are quantitative
metrics based confusion matrices that are used to
evaluate the performance related to the accuracy of a
proposed model.

The rest of the paper is organized as follows. The
system model and the problem statement are provided
in Section 2. Section 3 presents the method to collect
data and images for the experimental process. The
experiment and performance evaluation results are
discussed in Section 4. Finally, Section 5 presents a
discussion.

2. Problem statement

2.1. Offshore Jacket Platforms
The OJP has long been involved in offshore production
activities, operating under harsh ocean conditions as
the BK-9 OJP at Bach Ho oil field of Ba Ria - Vung Tau
province, Southern Vietnam, as illustrated in Figure
1. In actual conditions, there are always arrangements
for some components that force structural safety and
reduce exploitation efficiency. Therefore, determining
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Figure 1. The OJP BK-9 at Ba Ria - Vung Tau Province,
Vietnam.

environmental loads is an urgent task in the structural
design process of offshore structures.

Table 1. Parameters of the OJP [26]

Parameter Value
Water depth 25(m)
Jacket height 40.5(m)
Total number of floors 2
Total numbers of jacket legs 4
The pile diameter 1(m)
The wall thickness 0.02(m)
The weight of the upper deck 1600(ton)
The bottom size of the platform 11 x 11 (m2)
The top area 6.75 x 6.75 (m2)

The OJP is the seabed structure, which includes a
topside module, jacket, and pile foundation. The jacket
platforms not only have the ability to adapt well to
environmental conditions but also achieve high safety
and reliability. Therefore, these platforms become the
main structural building for exploiting oil processing
wells in shallow sea areas. Two different kinds of
cross bracing (K and N types) are used in conjunction
with V and X braces to establish the truss structure
design. Working platforms, rig frames, and supporting
equipment compose the structural model. Because of
its two floors and multiple layers on top, the truss
frame is especially remarkable. The horizontal braces
of the deck truss structure are frame elements that
firmly connect at the ends. The OJP is designed for
shallow water depths of 25m. The structure has a
legged jacket framework, with a pile diameter is 1m
and a total height of 40.5m. Tables 1 [26] represent
the Structural parameters of the actual OJP building

located at Liaodong Bay, Bohai Sea (China) with a
similar structure to the Vietnamese BK-9 platform type
as illustrated in Figure 1 [26].

2.2. Abnormal state of OJP structure
Evaluating the working status is challenging if the
operator only uses a collection of displacement
monitoring data, as this approach can sometimes lead
to confusion. Data collected during OJP operations is
saved to create an initial data set, then converted to a 2D
scalogram for analysis to detect normal and abnormal
OJP cases. In a normal state, the weather is encouraging
for operations, and there is no influence on the OJP
structure due to the anchoring of ships from outside.
The scalogram image expressed by a large blue area
with only a few yellow streaks visible, as shown in
Figure 2(a).

Figure 2. Transforming the OJP structure displacement to
scalogram image.

In abnormal cases, strong waves at a certain
frequency can impact the framework of machines
operating on the OJP, which resonate with the
structure’s magnetic fatigue effects, causing vibration
on the surface. While the OJP is subjected to vibration
causes damage to specific areas that have higher
levels. The scalogram image displays yellow streaks
interspersed with orange when there is an abnormality,
as shown in Figure 2(b).
Remark 1: Environmental factors force the structure

of the OJP to vibrate and evolve unbalanced. If
the displacement level exceeds safe limitations, the
building could collapse. Therefore, to ensure safety
during operation, it is necessary to develop an ESPM
to define the early stages of the harmful conditions.
Additionally, it is important to note that monitoring the
state of the structure is currently restricted to only a few
local points, which leads to less accurate assessments.

3. Methodology
3.1. Data collection
The signal collection system is established on a
designated structure that is designed with a steel frame
in a 1 : 50 ratio to reality, as shown in Figure 3.
The system has a height of 2.0195m and two stands
measuring 70cm × 70cm each, the ESPM establishes a
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Figure 3. The overall diagram of the UT-OJP 02.

network of sensors at key locations throughout the
structure. At these points, large displacements cause the
structure to collapse. Moreover, the central processor
receives a signal from eight sensors mounted on the
stands, from which it sends data to the computer to
predict the damage.

The UT-OJP 02 model uses an STM32 ARMCotex
CPU, we determined the sampling rate should be set
at 0.2 seconds based on the experimental results of the
model. To be more precise, each of the 60 tests (K)
involved 120 readings (I) from 8 monitoring sensor sites
(J). 20 seconds on average were spent on each scalogram
image. After that, apply the method to measure; this
will take roughly 20 seconds. Thus, there is a 40-
second variation between the total predicted time and
the actual time. In this study, as illustrated in Figure 2,
we offer four prediction states for the Offshore Jacket
Platform so the offshore supervisor will comprehend
to have a plan for rapidly fixing the damage states for
OJP based on the level of damage. Moreover, it helps
to prevent damage situations goes unnoticed or being
discovered too late, resulting in accidents involving
people and property loss. As a result, the raw data set
from the sensor network can be represented as a matrix

X(k) ∈ M120,8(R) as [27]

X (k) =
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In order to improve the efficiency of the training
process, the input data sets are preprocessed by
denoising [27]. Data scaling will improve the efficiency
of neural network training for creating better prediction
models. In this study, the data is scaled by column to fall
within a specific range [0, 100]. Suppose that at k trials,
we conduct the i − th sampling for each sensor location
j. We get

Mj = max
(
x

(k)
ij

)
, i = 1, . . . , I , k = 1, . . . , K, (2)

mj = min
(
x

(k)
ij

)
, i = 1, . . . , I , k = 1, . . . , K, (3)

where Mj and mj represent the largest and smallest
values of all the data in column j (with j = 1, . . . , J),
respectively. As a result, the elements of the X matrix
are scaled

y
(k)
ij :=

(
x

(k)
ij −mj

) 100
Mj −mj

, i = 1, . . . , I , j = 1, . . . , J,

k = 1, . . . , K
(4)

and Y matrix as
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(5)

We synthesize displacement data by operating
vibration modules at four different vibration levels.
These motors operate at varying frequencies to simulate
both normal and abnormal states, such as huge waves
or damage points. Each case involves capturing 120
scalogram images, with an average duration of 20
seconds per image. Finally, this process results in 800
measurements.
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3.2. Scalogram image transform
The sensor network measures the displacement of
the OJP model structure and transfers it to the STM
central control unit. Displacement data is recorded for
8 sensor points during operation, resulting in a total
of 800 measurements per spectrogram. This data is
filtered by using the wavelet transformer and converted
into a 224 × 224 pixel image [28, 29]. Environmental
impacts have negative effects on the signals transmitted
from sensors, which impact the EfficientNet-B0 neural
network training process. To address this issue, the
study applies the wavelet transformer [30] to remove
noise from the data strings before converting them
into a 2D scalogram image. As part of this study,
the wdenoise function in Matlab’s Wavelet toolbox is
utilized to eliminate sensor measurement noise, with a
quantization threshold of 3 [31]. These images are used
as inputs to train the EfficientNet-B0 network.

The training data set for the CNN consists of
224 × 224 pixel RGB color images. These images are
analyzed over time and represented on a 2D scalogram.
The Continuous Wavelet Transformer (CWT) [32] is
expressed in Equation 6, the wavelet function in
time t is scaled and moved by parameters a and
b, respectively, where the conversion interval and
frequency are relative. Therefore, the scaled wavelet has
the same energy as the parent wavelet, it always needs
to be normalized by 1/

√
a

Wb,a(t) =
1
√
a
ψ(
t − b
a

) (6)

The selected Wavelet function must effectively define
the frequency properties of the signal to be modified.
In this study, the Morlet (Gabor) Wavelet was used as
a synthesis wavelet in the CWT function [32, 33]. The
scalogram images will be employed as training data for
the EfficientNet-B0 to learn the characteristics of the
signal and to test the network.

3.3. Designing ESPM based on EfficientNet-B0
neural network
Google developed EfficientNet as a novel type of
neural network that combines multiple layers to
improve performance. This method systematically
divides dimensions into depth, width, and resolution
ratios. The ratio-sharing method used in EfficientNet
balances these three components with a set of fixed ratio
coefficients, resulting in better accuracy and efficiency
compared to other cumulative networks [33]. Thus, the
CNN is expanded in three dimensions: depth, width,
and resolution. The depth of the CNN corresponds
to the number of layers in the network [34–36]. The
width is related to the number of neurons in each layer
or the number of filters in each accumulated layer.

The resolution is simply the height and width of the
input image. The data collected comprised 480 samples
of wave distribution in both normal and abnormal
states. These samples were subsequently filtered and
transformed into 2D scalogram images. In Figure 4, we
can see how an ESPM is designed using displacement
data from a sensor network. The wavelet transformer
converts these obtained results into images, which are
used to construct an ESPM by the EfficientNet-B0
model. The predicted results indicate that the signal is
effectively filtered by the wavelet transformer, and the
images display unique features that can be applied for
network training. To perform the training process, the
image data set was split into two parts: 75% images for
the training and 25% images for the testing.

Algorithm 1: Predicting the early state of the OJP model
by using the ESPM algorithm
1 Initialization labeling the data set (scalogram images);
2 Initialization splitting the data set into train and test;
3 Initialization setting structural prediction model;
4 Configure the training parameters;
5 while epochminm ≤ epochm ≤ epochmaxm do
6 for each epoch m do
7 Set up Model on Matlab 2021 environment;
8 Train the EfficientNet-B0 model on Matlab;
9 Evaluate the ESPM with the loss

function (7) [34], and compare the latest profits
to the termination condition. If the convergence
condition is not met, increase m and go to Step 7.

L =
1
n

n∑
i=1

(yi − ŷi )2 (7)

10 end
11 end
12 Provide scalogram images for ESPM;
13 Predict the actual condition of the OJP model.
14 end

Table 2. EfficientNet-B0 baseline network layers outline [33]

Stage Operator Resolution Output
Feature
Maps

Layers

1 Con3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
4 MBConv6, k5 × 5 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k5 × 5 14 × 14 112 3
7 MBConv6, k5 × 5 14 × 15 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv1 ×

1&P ooling&FC
7 × 7 1280 1
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Figure 4. The schematic of the model for determining early state of OJP Structural.

Table 2 provides detailed information regarding the
EfficientNet-B0 network structure, which includes 16
MBConv blocks varying in several aspects, for instance,
kernel size, feature map expansion, and reduction
ratio. Additionally, the authors propose the activation
function as follows:

f (χ) = χσ (χ) (8)

where σ (χ) = (1 + exp(−χ))−1 is the sigmoid function
[36], and C is the total number of classes. The softmax
activation function is defined [37]

s(yi) =
eyi∑C
j=1 eyi

(9)

This normalization limits the output sum to 1, so
the softmax output s(yi) can be interpreted as the
probability that the input belongs to the I class. yi
denotes the actual value from the testing data set,
while ŷi presents the predicted value from the trained
model. The complex ratio division method is intuitively
demonstrated. If the input image is larger, the network
needs more layers to enhance the reception and
additional channels to get more detailed samples from
the larger image [32]. The EfficientNet-B0 is a basic
mobile-size network, which operates using a multi-
target neural network structure to optimize accuracy.
The design of the ESPM for predicting the condition of
the OJP model is expressed in Algorithm 1.

4. Results and evaluation
4.1. Configuration parameter of the ESPM
The network training configuration parameters are as
follows: miniBatchSize is 10, MaxEpochs is 30, and
LearningRate is 0.0001. The results of EfficientNet-B0

network training are comparable to those represented
in Figure 5. The training process carried 11 minutes and
19 seconds and resulted in an accuracy of 97.5%.

To verify the feasibility, the experimental result of
EfficientNetB0 is compared to the GoogLeNet [38] and
ResNet-50 [39], in the same experiment model. The
parameters of the CNN models are defined in Table 3.

Table 3. Parameters of the CNN models

Elements EfficientNet-B0 ResNet-50 GoogLeNet
Deep 82 50 22
Size 19.9 MB 96 MB 27 MB
Parameters 5.31 M 25.6 M 7 M
Input size 224 × 224 × 3 224 × 224 × 3 224 × 224 × 3

4.2. Evaluating the quality of CNN models
The new point of the algorithm in this study
is that the authors first use Convolutional Neural
Networks (CNN), specifically GoogLeNet, ResNet-50,
and EfficientNet-B0, which are recent new algorithms
to process input entered by images. Therefore, the
collected data needs to be converted to spectral
images to be able to distinguish the states and
test results to achieve high accuracy. Compared to
other NN structures, the CNN network has a less
complex structure, especially testing on our model
is 480 data sets for normal and abnormal cases, the
time to train for OJP is not too long. Meanwhile,
regarding the State Prediction Model for Offshore Jacket
Platform Structural, there are not many studies on
the same object, same parameters, and based on CNN
as this method to compare effectiveness. In addition,
evaluation is the measurement used to determine a
prediction model’s effectiveness. They are used in the
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Figure 5. Results of training the EfficientNet-B0 network.

comparison of several models, the evaluation of how
well they address a given issue, and the identification
of areas in need of improvement. An accuracy and
confusion matrix is used in this study’s evaluations. The
number of true positive and true negative outcomes is
divided by the total number of cases to get the accuracy
of a diagnostic test or classifier. The variable TP refers to
the number of correctly identified positive cases, while
TN refers to the number of correctly identified negative
cases. The accuracy is expressed by Equation 10 [40].

Accuracy =
T P + TN

T P + TN + FP + FN
(10)

A confusion matrix is a summary of predicted results
that measures various evaluation metrics, such as
accuracy, recall, and precision. It provides an overview
of the model’s performance by displaying the number
of correct and incorrect predictions for each class.
The compared CNN models are built under the same
training conditions. The study tested the effectiveness
of the EfficientNet-B0 network and compared it with
other solutions using scalogram images from various
data sets. The results are detailed in Table 4 and Figures
6 to 8.

The EfficiencyNet-B0 model takes longer to train
than the GoogLeNet model, specifically 4 minutes and
24 seconds, due to the EfficiencyNet-B0’s deep feature
extraction of the image sample set. Therefore, the

Table 4. Comparison results of the different CNN models

Model Epochs Learning
rate

Training
time (minute,
second)

Accuracy
(%)

GoogLeNet [38] 30 0.0001 6m and 55s 88.33
ResNet-50 [39] 30 0.0001 19m and 50s 93.5
EfficientNet-B0 30 0.0001 11m and 19s 97.5

ESPM is suitable for analyzing scalogram image sets
and predicting the early state of the OJP model with
complex structures. On the contrary, the accuracy of
EfficientNet-B0 is better than the other two solutions,
respectively 9.17% better than GoogLeNet and 4%
better than ResNet-50. The ESPM ensures accurate
prediction of OJP’s early states in actual operations,
despite noise components, and meets Remark 1
requirements.

In addition, the evaluation of identification results
with the EfficientNet-B0, GoogLeNet, and ResNet-50
network confusion matrix is shown in Figures 6 to
8. The results showed that EfficientNet-B0 takes less
time to complete the training and achieves up to
97.5% accuracy. Meanwhile, the other two compared
networks, GoogLeNet and ResNet-50, need more
samples to learn with the same high accuracy. Because
the EfficientNet-B0 can deeply extract characteristics
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Figure 6. Evaluate the recognition results with the error matrix
of the EfficientNet-B0 network.

Figure 7. Evaluate the recognition results with the error matrix
of the GoogLeNet network.

of scalogram images in depth, it enables it to achieve
high accuracy. Moreover, image samples are established
from the data set of all sensor points, thereby providing
overall early-state prediction results that overcomes the
issues mentioned in Remark 1. The ESPM was tested
on several different simulated damaged states with the
impact generated by the vibration motor mounted on

Figure 8. Evaluate the recognition results with the error matrix
of the ResNet-50 network.

the model. Although the results are possible, the ESPM
has only been tested in three cases of abnormalities with
different displacement signals. The signal in the time
domain, as well as the 2D scalogram image, showed
the differences between test cases, so the results were
received with high accuracy.

5. Conclusion
In this paper, we proposed a new ESPM to determine
the early stages of non-invasive OJP structures by using
the EfficientNet-B0 Deep Neural Network. Then, the
CWT transforms the displacement data matrix into a
2D scalogram image that determines the immediate
state of the platform. The experimental results showed
significance in determining normal and abnormal
status in the case of OJP is affected by simulated signal
impacts, giving early predictive results a high accuracy
ratio. Furthermore, based on the confusion matrix, we
demonstrated the effectiveness of the proposed model
achieved higher accuracy than the other solutions,
and helped improve reliability in OJP operations. In
conclusion, this work is necessary to enhance the
quality of sensor signals and reduce network training
time to achieve higher accuracy and to use more easily
in many applications.

References
[1] Marie Belle Ghsoub. Structural health monitoring of

offshore jacket platforms. Politecnico di Torino, 2018.
[2] Vazirizade, S.M., Azizsoltani, H., and Haldar, A.

(2022) Reliability estimation of jacket type offshore

8
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 11 | Issue 2 | 2024 |



Early State Prediction Model for Offshore Jacket Platform Structural Using EfficientNet-B0 Neural Network

platforms against seismic and wave loadings applied
in time domain. Ships and Offshore Structures 17(1):
143-152. doi: 10.1080/17445302.2020.1827632, URL
https://doi.org/10.1080/17445302.2020.1827632.

[3] Taheri, A., Tadayon, B., and Ershadi, C. (2022)
Risk Assessment of Fixed Offshore Jacket Platforms:
A Persian Gulf Case Study. International journal of
Coastal, offshore & environmental engineering 7(2):
24-30. doi: 10.22034/IJCOE.2022.155145, URL
https://doi.org/10.22034/IJCOE.2022.155145.

[4] Vo, N.S., Masaracchia, A., Nguyen, L.D., and Huynh,

B.C. (2018) Natural Disaster and Environmental Moni-
toring System for Smart Cities: Design and Installation
Insights. EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems 5(16), e5. doi: 10.4108/eai.29-
11-2018.156001, URL https://doi.org/10.4108/eai.29-11-
2018.156001.

[5] Malekloo, A., Ozer, E., AlHamaydeh, M., and

Girolami, M. (2022) Machine learning and
structural health monitoring overview with emerging
technology and high-dimensional data source
highlights. Structural Health Monitoring 21(4):
1906-1955. doi: 10.1177/14759217211036880, URL
https://doi.org/10.1177/14759217211036880.

[6] Ren, P., Chen, X., Sun, L., and Sun, H. (2021)
Incremental Bayesian matrix/tensor learning for
structural monitoring data imputation and response
forecasting. Mechanical Systems and Signal Processing
158: 107734. doi: 10.1016/j.ymssp.2021.107734, URL
https://doi.org/10.1016/j.ymssp.2021.107734.

[7] Sun, M., Staszewski, W.J., and Swamy, R.N. (2010)
Smart sensing technologies for structural health moni-
toring of civil engineering structures. Advances in Civil
Engineering 2010: 1-13. doi: 10.1155/2010/724962, URL
https://doi.org/10.1155/2010/724962.

[8] Liu, K,. Liu, Z., Shen, W., and Li, M. (2023) Flexibility
sensitivity-based approaches for damage evaluation
in jacket-platform structures. Applied Ocean Research
139: 103710. doi: 10.1016/j.apor.2023.103710, URL
https://doi.org/10.1016/j.apor.2023.103710.

[9] Luengo. M.M., Shafiee, M., and Kolios, A. (2019)
Data management for structural integrity assessment
of offshore wind turbine support structures: data
cleansing and missing data imputation. Ocean Engineering
173: 867–883. doi: 10.1016/j.oceaneng.2019.01.003, URL
https://doi.org/10.1016/j.oceaneng.2019.01.003.

[10] Oh, B.K., Glisic, B., Kim, Y., and Park, H.S. (2020)
Convolutional neural network–based data recovery
method for structural health monitoring. Structural
Health Monitoring 19(2): 147592171989757. doi:
10.1177/1475921719897571, URL https://doi.org/
10.1177/1475921719897571.

[11] Fan, G., Li, J., and Hao, H. (2019) Lost data
recovery for structural health monitoring based on
convolutional neural networks. Structural Control and
Health Monitoring 26(10): 1-21. doi: 10.1002/stc.2433,
URL https://doi.org/10.1002/stc.2433.

[12] Li, Y., Bao, T., Chen, H., Zhang, K., Shu, X.,

Chen, Z., and Hu, Y. (2021) A large-scale sensor
missing data imputation framework for dams using deep
learning and transfer learning strategy. Measurement 178:

109377. doi: 10.1016/j.measurement.2021.109377, URL
https://doi.org/10.1016/j.measurement.2021.109377.

[13] Fan, G., Li, J., and Hao, H. (2020) Vibration sig-
nal denoising for structural health monitoring by resid-
ual convolutional neural networks. Measurement 157:
107651. doi: 10.1016/j.measurement.2020.107651, URL
https://doi.org/10.1016/j.measurement.2020.107651.

[14] Spanos, N.A., Sakellariou, J.S., and Fassois, S.D. (2020)
Vibration-response-only statistical time series structural
health monitoring methods: A comprehensive assessment
via a scale jacket structure. Structural Health Monitoring
19(3): 736-750. doi: 10.1177/1475921719862487, URL
https://doi.org/10.1177/1475921719862487.

[15] Heari, M.H., Lotfi, A., Dolatshahi, K.M.,

anh Golafshani, A.A. (2017) Inverse vibration
technique for structural health monitoring of
offshore jacket platforms. Applied Ocean Research
62: 180-198. doi: 10.1016/j.apor.2016.11.010, URL
https://doi.org/10.1016/j.apor.2016.11.010.

[16] Farrar, C., and Worden, K. (2013) Struc-
tural health monitoring a machine learning
perspective. doi: 10.1002/9781118443118, URL
https://doi.org/10.1002/9781118443118. Publisher:
John Wiley & Sons, LTDISBN: 978-1-119-99433-6.

[17] Xu, T., Li, Y., and Leng, D. (2023) Mitigating jacket
offshore platform vibration under earthquake and ocean
waves utilizing tuned inerter damper. Bulletin of Earth-
quake Engineering 21: 1627-1650. doi: 10.1007/s10518-
022-01378-z, URL https://doi.org/10.1007/s10518-022-
01378-z.

[18] Ye, X.W., Jin, T., and Yun, C.B. (2019) A review
on deep learning-based structural health monitoring
of civil infrastructures. Smart Structures and Systems
24(5): 567-586. doi: 10.12989/sss.2019.24.5.567, URL
https://doi.org/ 10.12989/sss.2019.24.5.567.

[19] Avci, O., Abdeljaber, O., Kiranyac, S., Hussein,M., Gab-

bouj, M., and Inman, D.J. (2017) A review of vibration-
based damage detection in civil structures: From tradi-
tional methods to Machine Learning and Deep Learn-
ing applications. Mechanical Systems and Signal Process-
ing 147: 107077. doi: 10.1016/j.ymssp.2020.107077, URL
https://doi.org/10.1016/j.ymssp.2020.107077.

[20] Dang, X.K., Truong, H.N., Nguyen, N.V., and Pham,

T.D.A. (2020) Applying convolutional neural networks
for limited-memory application. TELKOMNIKA (Telecom-
munication Computing Electronics and Control) 19(1):
244-251. doi: 10.12928/telkomnika.v19i1.16232, URL
https://doi.org/ 10.12928/telkomnika.v19i1.16232.

[21] Dang, X.K., Ho, L.A.H., Nguyen, X.P., and Mai, B.L.

(2022) Applying artificial intelligence for the application
of bridges deterioration detection system. TELKOMNIKA
(Telecommunication Computing Electronics and Control)
20(1): 149-157. doi: 10.12928/telkomnika.v20i1.20783,
URL https://doi.org/ 10.12928/telkomnika.v20i1.20783.

[22] Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wen-

zlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo,

L. (2022) Applied machine learning model compari-
son: Predicting offshore platform integrity with gradient
boosting algorithms and neural networks. Marine Struc-
tures 83: 103152. doi: 10.1016/j.marstruc.2021.103152,
URL https://doi.org/10.1016/j.marstruc.2021.103152.

9
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 11 | Issue 2 | 2024 |



L. A-H. Ho et al.

[23] Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash,

B., Sodano, H., and Inman, D.J. (2018) 1-D CNNs for
structural damage detection: Verification on a structural
health monitoring benchmark data. Neurocomputing
275: 1308-1317. doi: 10.1016/j.neucom.2017.09.069, URL
https://doi.org/10.1016/j.neucom.2017.09.069.

[24] Bao, X., Fan, T., Shi, C., and Yang, G. (2021)
One-dimensional convolutional neural network
for damage detection of jacket-type offshore
platforms. Ocean Engineering 219: 108293.
doi: 10.1016/j.oceaneng.2020.108293, URL
https://doi.org/10.1016/j.oceaneng.2020.108293.

[25] Nguyen, X.P., Dang, X.K., Ho, L.A.H., Luu, H.M.,

and Nguyen, N.T. (2024) Design of a scalogram-based
data acquisition and processing system for a multi-
sensor network application for marine structures. 10th
International Conference on Coastal and Ocean Engineering
(ICCOE 2024), Accepted.

[26] Tian, X., Wang, Q., Liu, G., Liu, Y., Xie, Y., and

Deng, W. (2019) Topology optimization design for
offshore platform jacket structure. Applied Ocean
Research 84: 38-50. doi: 10.1016/j.apor.2019.01.003,
URL https://doi.org/10.1016/j.apor.2019.01.003.

[27] Puruncajas, B., Vidal, Y., and Tutivén, C.

(2020) Vibration-response-only structural health
monitoring for offshore wind turbine jacket
foundations via convolutional neural networks.
Sensors 20(12): 1–19. doi: 10.3390/s20123429, URL
https://doi.org/10.3390/s20123429.

[28] Pal, K.K., and Sudeep, K.S. (2017) Preprocessing
for image classification by convolutional neural
networks. In 2016 IEEE International Conference
on Recent Trends in Electronics, Information and
Communication Technology, RTEICT 2016 – Proceedings
1778–1781. doi: 10.1109/RTEICT.2016.7808140, URL
https://doi.org/10.1109/RTEICT.2016.7808140.

[29] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,

S., Anguelov, D., Erhan, D., Vanhoucke, V., and

Rabinovich, A. (2015) Going deeper with convolutions.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 1-9.

[30] Yin, Y., Hu, Y., and Liu, P. (2021) The research on denois-
ing using wavelet transform. International Conference on
Multimedia Technology. doi: 10.1109/ICMT.2011.6002276,
URL https://doi.org/10.1109/ICMT.2011.6002276.

[31] Sornsen, I., Suppitaksakul, C., and Toonkum, P.

(2022) Mother wavelet performance evaluation for noise
removal in partial discharge signals. ECTI Transactions
on Electrical Engineering, electronics, and communications
20(3): 450-459. doi: 10.37936/ecti-eec.2022203.247521,
URL https://doi.org/10.37936/ecti-eec.2022203.247521.

[32] Mashrur, F.R., Islam, M.S., Saha, D.K., Islam, S.M.R.,

and Moni, M.A. (2021) SCNN: Scalogram-based
convolutional neural network to detect obstructive
sleep apnea using single-lead electrocardiogram
signals. Computers in Biology and Medicine 134:
104532. doi: 10.1016/j.compbiomed.2021.104532, URL
https://doi.org/10.1016/j.compbiomed.2021.104532.

[33] Tan, M., and Le, Q. (2019) EfficientNet: rethinking
model scaling for convolutional neural networks. Pro-
ceedings of the 36th International Conference on Machine
Learning 97: 6105-6114.

[34] Fahim, M., Sharma, V., Cao, T.V., Canberk, B., and

Duong, T.Q. (2022) Machine Learning-Based Digital Twin
for Predictive Modeling in Wind Turbines. IEEE Access,
10: 14184–14194. doi: 10.1109/ACCESS.2022.3147602,
URL https://doi.org/10.1109/ACCESS.2022.3147602.

[35] Mash, D.S., Ghani, A., See, C.H., Keates, S., and

Yu, H. (2022) Using deep neural networks to classify
symbolic road markings for autonomous vehicles. EAI
Endorsed Transactions on Industrial Networks and Intelligent
Systems 9(31): e2. doi: 10.4108/eetinis.v9i31.985, URL
https://doi.org/10.4108/eetinis.v9i31.985.

[36] Le, T.M., Tat, B.T.N., and Ngo, V.M. (2022) Automated
evaluation of Tuberculosis using Deep Neural Networks.
EAI Endorsed Transactions on Industrial Networks and Intel-
ligent Systems 9(30): e4. doi: 10.4108/eetinis.v8i30.478,
URL https://doi.org/10.4108/eetinis.v8i30.478.

[37] Swain, D., Pandya, K., Sanghvi, J., and

Manchala, Y. (2023) An intelligent fashion object
classification using CNN. EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems
10(4): e2. doi: 10.4108/eetinis.v10i4.4315, URL
https://doi.org/10.4108/eetinis.v10i4.4315.

[38] Han, S., Li, B., Li, W., Zhang, Y., and Liu, P. (2024)
Intelligent analysis of corrosion characteristics
of steel pipe piles of offshore construction
wharfs based on computer vision. Heliyon 10:
e24142. doi: 10.1016/j.heliyon.2024.e24142, URL
https://doi.org/10.1016/j.heliyon.2024.e24142.

[39] Gallego, C.V., and Lazakis, I. (2022) Development
of a time series imaging approach for fault
classification of marine systems. Ocean Engineering
263: 112297. doi: 10.1016/j.oceaneng.2022.112297, URL
https://doi.org/10.1016/j.oceaneng.2022.112297.

[40] Mousavi, Z., Varahram, S., Ettefagh, M.M., Sadeghi,

M.H., and Razavi, S.N. (2020) Deep neural net-
works–based damage detection using vibration signals of
finite element model and real intact state: An evaluation
via a lab-scale offshore jacket structure. Structural Health
Monitoring 10(1): 1-27. doi: 10.1177/1475921720932614,
URL https://doi.org/10.1177/1475921720932614.

10
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 11 | Issue 2 | 2024 |


	1 Introduction
	2 Problem statement
	2.1 Offshore Jacket Platforms
	2.2 Abnormal state of OJP structure

	3 Methodology
	3.1 Data collection
	3.2 Scalogram image transform
	3.3 Designing ESPM based on EfficientNet-B0 neural network

	4 Results and evaluation
	4.1 Configuration parameter of the ESPM
	4.2 Evaluating the quality of CNN models

	5 Conclusion



