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Abstract

When an SOA business process fails to deliver the desired quality of service (QoS), it is necessary to identify the faulty
services that cause the problem since the source of the problem may not be at where the problem is observed. In this
paper, we propose a polynomial time diagnosis algorithm by using a dependency matrix for business process structure in
SOA. The dependency matrix is built based only on process workflow structure, with no need for historical knowledge
on prior executionx. By comparing the performance data reported from business process probes, the proposed diagnosis
algorithm also checks some predicates-on-probes (PoP) to increase the monitoring and diagnosis accuracy. We have
implemented the diagnosis support for the dependency matrix based QoS management in the Llama middleware. A
performance study using some realistic services running on networked Web servers shows that the system can achieve a
diagnosis completeness of up to 80%.
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1. Introduction

Service oriented architecture (SOA) provides an easy-to-
use and flexible paradigm for integrating distributed services
into business processes (BP) [3, 15]. Using SOA, enterprise
systems can discover and compose services from different
service providers both statically or dynamically. However, the
flexible and dynamic composition must be carefully managed
to ensure the BP service quality. In many applications
implemented using SOA, it is important to have an efficient
mechanism to identify and replace faulty services that cause
a quality of service (QoS) problem in a BP execution.

To detect QoS violations and to identify the cause of
failures, SOA middleware must monitor individual service
behaviors at run-time. However, in a large SOA system, the
monitoring and debugging cost could be a burden to the
system. If run-time data are collected and inspected at all
services, it may impose significant overheads. In our research,
we therefore design an SOA middleware to monitor only a
subset of services in a BP at run time [22]. Whenever an
end-to-end QoS problem is detected at a monitored service,
the middleware triggers a diagnosis algorithm to identify
possible faulty services. Assuming that QoS violations do not
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happen often, we believe this approach is more efficient than
monitoring all services all the time.

The Llama middleware project [11, 23] proposes an
SOA accountability framework to provide a QoS-driven
service composition and management solution that can
detect, diagnose and defuse QoS faults in SOA. Such a
middleware benefits SOA users by making business processes
configurable, traceable and repairable[23].

There are two main issues for QoS diagnosis in SOA.
One is the complexity issue since multiple-fault diagnosis
for systems with a large number of components is known
to be computationally challenging. Most multiple-fault
diagnosis algorithms for model-based reasoning [8, 9] have
an exponential time complexity. Similar complexity issues
are encountered using probabilistic methods such as Bayesian
networks, which is NP-hard [6]. Since our goal is to conduct
diagnosis at run-time to improve end-to-end QoS, a high
complexity is not desirable for the scalability of SOA systems.

The other issue on diagnosis is that both model
based reasoning and probabilistic methods require domain
knowledge or historical data on prior process executions.
But since SOA is a dynamic paradigm where BP may be
composed on demand to adapt to fluid requirements, expert
knowledge or historical data about a process may be hard
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to come by. Lack of process knowledge will reduce the
effectiveness of both diagnosis methods.

In [21], we have designed a polynomial-time QoS diag-
nosis method based on the dependency matrix model [18].
A dependency matrix is constructed using only the BP flow
structure that can be easily captured from business process
definitions such as BPEL. We have designed an efficient
multi-fault diagnosis algorithm for SOA. The diagnosis algo-
rithm utilizes predicate-on-probes (PoP) so that it can identify
fault locations more accurately. This paper extends the work
in [21] and presents a practical system implementation with
performance study.

The contribution of the work reported in this paper
includes:

• We have implemented the diagnosis algorithm and
system support as part of the Llama SOA middle-
ware [11], including service response time monitoring,
agent communication, and diagnosis engine.

• We have designed the verification mechanism in the
middleware to resolve the ambiguous faulty services
problem, which is the major weakness of dependency
matrix-based diagnosis.

• We have measured the performance of the diagnosis
middleware using realistic but controlled services
deployed on networked servers.

The rest of this paper is organized as follows. A
QoS accountability framework is presented in Section 2.
Section 3.1 shows how to generate the dependency matrices:
CDM and PDM. Section 3.2 presents how to select
evidence channels (EC), and Section 3.3 shows the diagnosis
algorithm. Section 4 defines predicate on probes (PoP) and
shows how to generate and use PoP. The system design and
implementation is presented in Section 5. Section 6 presents
the system performance study. Section 7 reviews some related
work. Finally, the paper is concluded in Section 8.

2. QoS Accountability Framework in SOA
An SOA BP consists of multiple services and can be modeled
as a work flow G = (V , E). Every vertex in V represents an
atomic service and every edge in E represents an interaction
between two services. In this paper, we make the following
assumptions on business processes:

1. A business process is a Directed Acyclic Graph (DAG);
i.e. for any service s, there is no non-empty directed
path starting and ending on s in the flow.

2. Atomic services may be faulty, but network communi-
cations between services are error-free.

Figure 1 shows a PrintAndMail BP. There are 17 services,
running on three networked servers deployed on the Llama
middleware [11] which has an Accountability Authority
(AA) and multiple Agents that are used to monitor and

inspect run-time performance of individual services. When an
intermediate end-to-end QoS violation is detected in a BP, an
agent sends monitored data to AA, which then performs fault
diagnoses to identify likely fault(s). More on Llama will be
discussed in Sec. 5.

In a business process, every service deployed on Enterprise
Service Bus (ESB) can be used to collect execution
information and acts as a potential BP probe. Every service
has one output probe and at least one input probe. For
example, in Fig. 1, service SelectVendors has five input
probes and one output probe. For efficiency reasons, not
all services in a system are monitored and analyzed at run
time. Zhang et al. [22] propose evidence channels (ECs)
to monitor a subset of services and present two algorithms
for evidence channel selection: k-median and set-covering.
For example, in Figure 1, BulkMailQuoteB, SelectVendors,
AssemblePressSheet, and BeginBulkMailing are selected as
evidence channels. If a service is selected as an evidence
channel, data can be collected from its output probe and all
of its input probes. In Fig. 1, service SelectVendors is an
evidence channel; all its input probes and output probe can
be used to collect run-time data.

An exception condition reported by a probe may be resulted
from the QoS violation of any preceding service in the BP.
Our work uses a dependency matrix (discussed in the next
section) to describe the relationship between probed results
and service states. In general, all predecessor services before
a probe are potential causes for QoS violation detected by that
probe. In Figure 1, services AddressQuoteA, AddressQuoteB
and BulkMailQuoteB can be the causes of exception at
BulkMailQuoteB’s output probe.

3. Dependency Matrix Based Diagnosis
In the proposed diagnosis framework, different algorithms are
used at different SOA deployment phases. At pre-runtime,
a system generates the dependency matrix for a business
process. The dependency matrix is then used for selecting
evidence channels, modeled as a set-covering problem. At
runtime, QoS data are collected from selected ECs. The status
of probes on selected ECs is analyzed; if some probe shows
QoS violations, the diagnosis procedure will be triggered. In
this section, we present our design for each of the phases.

3.1. Dependency Matrix
A dependency matrix defines the relationship between probes
and services. In a dependency matrix D, Dij denotes the
relationship between probe i and service j. Dij=1 means
that service j may be a fault source for an exception
condition detected on probe i; otherwise Dij=0. In a
complete dependency matrix (CDM), for every probe, all its
predecessor services in the BP’s structure are set as potential
sources.

Given a BP’s service graph, Algorithm 1 identifies the
probes and builds the CDM for the BP. Every service s
has six tuples <id, parent, next, pred, beginT, finishT>. id
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Figure 1. PrintAndMail Scenario in QoS Accountability Framework

is the service identifier. parent is the list of its immediate
predecessor services. next is the list of direct successor
services. pred is the list of all ancestors of the service. beginT
is the start time of the service, which is equal to the latest
finish time of all its parent services. finishT is the expected
completion time of the service.

Every probe p has four tuples <PID, EC, Type, Path>. EC
is the service that the probe is on. Type denotes whether it
is an input or output of the service. Path is identified by its
parent service ID on the input path.

In Algorithm 1, for every service n (line 3), input probes are
created and recorded on lines 3-10 and output probes on lines
11-16. Suppose the number of services is n, the complexity to
process one probe (lines 4-8, 11-15) is O(n). Given the probe
number p, the complexity of Algorithm 1 is O(pn).

However, QoS violation in a faulty service may be masked
by other services between the faulty service and a deployed
probe. For example, in Fig. 1, suppose the expected response
time for every service is 5 seconds. If service AddressQuoteB
takes 7 seconds to finish and all other services run for 2
seconds, the input probe of service SelectVendors will not be
able to detect an exception at AddressQuoteB since the end-
to-end response time for AddressQuoteA, AddressQuoteB,
BulkMailQuoteA, and BulkMailQuoteB together is 9 seconds
and causes no response time violation.

To avoid this problem, we modify CDM so that the
dependency relationship is limited to only a subset of
predecessor services. We define a partial dependency matrix
(PDM) so that a probe is used to detect the BP response time
violation within a sub-window of the end-to-end response

time window. PDM is generated from CDM given a time
window size. If a service s is a predecessor of the probe and
the time interval between the begin time of s and the time of
the probe position is less than the defined time window, then s
is considered to be a source for the probe. Otherwise, s is not
a potential source of the probe exception.

Figure 2 shows a subProcess of PrintAndMail, the original
CDM of this process is shown in Table 1 by black entries.
Suppose that the response time for every service is x and
the time window for PDM is also x, the (0) entries mark the
changes from CDM to PDM for Fig. 2.

3.2. Evidence Channel Selection (ECS)

In Sec. 3.1, dependencies between service faults and probe
exceptions are discussed. A service’s coverage is defined as
the union of all its probes. The ECS problem can be mapped
to the set covering problem [7] as follows:

• Input: (1) U, a total of m elements to be covered;
(2) several sets S1, ...Sn; (3) the capability of Si , i.e.,
elements in U that are covered by Si . Note that some
elements can be covered by more than one sets.

• Output: a subset of S1, ...Sn that (1) cover all elements
in U; and (2) the number of selected sets is minimized.

The set covering problem is NP-Hard. The Regular
Greedy Algorithm (RGA) is one of the best approximation
algorithms [7] for solving the set covering problem. ECS
using the set covering model is shown in Algorithm 2. The

EAI European Alliance
for Innovation 3

ICST Transactions on eBusiness
July-September 2012 | Volume 12 | Issue 7-9 | e2



Jing Zhang et al.

Table 1. CDM (PDM) for Process in Fig. 2

Probe AdQA AdQB BMQA BMQB PQA PQB PQC SelV
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0
4 1 (0) 1 (0) 0 1 0 0 0 0
5 1 0 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0
7 1 (0) 1 (0) 1 0 0 0 0 0
8 0 0 0 0 1 0 0 0
9 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 1 0
11 1 (0) 1 (0) 0 1 0 0 0 0
12 1 (0) 1 (0) 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0
14 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0
16 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
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Figure 2. Select Vendors Sub-Process in PrintAndMail

basic idea is that at each step it selects the evidence channel
that covers the largest number of services.

In Algorithm 2, every service s’s coverage C[s] is
initialized on lines 5-11. The complexity of this part is O(pn),
where p is the probe number and n is the service number.
The critical step of the greedy EC selection (line 12-18) is
finding the service with the largest coverage and updating
the coverage. Time complexity of finding the service with
the largest coverage is O(n) and it will be executed at most
n times, so the total time complexity is O(n2). When EC
selection completes, every service’s coverage set should be
empty. There are at most n2 services in those coverage sets in
total, so the time complexity for updating coverage is O(n2).
In summary, the time complexity is O(pn + n2).

For example, in Fig. 2, service SelectVendors is selected
as EC in the first round and service BulkMailQuoteB is

selected as EC in the second round. After these two rounds,
all services in the process are covered by ECs. Table 2
shows the dependency matrix for two selected ECs, services
BulkMailQuoteB and SelectVendors.

3.3. Dependency Matrix Based Diagnosis

Rish et al. [18] propose a dependency matrix based multi-fault
diagnosis algorithm for distributed network. An important
difference between our QoS diagnosis for SOA and [18] is
that a probe in our scheme does not always detect a faulty
service, since a slow service behavior may be masked by
other fast services before probe detection. Considering the
uncertainty of fault detection and in order to capture as many
faulty services as possible, we need to modify the diagnosis
algorithm for QoS violation.
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Table 2. PDM for Fig. 2 after EC Selection

Probe AdQA AdQB BMQA BMQB PQA PQB PQC SelV
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0

11 0 0 0 1 0 0 0 0
12 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0
14 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0 1

Algorithm 1 CDM Generation Algorithm
Input: service list N in a business process
Output:CDM, probe list P L.

1: ∀i, j, set CDM[i][j] = 0
2: set P ID = 0
3: for all n ∈ N do
4: for all p ∈ n.parent do
5: set P L[P ID] =< P ID, n.id, “input”, p.id >
6: for all s ∈ (p.pred ∪ p) do
7: set CDM[P ID][s.id] = 1
8: end for
9: P ID = P ID + 1

10: end for
11: set P L[P ID] =< P ID, n.id, “output”, null >
12: for all s ∈ (n.pred ∪ n) do
13: set CDM[P ID][s.id] = 1
14: end for
15: P ID = P ID + 1
16: end for

Suppose n is the number of services in a BP and p is the
number of probes. The diagnosis procedure is as follows.

1. Identify faulty services. Two kinds of faulty nodes can
be found in this step.

(a) Service that is the only source of a probe reporting
an exception;

(b) EC, whose input probe readings are all OK, but
output probe reading flags an exception.

For these obviously faulty services, we set all probes
that cover the faulty services as handled. In this step, to
find faulty services, the worst case is to scan the whole
DM once, with a complexity of O(pn). The complexity
of finding and setting related probes is also O(pn). So
the total complexity of this step is O(pn).

2. Produce potential faulty sets. For each remaining probe
with exception, all its sources are saved in a potential
faulty service set. These potential faulty sets will be

Algorithm 2 Evidence Channel Selection Algorithm
Input: PDM; Probe List P L; Service set S={s}.
Output: Selected EC SEC.

1: set SEC = ∅
2: for all s ∈ S do
3: set coverage set C[s] = ∅
4: end for
5: for i ∈ P L do
6: for all service s ∈ S do
7: if PDM[i][s.id] = 1 then
8: add s to C[P L[i].EC]
9: end if

10: end for
11: end for
12: while S , ∅ do
13: find service e ∈ S with the largest |C[e]|
14: add e to SEC
15: remove C[e] from S
16: for all service s ∈ S do
17: remove C[e] ∩ C[s] from C[s]
18: end for
19: end while

used in Step 6. The step needs to scan the entire DM,
with a complexity of O(pn).

3. Identify OK services. If a probe has no exception, set
all its source services that do not have a diagnosis
result yet as OK services. The complexity of finding
OK services is O(pn).

4. Identify more faulty services. After some services are
identified as OK services in Step 3, certain services
become the only source for some unhandled exception
probes. These services are now marked as faulty. We
also set the probes of the faulty services as handled
(same as Step 1). The complexity of this step is the
same as Step 1, O(pn).

5. Find maybe services. For remaining unhandled
exception probes, if there is no faulty service clearly
identified, their remaining source services are set as
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maybe services. The complexity of this step is also
O(pn).

6. Re-introduce maybe services from potential faulty sets.
If all services in a potential faulty set (from Step 2) are
diagnosed as OK services, set all services in this set as
maybe services.

This problem is caused by the uncertainty of QoS
violation propagation. Our goal is to find as many
faulty services as possible. If there is a conflict about
the diagnosis status of service, we would prefer to
report the service as a faulty or maybe service. The
complexity of this step is also O(pn).

7. Identify shielded services. The remaining services are
shielded services, i.e. certain faulty service may shield
them and their status cannot be known for certain.
Based on the assumption that most services are OK
services, we treat all shielded services as OK services
in the following implementation.

The overall complexity of the diagnosis algorithm is
O(pn).

We next show a diagnosis example. In Fig. 2, suppose only
one input probe can be installed for every service, probe A is
the input probe for service BulkMailQuoteB (union of probes
2,3) and probe B is the input probe of service SelectVendors
(union of probes 11-15).The sources of probe A are
service AddressQuoteA, AddressQuoteB, and the sources for
probe B are PrinterQouteA, PrinterQuoteB, PrinterQuoteC,
BulkMailQuoteA, and BulkMailQuoteB. Assume services
AddressQuoteA and BulkMailQuoteB have QoS violations
and probes A, B, and 4 have detected QoS problems. The
diagnosis algorithm works as follow.

1. Step 1 finds faulty service BulkMailQuoteB by probe
4.

2. Step 2 produces potential faulty sets: {AddressQuoteA,
AddressQuoteB} for probe A, {BulkMailQuoteA,
BulkMailQuoteB, PrinterQuoteA, PrinterQuoteB,
PrinterQuoteC} for probe B.

3. Step 3 identifies OK services: service SelectVendors
from OK probe 16.

4. In Step 4, no extra faulty service is identified.

5. Step 5 finds maybe service AddressQuoteA and
AddressQuoteB.

6. Step 6 introduces no maybe service.

7. Step 7 identifies 4 shielded services: BulkMailQuoteA,
PrinterQuoteA, PrinterQuoteB, and PrinterQuoteC.

4. Predicates on Probes
In the diagnosis algorithm presented above, every probe
is used to monitor the end-to-end response time from the
beginning of a business process to its current location. Every
ancestor service leading to a probe could cause an end-
to-end response time delay. But some faults may become
non-observable if other services have shorter than expected
execution time that causes the delay to be compensated before
a probe.

To have a more precise knowledge about individual
services, we also compare response time data between probes.
Since the temporal intervals between probes are smaller than
the temporal intervals from the beginning of the BP to probes,
we can have more precise fault detections.

4.1. PoP Definition

To fully utilize the information collected from selected
probes, we define predicate-on-probes (PoP) to check the
service(s) between two probes. There are two types of PoPs in
a system: inter-PoP and intra-PoP. Inter-PoP is a PoP defined
based on two probes on different services. Usually, an inter-
PoP is between a service’s output probe and the next (on the
BP) EC’s input probe. Fig. 3(a) is an example of inter-PoP,
between the output probe of service 0 and the input probe of
service 2. Intra-PoP is defined on a single service’s input and
output probes. By comparing an input’s arriving time and the
corresponding finish time, intra-PoP can decide if a service is
faulty. In Fig. 3(b), an intra-PoP is defined for service 2.

Figure 3. PoP Examples

4.2. PoP Generation

A PoP is defined by four tuples, p =<beginEC, endEC, type,
path>. beginEC is the service ID of the beginning probe.
endEC is the service ID of the end probe. Type shows it is
either inter- or intra-PoP; for intra-PoP, beginEC and endEC
are the same. Path, which is only for inter-PoP, identifies the
parent service ID on the input path.

The PoP generation algorithm is shown in Algorithm 3. In
Algorithm 3, intra-PoP and inter-PoP are generated for every
EC. For intra-PoP, the service itself is a cause. For an inter-
PoP inter, suppose bP robe is its beginEC’s output probe and
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Figure 4. Probes and PoPs in PrintAndMail

eP robe is the corresponding input probe of its endEC, the
potential source set of inter is the difference of eP robe and
bP robe’s source set. Suppose the number of EC is k, then the
number of intra-PoP will also be k, the number of inter-PoP
is O(k2). The time complexity of generating a PoP is O(n),
so Algorithm 2 is O(k2n).

In Fig. 4, three inter-PoP’s can be defined. One is between
probes P and Q, with the sources of VerifyDebitCard,
WithdrawMoneyfromA, DepositMoneytoB, CommitA and
CommitB. The second one is between probes X and Y,
with the source of BeginPrinting. The last one is between
probes X and Z, with the source of CollectAddresses. If
only one input probe can be detected for BeginBulkMailing,
then the second inter PoP and the third inter PoP will be
combined into one PoP, which covers both BeginPrinting and
CollectAddresses. Four PoPs for services BulkMailQuoteB,
SelectVendors, AssemblePressSheet and BeginBulkMailing
are generated for the PrintAndMail Scenario.

5. System Support for Dependency
Matrix-based Diagnosis
We have implemented the diagnosis support in Llama.
Figure 5 shows an example BP running on Llama. In the
example, all services are deployed on the Accountability
Service Bus (ASB), which is our version of the Enterprise
Service Bus (ESB). In addition, Accountability Authority
(AA) and Agents are the main Llama components. AA
is responsible for the deployment and configuration of
the accountability framework as well as performing fault
diagnosis. Agents are selected by AA to collect data from
Llama ASB and to decide the runtime status of probes and
PoPs. For inter-PoPs, an Agent needs to communicate with
another Agent to inspect its run-time status. For example, in
Figure 5, Agent B pulls data from Agent A to decide the
runtime status of the inter-PoP between the two evidence

Algorithm 3 PoP Generation Algorithm
Input: Dependency matrix DM; Probe list P L; Evidence
channel set EC; Service list N .
Output: A New DM.

1: initial P oP ID = P L.size
2: for all e ∈ EC do
3: set PoPList[PoPID]=<e,e,“intra”,null>
4: ∀i, DM[P oP ID][i] = 0
5: set DM[P oP ID][e.id] = 1, P oP ID = P oP ID + 1
6: for all p ∈ e.parent do
7: find the nearest EC e’ to p
8: set PoPList[PoPID]=<e’,e,“inter”,p>
9: ∀i, DM[P oP ID][i] = 0

10: for all s ∈ ¬(e′
⋃

e′ .pred)
⋂
(p

⋃
p.pred) do

11: set DM[P oP ID][s.id] = 1
12: end for
13: set P oP ID = P oP ID + 1
14: end for
15: end for

channels. Agents send all abnormal runtime data to AA. In
this way, AA and Agents collaborate to perform run-time
process monitoring and QoS fault diagnosis.

5.1. Llama Diagnosis Engine

Figure 6 shows the detailed architecture of Llama compo-
nents, including AA, Agents and ASB. AA is comprised of
three main modules:

1. Management Gateway is the portal to allow a user to
configure BP structure with its QoS constraints.

2. Agent Deployment is in charge of Agent selection and
initiation.
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3. Diagnosis Engine performs evidence channel selection
and dependency matrix generation before runtime.
During runtime, when Exception Receiver receives
exceptions from agents, the diagnosis engine will
investigate faulty sources.

Agents are the intermediaries between ASB and AA.
They are responsible for the following tasks: (1) configuring
evidence channels on ASB, (2) communicating with other
Agents to perform EC data analysis, (3) reporting exceptions
to AA, and (4) initiating error origin investigation upon the
request of AA. An Agent has the following modules:

1. ASB Configurator receives instructions from AA and
requests ASB to set up bindings between Agents and
evidence channels.

2. EC Data Receiver and Analyzer receives timestamps
of evidence channels pushed from ASB and stores them
in the Monitoring Data Repo. For input timestamp, the
Analyzer specifies the status of an input Probe and
inter-PoPs whose endEC is the current service. For
output timestamp, the analyzer checks the status of
an output Probe and the intra-PoP of current evidence
channel.

3. Exception Reporter reports all Probes or PoPs whose
behavior is abnormal to AA.

4. EC Data Retriever receives instructions from AA to
verify those maybe faulty services. It pulls information
from the ASB log for services that are not selected as
evidence channels.

5. Error Origin Investigator requests further informa-
tion from ASB to determine if the source of an error
is due to network, host, or the service itself once a
problematic service is identified by AA.

Llama ASB provides an API and framework for Agents
to collect service performance data. Data can be pushed or
pulled, and collected and sent at configurable intervals. There
are three main modules in ASB:

1. Configuration Gateway provides the functionality of
configuring data dispatcher frequency and bindings
between Agents and evidence channels;

2. Profiling Interceptors intercept service request and
response message to take both begin and end
timestamps of service invocation. These timestamps are
stored in the ASB log;

3. Profiling Data Dispatcher sends runtime data of
evidence channels to Agents with a pre-defined
frequency.

5.2. Diagnosis Flow
The DM-based diagnosis is conducted as follows. Before
runtime, EC selector & DM generator on AA first
selects evidence channels and generates the corresponding
Dependency Matrix with process configuration information
from Management Gateway. With the evidence channel
selection result, Agent Informer selects Agents from the
Agent Repo and informs ASB Configurator on Agent
selections. In the meantime, Agent Informer needs to update
the evidence channel information to EC Data Repo on Agent
for the future use of Agent communication. Once Agents
build the bindings on ASB through Configuration Gateway,
the preparation job is done.

At runtime, Profiling Interceptor records input and
output timestamps during service executions. Profiling Data
Dispatcher on Llama ASB sends the timestamps to their
corresponding Agents with a pre-defiened frequency (in our
experiment, it is 1 per 2sec, 1 per 5sec and 1 per 8sec). When
EC Data Receiver receives runtime data, it will store the data
in the Monitoring Data Repo. Meanwhile, EC Data Analyzer
will analyze the status of corresponding Probes and PoPs.
To decide the status of an inter-PoP, Agent of the endEC
needs to pull information from the Agent of the beginEC
and calculate the time difference. With the time difference,
Agent will compare it with the time threshold stored in the EC
Data Repo and decide the status of the corresponding probe
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Figure 6. Llama Accountability architecture with DM
diagnosis

or PoP. Exception Reporter on Agent sends all abnormal
Probes or PoPs to AA. Once AA receives exceptions, DM
Reasoning Engine will be triggered. The actual status of
maybe services will be verified through Agents. Error origin
of identified faulty services will be further investigated. The
final diagnosis result is stored in Diagnosis Data Repo. Faulty
services identified will be replaced by other services with the
same or similar functionalities [12].

6. Empirical Results

6.1. Experiment Settings
The PrintAndMail BP is implemented in our lab and used to
test the monitoring and diagnosis performance of the LLAMA
middleware. To simulate real-world service behaviors, we
have implemented four types of services: i.e. CPU-intensive,
IO-intensive, memory-intensive, and simple services. As
shown in Figure 4, there are five CPU-intensive services, four
IO-intensive services, three memory-intensive services and
five simple services.

The 17 services are deployed on three servers running
Debian Linux OS, including two IBM servers, labelled as A
and B, (with quad 3.06GHz CPU and 3.5GB memory) and
one HP server C (with quad 2.8GHz CPU and 6GB memory).
An agent is deployed on server A and another on server C. AA

is on server C. Apache ODE [13] BPEL engine is deployed
on server C. As shown in Figure 4, four evidence channels
are selected in the process so that data from these services are
being continuously pushed to the agents.

To profile its execution time, each service is invoked 100
times individually before BP execution. During profiling, we
record each service response time on three system locations:
the server side, the ASB side and the client side. The average
response time recorded on the ASB and the service side has a
difference less than 1 ms. However, the average response time
recorded from the client side has about additional 80 ms due
to network delay.

In our experiment, we set the fault threshold for
each service response time by the sum of its average
response time +3∗ standard deviation + network delay+
BPEL engine delay. If a service’s response time exceeds that
threshold, the service is considered faulty.

6.2. Monitoring Overhead

We set up five monitoring scenarios to measure system
monitoring overhead:

1. execute with all interceptors turned off, ensuring that
there is no data collection overhead,

2. execute with all profiling interceptors activated, i.e. all
data are collected by local middleware,

3. the same as scenario 2, except that 4 evidence channels
push data at 8 seconds intervals to agents,

4. the same as scenario 3, except the data push interval is
5 seconds,

5. the same as scenario 3, except data push interval is 2
seconds.

We have measured that the average end-to-end process
response time (from 100 service process executions) is about
12,500ms. The monitoring oveheads for all of the five
scenarios from two separate test rounds are shown in Table 3.
From Table 3, we can see that the overhead of data collection
at ASB is less than 100ms, which is small compared to the
cost of BPEL engine and network communication. Pushing
data to agents creates an extra delay of 50 ms to 300ms on
service process execution. Overall, the total delay due to data
collection on ASB and triggering data push to agents is less
400ms, which is about 3% of the average process response
time.

6.3. Diagnosis Performance

We now present the diagnosis performance, including diag-
nosis correctness, identification and investigation overhead,
and diagnosis response delay. Diagnosis response delay is
the time difference between process finish time and diagnosis
finish time.
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Table 3. Monitoring Overhead (ms)

data collection on ASB ASB + data push @8s ASB + data push @5s ASB + data push @2s
Round 1 74ms 247ms 112ms 190ms
Round 2 84ms 232ms 313ms 363ms
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Figure 7. Monitoring Overheads(unit:ms)

The diagnosis completeness ratio shows the percentage of
faults correctly identified by AA. For example, if 2 out of 4
faults are identified, the completeness ratio is 50%. The false
positive ratio reflects the percentage of incorrect reports for
non-faulty services. For example, if 1 out of 10 non-faulty
services is diagnosed as faulty, the false positive ratio is 10%.
Identification and investigation overhead is comprised by two
parts, identification time and investigation time.

Identification overhead is the time used by the diagnosis
process, which includes dependency matrix-based diagnosis
time and verification time for maybe services (if applicable).
Investigation overhead is the time used by specifying error
origin for faulty services.

Three strategies are used to report maybe services: (A)
report all maybe services as faulty; (B) report all maybe
services as normal services; (C) verify the actual status of
maybe services by pulling information from ASB through
Agents.

In the experiment, we inject different types of delays (1
second, 3 seconds or 5 seconds) in randomly selected 1 or
3 services in the business process. For each scenario, the
test was run 25 times. Tables 4 and 5 show the diagnosis
performance, including average completeness ratio, false
positive ratio, Identification time, and Investigation time, as
well as the average diagnosis response delay. Each entry has
three values, corresponding to reporting maybe services as
faulty, normal or by actual identification.

In Tables 4 and 5, since verifying the actual status of
maybe services only reduces the false positive ratio, but does
not affect the completeness ratio, the completeness ratios of
Strategies A and C are the same. They increase with the
injected delay duration. Since we assign a large threshold
to each service with respect to its average response time,
when the injected error is only 1 second delay, it cannot
be detected by the system and the completeness ratio is
0. When the delay duration increases from 3 seconds to 5
seconds, the completeness ratio increases from about 50%
to about 80% (Figures 8) for one-error case and from about
60% to 80% (Figures 9) for three-error case . Obviously,
the increasing completeness ratio is due to the fact that the
longer the delay is, the easier it is to catch it. However,
some 5 second delays cannot be caught. For example, in
Figure 4, the average response time for PrinterQuoteB is only
270.68ms. However, the time threshold for AddressQuoteA
and BulkMailQuoteB is 7800ms. Even when a 5-second
delay is injected in PrinterQuoteB, it still may not be detected.

False positive ratio for strategy A grows with error number
and delay duration. In our experiment, average false positive
ratio distributes between 3.5% and 15.5%. The false positive
problem is mainly introduced by the strategy that we report
all maybe faults as identified faults. For strategy B, we can
see that if we treat all maybe services as non-faulty, the false
positive ratio drops to 0. In fact, the actual faulty service out of
maybe services is always less than 50%. In the actual system,
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Table 4. Diagnosis Performance for 1 Injected Error (maybe service = faulty, normal, actual)

Complete_Ratio FaultPos_Ratio IdentificationTime InvestigateTime Diag_RSP
1 sec delay 0, 0, 0 0, 0, 0 0, 0, 0(ms) 0, 0, 0(ms) 0s
3 sec delay 50%, 25%, 50% 3.5%, 0, 0 2.7, 2.7, 46.1(ms) 56.1, 27.3, 29.1(ms) 2.4s
5 sec delay 81.3%, 18.8%, 81.3% 9.0%, 0, 0 1.8, 1.8, 110.5(ms) 126.1, 11.1, 41.8(ms) 2s

Table 5. Diagnosis Performance for 3 Injected Errors (maybe service = faulty, normal, actual)

Complete_Ratio FaultPos_Ratio IdentificationTime InvestigateTime Diag_RSP
1 sec delay 0, 0, 0 0, 0, 0 0, 0, 0 ms 0, 0, 0 ms 0s
3 sec delay 58.1%, 37.2%, 58.1% 4.5%, 0, 0 3.1, 3.1, 48.9 ms 130.6, 60.7, 98.5 ms 2.1s
5 sec delay 79.4%, 40.6%, 79.4% 15.5%, 0, 0 3.3, 3.3, 115.6 ms 240.6, 67.2, 132.1 ms 1.7s

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 sec delay

3 sec delay

5 sec delay

Figure 8. BP Completion Ratio and False Positive Ratio (one error)
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Figure 9. BP Completion Ratio and False Positive Ratio (three errors)
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we can double check those maybe services before a system
reconfiguration.

Different from other NP-hard diagnosis algorithms, the
dependency matrix based diagnosis has a polynomial time
complexity. As shown in Tables 4 and 5, the identification
time for Strategies A and B is short, less than 4ms, which
is negligible. For Strategy C, network delay dominates the
verification time. Verification part can cause an extra 100 ms
delay. The identification time for all scenarios is less than
120ms.

Error origin investigation is an optional feature in the
system. For each identified error, its error origin can be
detected through investigation. Similar as maybe service
verification, network delay dominates the investigation time.
The investigation time for different scenarios distributes in
the range of 40ms to 250ms. Since Strategy A suffers from
high false positive ratio, the number of services need to be
investigated is greater than the other two strategies, Strategy
A has the highest investigation time. On the other hand,
Strategies B and C have the same false positive ratio, but
Strategy B has a lower completeness ratio, so the number of
services to be investigated for Strategy B is less than that of
Strategy C and it has a shorter investigation time.

Since the diagnosis time is relatively short, the diagnosis
response delay (Diag_RSP) is mainly caused by the data push
delay on ASB. For the experiment reported in Table 4, the
data push interval is set to 5s. We can see that the average
diagnosis response delay is around 2s, which is about half of
the data push interval of 5s.

Although diagnosis sensitivity still depends on the
setting of threshold and service location in the process,
due to the usage of PoP, the diagnosis sensitivity of
dependency matrix based diagnosis is much better than those
diagnosis approaches only consider end-to-end information.
For example, a delay on VerifyDebitCard may be covered
by its good-behavior predecessors and cannot be caught by
end-to-end time. However, it can be detected by the inter
POP between SelectVendors and AssemblePressSheet in our
diagnosis.

6.4. Summary

From the experiment result, we can see that the dependency
matrix based diagnosis is efficient for service monitoring
and accountability management. Diagnosis overhead of
dependency matrix based diagnosis is very small, and its
diagnosis performance, in terms of completeness ratio, false
positive ratio and diagnosis sensitivity, is reasonably good.
Many diagnosis system attributes, such as diagnosis response
speed and diagnosis sensitivity can be specified by the user
by setting the data dispatching frequency and service time
threshold.

7. Related work

7.1. Dependency Matrix Based Diagnosis
Projects

Among different approaches designed for multiple fault
diagnosis, dependency matrix based method is known to
be computationally efficient and also easier to apply in
real world. It has been successfully utilized in a variety of
systems [18, 19]. However, for multiple fault probabilistic
diagnosis, its result may not be as good as some rigorous but
computationally intractable (NP-hard) diagnosis approaches
(such as Bayesian Network). In this paper, we apply the
dependency matrix method to QoS diagnosis in SOA. To fully
use the monitoring information, we introduce PoP, which can
acquire more detailed information by comparing neighboring
probes.

Rish et al. [17, 18] apply dependency matrix-based
diagnosis in network management. Different from network
management, in SOA, every service’s QoS is influenced by its
predecessor services, so the potential cause of each probe is
uncertain. To handle this uncertainty, we modify the original
dependency matrix diagnosis to fit it in SOA as discussed in
Sec. 3.3.

Previous works [14, 18] have also studied the probe
selection problem for the purpose of network management.
Ozmutlu et al. [14] propose to optimally select a subset
of ping-like probes to monitor networks by using Zone
Recovery Methodology (ZMR). ZMR works for unknown
topology structure. But in SOA the process structure usually
is available, so ZMR is not suitable for SOA. For active
probing [18], Rish et al. pre-select the minimal set, which
covers all nodes, to monitor at run-time. After error is
detected, the most-informative next probe must be activated.
During diagnosis, active probing requires pulling information
from probes dynamically. In our study for SOA systems,
we collect information only from pre-selected probes and
conduct diagnosis based on reported data, without creating
new probes. One reason is that process instances are not
produced as often as network packets. So creating new probes
may not collect too much new information to improve the
diagnosis correctness. In [18], the conditional probability of
each node is required for probe selection. In our method, only
PDM is needed and a set-covering algorithm is used to make
probe selection more efficient and practical.

Agarwal et al. [1] apply dependency graphs and run-time
behavior models to design algorithms for rapid root cause
identification in case of problems occur in e-business. The
concept of dependency graph is similar to our dependency
matrix. However, they only use the dependencies to update
the service servility value but not to reason the root cause
directly. The primary contribution of this paper is that
response time threshold is dynamically constructed for each
component by observing its behavior. This solves the problem
that it is very difficult and error prone for the system
administrator to configure a threshold for a component
without extensive benchmarking experience. Meanwhile,
their work has several limitations compared to our work:
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(1) their approach is based on single-fault assumption; but
ours can solve multiple-fault diagnosis; (2) their approach
only considers end-to-end time, but never makes comparison
among probes. Our system involves both inter-PoP and intra-
PoP to fully use the detected information.

7.2. QoS Diagnosis Projects

Other diagnosis approaches, such as Bayesian network and
model-based diagnosis, are also applicable in SOA. However,
there are two issues on using Bayesian network in SOA
systems: (1) there may be insufficient historical knowledge
to train a workable Bayesian network; (2) the complexity
of Bayesian network diagnosis is NP-Hard. Zhang et al.
propose a QoS-aware diagnosis framework in SOA [23]
using Bayesian network diagnosis. Compared to Bayesian
network diagnosis, dependency matrix-based diagnosis is
more efficient at run time and does not need any expert
knowledge about services. In the previous version of the
Llama middleware [11], a Bayesian diagnosis engine was
used. Since only end-to-end timestamps were considered in
the diagnosis, agents do not need to communicate with each
other. In the current Llama version, with both inter- and
intra-PoPs, the dependency matrix-based diagnosis achieves
a better diagnosis sensitivity without bringing much system
overhead.

Lee et al. [10] provide a common architecture for the
distributed diagnosis of Internet faults using autonomous
agents. CAPRI diagnoses faults using probabilistic relational
models (PRMs) to combine the strengths of probabilistic
Bayesian inference with the descriptive power of first-order
logic. This approach is quite similar to our Bayesian network
diagnosis [23] where every service could be a deterministic or
chance node. So it also suffers from the high time complexity
of Bayesian network diagnosis and lower diagnosis sensitivity
due to lack of comparison among different evidence channels.

Wang et al. [20] integrate monitoring and diagnostic
services into the QoS management framework. A graphical
model-based approach, i.e. causal networks, is used in root
cause diagnosis. However, causal network reasoning request
system knowledge, which may be not available. Without the
capacity to deal with uncertain and incomplete information,
the causal network reasoning may be not an ideal model for
QoS diagnosis in SOA. Moreover, in [20], even error origin,
which is investigated from ASB in our system, is reasoned
with root causes, this strategy will significantly increase the
size of their graph, and will cause long diagnosis overhead.

Ardissono et al. [2] propose a consistency-based diagnosis
approach that spans across individual services to enhance
fault analysis in SOA. In their framework, each web service
has a local diagnosor. The global diagnoser coordinates
the local diagnosers. Their system architecture, which has
a global diagnoser (similar to AA) and multiple local
diagnosers (similar to Agents), is similar to our Llama
project. However, the consistency-based diagnosis approach
presented requires multiple message exchange steps between

a global diagnoser and a local diagnoser before the root
cause is ruled out, while our diagnosis approach can reason
out the root causes with a one-time message exchanged
between the AA and the Agents (except for maybe
service verification part, which is optional). Furthermore, the
diagnostic correctness of their approach relies on the ability to
collect data from every service. Our accountability framework
requires evidence collection at a subset of locations and
therefore reduces the monitoring cost.

WS-Diamond [5] also aims to provide a framework with
self-diagnosis and self-repair capabilities for Web services.
In the WS-Diamond project, model-based diagnosis is used
for functional and non-functional diagnosis. Unlike their
approach, our work does not need historical knowledge about
services, and is more appropriate for SOA systems that do not
have a static process structure.

7.3. Commercial Products
Some commercial middleware, such as CapeClear [4] and
RTI [16], are available on the market. Both CapeClear and
RTI products have the functionality of monitoring service
performance inside a business process. However, unlike
the Llama middleware, CapeClear BAM is in lack of the
capability of automatic diagnosis and recovery. It usually
reports information via a dashboard or email alerts to human,
who has to manually initiate diagnosis and corrective actions.
RTI product has very powerful monitoring, diagnosis and
error investigation functions. However, it is designed more
on identifying problems during design and initial integration.
The Llama middleware is more concerned with runtime
diagnosis and recovery to provide management of flexibility
in SOA.

8. Conclusion
With the popularity of SOA-based applications, there is
an increasing need for managing business process QoS at
runtime. To address this need, we present a framework for
runtime service behavior monitoring, service fault diagnosis,
and service process recovery [12]. The framework uses
a dependency matrix to denote the relationship between
performance probes and services monitored by each probe. A
diagnosis algorithm based on the dependency matrix and the
probe data is then used to identify potential faulty services.

We have implemented the diagnosis algorithms and
runtime support in the Llama middleware. We have also tested
the diagnosis performance using realistic services deployed
on networked servers. The experiment study shows that the
diagnosis mechanism performs well in our test environment.
We plan to deploy the Llama middleware in large-scale
network to study its practicality.
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