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Abstract

Context-aware smart things are capable of computational behaviour based on sensing the physical world,
inferring context from the sensed data, and acting on the sensed context. A collection of such things can form
what we call a thing-ensemble, when they have the ability to communicate with one another (over a short range
network such as Bluetooth, or the Internet, i.e. the Internet of Things (IoT) concept), sense each other, and
when each of them might play certain roles with respect to each other. Each smart thing in a thing-ensemble
might have its own context-aware behaviours which when integrated with other smart things yield behaviours
that are not straightforward to reason with. We present Sigma, a language of operators, inspired from
modular logic programming, for specifying and reasoning with combined behaviours among smart things
in a thing-ensemble. We show numerous examples of the use of Sigma for describing a range of behaviours
over a diverse range of thing-ensembles, from sensor networks to smart digital frames, demonstrating the
versatility of our approach. We contend that our operator approach abstracts away low-level communication
and protocol details, and allows systems of context-aware things to be designed and built in a compositional
and incremental manner.
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Introduction
Due to developments in pervasive computing and
embedded systems, there has been a growing number
of types and varieties of smart things, which are capable
of computationally based behaviours, communicating
with each other over the Internet1 or over short
range networks, and sensing the physical world [4,
30]; they can have context-aware behaviours [41],
and are becoming even cloud-enabled [22]. These
things can then intelligently respond to the context
or situation they sense, via some computation. Smart
things might also be everyday objects (e.g., vases, books,
picture frames, furniture, clothings, etc)2 endowed

∗Corresponding author. Email: s.loke@latrobe.edu.au
1http://www.theinternetofthings.eu
2The e-gadgets model view everyday objects as components, see
http://www.extrovert-gadgets.net/

with embedded processors, intelligent sensors, mobile
devices with sensors, appliances [26], or simply new
types of devices [48].

A number of paradigms have been employed to
program such things, including Web service based
methods,3 that assume each device has an embedded
Web server that receives and responses to invocations,
UPnP service styles,4 JINI,5 and peer-to-peer based
styles such as JXTA,6 and various visual editors such
as [21, 25, 38]. For some time now, we have seen the
application of rule-based programming for behaviours
of collections of smart things, such as [24, 25, 49, 50],7

3See http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01 and [31]
4See http://www.upnp.org/
5See http://www.jini.org/wiki/Main_Page
6See https://jxta.dev.java.net/
7Others are https://www.onx.ms/ and http://appinventor.mit.edu/
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though such work generally do not consider reasoning
with groups of rules. Basically, context information
gathered via sensors are reasoned with and appropriate
action taken based on these rules.

The general structure of smart things, sensing,
reasoning and acting [33] corresponds to context-aware
mobile computing systems as early as 1994 [43], and in
fact, many context-aware systems do have that general
structure.

However, when a collection of such smart things
are put together, and if they can sense and react to
each other, it is not easy to reason about the collective
behaviour of the ensemble, and it is not easy to
determine what will happen as a result of combining
such smart things.

Following the design philosophy first introduced
in [36] and also used in [35], in this paper, we
elaborate on an approach (and formalism), which we
call Sigma, to represent compositions (or collections)
of smart things that can sense their environment
and context and act in response to what they sense.
The formalism comprises a language of operators,
inspired by modular logic programming [12], for
composing systems, the advantage of using operators
being to encapsulate the cooperation between systems,
leaving it to the implementation to realize that
cooperation. The compositions are not necessarily
physical compositions of the things (e.g., if the things
are vases, a composition here does not necessarily mean
gluing the things together), but rather, are compositions
of their representations. Such compositions specify
how things may cooperate in their sensing and acting;
we call a collections of things that can communicate
with each other, and whose behaviours are composed,
a thing-ensemble. Note that our view of cooperation
here is the idea of a set of devices working together
complementarily for a purpose, and coordinated
to achieve an effect via a set of operators with
predefined semantics, not autonomous cooperation as
in multiagent systems research. It should be noted that
a thing-ensemble is, hence, different from an arbitrary
set of appliances or sensors, in that we assume that the
things in the ensemble can interact with each other, in
the way we describe later.

We show how a variety of thing-ensembles can
be represented, ranging from the smart living room
applications, sensor networks to smart digital frames,
and their behaviours specified. We use the term
ensembles to emphasize that the things are in some
kind of coordinated relationship with each other in
order to fulfill their own tasks or end-user specified
tasks, and things typically play different roles in such
a cooperation. Moreover, this paper deals with the
formalism to specify such compositions but not the
implementation details.

The twofold purpose of our formalism for represent-
ing and reasoning with thing-ensembles is as follows:

• Abstraction. We present a set of operators that
provides well-defined compositions of smart
context-aware things. This enables reasoning
about what collective behaviours could emerge
when an ensemble of such smart things interact or
are composed. While this may seem constraining
(restricted to the collection of operators we have),
we present a small set of operators which can be
used to model interactions in a range of scenarios,
showing that even a small set of operators can be
quite expressive and useful.

• Incremental and compositional design for the
Internet of Things. We also argue for the need of
a design approach that provides a means to build
or extend thing-ensembles in an incremental
manner, i.e., new things can be added to
a collection, and new composed behaviours
attainable without considerable developer effort,
or considerable change to the existing thing-
ensemble. The idea is that smart context-aware
behaviours of a collections of smart things (and/or
computer devices) can be effectively “grown” over
time. While in a different context, a parallel of this
idea is McCarthy’s notion of elaboration tolerance
(especially, additive types of elaborations), which
is “the ability to accept changes to a person’s or a
computer program’s representation of facts about
a subject without having to start all over.”8 In
our case, it is the addition of new smart things
(e.g., new computational nodes, storage, sensors,
appliances, etc) to an existing system (a collection
of smart things), without needing to start over or
redesigning the whole system. Our examples in
a range of scenarios demonstrate this idea where
the behaviour of each thing is simply modelled as
a module of rules. There are pragmatic advantages
of this since if old devices can be combined with
newly added devices, then reuse of the old devices
in the presence of the new is facilitated, or if
newly added devices can override (or suppress)
the functionality of older devices in a well-defined
manner, then the new behaviour can be better
understood.

The contributions of this paper are twofold:

• Theoretically, the Sigma formalism serves as a
basis for a unified model of cooperating thing-
ensembles that act on an understanding of their
situations. We seek to expose and formalize the

8http://www-formal.stanford.edu/jmc/elaboration/elaboration.html
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underlying structure of a diverse range of thing-
ensembles, which might seem rather different on
the surface, but in fact, have common structure
and behaviour. The fact that these operators can
be defined which capture how different systems
of context-aware things work together in different
contexts suggests the generality of the operators
and emphasizes the common features of these
systems.

• Practically, the Sigma formalism (perhaps with
syntactic sugar if needed) can be used in two ways:

– as a specification language for designing
context-aware IoT applications [41, 47,
58]; the formalism encourages a modular
approach to the problem, and also allows
incremental development where an existing
system can be modelled and then, add-
ons can be represented and combined with
the existing system via suitable operators;
a smart thing can be modelled as a rule-
base but then implemented in hardware, or
it can be a software-programmable device -
our approach is agnostic to this, and

– as a scripting language for programming
behaviours of cooperating context-aware
things, where the combined behaviour is
embedded within the operators, thereby pro-
viding a high-level of abstraction, without
the programmer needn’t to deal with under-
lying protocols; but an interpreter for the
operators would need to be implemented
first.

In the next section, we present a brief overview
of operators we will use in composing behaviours
of things. Then, we will describe scenarios of thing-
ensembles. Related work is then reviewed, and finally,
we conclude with future work.

Sigma Operators for Composing Context-Aware
Systems
Context-Aware Systems
We use the operator language and abstract model
of context-aware systems from [36], but extend the
repertoire of operators here. We use the term context-
aware system to refer to three categories of systems:

• systems comprising only of sensors,

• systems with sensors and context interpretation
components, and

• systems with sensors, context interpretation
components, and situation reasoners.

The above components are explained below.
The general model of a context-aware system R is a

triple of the form (Σ,Π,Θ). Σ is a finite set of sensors
where each sensor σi is a function which senses a part
of the world (in which the sensor is situated at the
time) W ∈W and produces a set of sensor readings
G ∈ G, i.e. σi : W→ G. We let W and G remain opaque
as our discussions do not require their details, but
explicit and precise definitions could be given for them;
also, in our case, we assume that the sensors Σ are
attached to (or part of) the particular smart thing (e.g., a
vase embedded with touch sensors and a microphone).
Often, we will write reading(σi) = G to denote when
reading from the sensor σi has value G.

In this paper, a context-aware system can map to
a thing with sensing, networking and computational
capabilities. Or a context-aware system might comprise
a thing and associated software and hardware that
tracks the thing and provides context-aware behaviour
associated with the thing.

The interpreter Π can then be defined as a mapping
from sensor readings G to some context (e.g., a symbolic
location such as a room number) C ∈ C (which we
assume are concepts grounded in some ontology such
as SOUPA9 and CONON [52], or other ontologies as
surveyed in [7, 57]), i.e., Π ⊆ (G × C). So, given W ∈
W, and suppose Σ = {σ1, . . . , σn}, and σ1(W ) = G1, . . .,
σn(W ) = Gn (for Gi ∈ G), then Π can be applied to
interpret each Gi to obtain a set of contexts {C1, . . . , Cn},
denoted by Π(Gi) = Ci (taken here to mean (Gi , Ci) ∈
Π). We will also often write the mapping (Gi , Ci) ∈ Π
as a rule of the form (Gi ⇒ Ci) ∈ Π, for readability.

The situation reasoner Θ is a relation mapping sets
of contexts or situations to situations, i.e. Θ ⊆ (℘(C ∪
S) × S), where S is a set of situations (again, which
we assume grounded in some ontology). We will also
often write the mapping ({C1, . . . , Ck , S1, . . . , Sl}, S) ∈ Θ
as ({C1, . . . , Ck , S1, . . . , Sl} ⇒ S) ∈ Θ , for readability.

Examples of aggregating context to infer situations
can be found in the literature [2, 16, 56, 57]. Our model
makes the distinction between the notions of context
and situation following the work such as [17, 32],
where context information is used to “characterize the
situation of an entity,” modelled via Θ. While we do not
commit to any ontology here, in practice, we assume
that systems do return inferred contexts or situations
using concepts from a “well-known” ontology in order
to facilitate interoperability.

Moreover, we define the relation denoted by `
between systems and pairs of the form (W,S) where
W ∈W and S is some situation, such that R ` (W,S)
if and only if R recognizes S when sensing part of the
world W , or alternatively, if one places R in the part of

9http://pervasive.semanticweb.org/soupa-2004-06.html
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the world W where S is happening, S will be detected
by R. R may be in a world W where S is not happening,
but as soon as S happens, it detects it.

A situation that is recognized by a system is then
either computed from contexts (recognized by some
sensors and the interpreter) and other situations (if any)
via Θ. This meaning of the relation ` can be expressed
recursively as follows in a rule written in the form
premises
conclusion :

({C1, . . . , Cm, S1, . . . , Sk} ⇒ S) ∈ Θ,
for some m, where for each Ci , i ∈ {1, . . . , m},
Π(σ (W )) = Ci , for some σ ∈ Σ,
and for some k, where for each Si , i ∈ {1, . . . , k},
(Σ,Π,Θ) ` (W,Si )

(Σ,Π,Θ) ` (W,S)
(one − system)

We represent context recognition by a system R, i.e.,
R ` (W,C) for some context C, where Π(σ (W )) = C, for
some σ ∈ Σ.

Sigma Operators on Context-Aware Systems
The Sigma operators on context-aware systems form
a small language of Sigma expressions, given by the
following EBNF syntax:

Q ::= R | Q +Q | Q �Q | Q �Q
E ::= Q | E ⊕ E | E ⊗ E

The Sigma expressions defined by Q only are called
Q-expressions and those defined by E are called E-
expressions. The idea is that, given a thing-ensemble,
i.e., a collection of context-aware things, the Sigma

operators can be used to define different compositions
of things from this collection. For example, given a
thing-ensemble of three system {R1, R2, R3}, different
Sigma expressions can be defined over them, such as
R1 + R2 + R3 and R1 ⊕ (R2 + R3). Moreover, for these
expressions to be meaningful, there must be some
way for the Ris to interact with each other, in the
way that we define below. We distinguish between
the thing-ensemble and the Sigma expressions defined
over (perhaps some subset of the) things in the thing-
ensemble, since each Sigma expression describes only
one way (among many) in which the things can work
together.

Informally, the meaning of the operators are as
follows, extending our relation ` given above. The union
of two context-aware systems used in attempting to
recognize C (or a situation S), denoted by R1 ⊕ R2 ` C,
means that context C (or situation S with R1 ⊕ R2 ` S)
is recognized either using R1 or R2, succeeding if either
succeeds. Note that this can be nondeterministic but

one could employ short-circuit evaluation in practice,
that is, try R1 first and only on failure try with R2.

Below, C can be replaced by S. The intersection of two
context-aware systems used in attempting to recognize
C, denoted by R1 ⊗ R2 ` C, means that context C is
recognized using both R1 and R2, succeeding if both
succeeds.

The tight-union of two context-aware systems used
in attempting to recognize C, denoted by R1 ⊗ R2 ` C,
means that context C is recognized using both R1 cand
R2 working in a tightly coupled combined manner (as
we define below).

The restriction of two context-aware systems used in
attempting to recognize C, denoted by R1 � R2 ` C,
means that context C is recognized using rules from R!
and R2 with joint conditions (as we define below). The
idea is that the rules in the situation reasoner would
have joint conditions. For example, if R1 = (Σ1,Π1,Θ1)
and R2 = (Σ2,Π2,Θ2), whenever (S1 ⇒ S) ∈ Θ1, where
S1 ⊆ (S ∪ C) and S ∈ S, and also (S2 ⇒ S) ∈ Θ2 (in other
words, both Θ1 and Θ2 have a rule for S), then we
join their conditions when applying the rules to infer
S, i.e. we must use joint condition rules of the form
(S1 ∪ S2 ⇒ S) to infer S. This generalizes to three or
more systems, say with R3 having (S3, S) ∈ Θ3, we
have (S1 ∪ S2 ∪ S3 ⇒ S). Note that this is different from
intersection in that with intersection of R1 and R2, each
independently try to infer S, whereas with restriction,
R1 and R2 can share sensors and context interpretation,
and even situation reasoning rules, but at any step, the
rules for a corresponding situation must be joined in
their conditions.

The overriding union of one context-aware system by
another in attempting to recognize C, denoted by R1 �
R2 ` C, means that the rules of R1 takes precedence
over those of R2 whenever the same situation is being
considered. For example, if R1 = (Σ1,Π1,Θ1) and R2 =
(Σ2,Π2,Θ2), whenever (S1 ⇒ S) ∈ Θ1, where S1 ⊆ (S ∪
C) and S ∈ S, and also (S2 ⇒ S) ∈ Θ2 (in other words,
both Θ1 and Θ2 have a rule for S), then we use the rule
from R1 only, i.e. (S1 ⇒ S), and ignore any others for
the same situation (of the form (S2 ⇒ S)) from Θ2. This
operator is inspired by the notion of input suppression
from Brook’s subsumption architecture [13], as we
illustrate below.

The operators ⊕ and ⊗ corresponds to logical “or”
and“and” respectively, and operators in Q-expressions
can be rewritten as single systems with contents
from the component systems in the way given by
the operational semantics of the operators below. In
an implementation of these operators, it may not
be possible to physically take the actual constituent
components and combine them, but in fact, appropriate
(e.g., Web service) interfaces can be used by each
component to expose their sensors, interpreter and
situation reasoner components, and then calls are
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made to these interfaces to emulate effectively a single
virtual system (the virtual system represented by a Q-
expression).

The rules in Figures 1 and 2 provide the operational
semantics, defining the modified relation ` more
precisely. Note that in rules (one − system), (tu), (res)
and (ovr), m and k could be zero for a given member
of Θ, in which case, there is no context or situation in
the antecedent.

({C1, . . . , Cm, S1, . . . , Sk} ⇒ S) ∈ Θ,
for some m, where for each Ci , i ∈ {1, . . . , m},
Π(σ (W )) = Ci , for some j and σ ∈ Σ,
and for some k, where for each Si , i ∈ {1, . . . , k},
(Σ,Π,Θ) ` (W,Si )

(Σ,Π,Θ) ` (W,S)
(one − system)

({C1, . . . , Cm, S1, . . . , Sk} ⇒ S) ∈ Θ ∪Θ′ ,

for some m, where for each Ci , i ∈ {1, . . . , m},
Π(σ (W )) = Ci or Π′(σ (W )) = Ci , for some σ ∈ (Σ ∪ Σ′),

and for some k, where for each Si , i ∈ {1, . . . , k},
((Σ,Π,Θ) + (Σ′ ,Π′ ,Θ′)) ` (W,Si )

((Σ,Π,Θ) + (Σ′ ,Π′ ,Θ′)) ` (W,S)
(tu)

(
⋃n
i=1 Σi ,

⋃n
i=1 Πi ,

⋃n
i=1 Θi ) ` (W,S)

Q ` (W,S)
(gtu)

where n > 1 and Q = (Σ1,Π1,Θ1) + . . . + (Σn,Πn,Θn)

({C1, . . . , Cm, S1, . . . , Sk } ⇒ S) ∈ Θ | Θ′ ,
for some m, where for each Ci , i ∈ {1, . . . , m},
Π(σ (W )) = Ci or Π′(σ (W )) = Ci , for some σ ∈ (Σ ∪ Σ′),

and for some k, where for each Si , i ∈ {1, . . . , k},
((Σ,Π,Θ) � (Σ′ ,Π′ ,Θ′)) ` (W,Si )

((Σ,Π,Θ) � (Σ′ ,Π′ ,Θ′)) ` (W,S)
(res)

where Θ | Θ′ = {(S1 ∪ S2 ⇒ S) | (S1 ⇒ S) ∈ Θ ∧ (S2 ⇒ S) ∈ Θ′}
∪ {(S1 ⇒ S) | (S1 ⇒ S) ∈ Θ ∧ ((S⇒ S) < Θ′ , f or any S)}
∪ {(S2 ⇒ S) | (S2 ⇒ S) ∈ Θ′ ∧ ((S⇒ S) < Θ, f or any S)}

Figure 1. Overview of Sigma operators and associated rules -
part 1.

In the rule for tight-union (tu), we can observe
a tighter coupling of the three components of
sensors, interpreter and situation reasoner compared
to union, in that a tight-union composition behaves
as an integrated system at all three levels (white-
box integration), whereas the union employs multiple
systems but each as a blackbox. While the rule specifies
that the union of the corresponding components (union
of sensors, union of interpreters and union of situation
reasoners) are employed in recognizing a situation

(
⋃n
i=1 Σi ,

⋃n
i=1 Πi , |ni=1Θi ) ` (W,S)

Q ` (W,S)
(gres)

where n > 1 and Q = (Σ1,Π1,Θ1) � . . .� (Σn,Πn,Θn)

({C1, . . . , Cm, S1, . . . , Sk} ⇒ S) ∈ Θ / Θ′ ,

for some m, where for each Ci , i ∈ {1, . . . , m},
Π(σ (W )) = Ci or Π′(σ (W )) = Ci , for some σ ∈ (Σ ∪ Σ′),

and for some k, where for each Si , i ∈ {1, . . . , k},
((Σ,Π,Θ) � (Σ′ ,Π′ ,Θ′)) ` (W,Si )

((Σ,Π,Θ) � (Σ′ ,Π′ ,Θ′)) ` (W,S)
(ovr)

where Θ / Θ′ = {(S1 ⇒ S) | (S1 ⇒ S) ∈ Θ ∧ (S2 ⇒ S) ∈ Θ′}
∪ {(S1 ⇒ S) | (S1 ⇒ S) ∈ Θ ∧ ((S⇒ S) < Θ′ , f or any S)}
∪ {(S2 ⇒ S) | (S2 ⇒ S) ∈ Θ′ ∧ ((S⇒ S) < Θ, f or any S)}

(
⋃n
i=1 Σi ,

⋃n
i=1 Πi , /

n
i=1Θi ) ` (W,S)

Q ` (W,S)
(govr)

where n > 1 and Q = (Σ1,Π1,Θ1) � . . . � (Σn,Πn,Θn)

E ` (W,S)
(E ⊕ E′) ` (W,S)

(union1)

E 0 (W,S) and E′ ` (W,S)
(E ⊕ E′) ` (W,S)

(union2)

E ` (W,S) and E′ ` (W,S)
(E ⊗ E′) ` (W,S)

(intersection)

Figure 2. Overview of Sigma operators and associated rules -
part 2.

(or context), this happens conceptually, and does not
necessarily imply the actual integration of software
components. Tight-union has represents a type of
interaction among two systems. The generalized form
of tight-union to n-ary is given by the rule (gtu).
Note that (gtu) with two operands is equivalent to
(tu). Restriction represents another type of interaction
among two systems, similar to tight-union, but where
rules to infer the same situation must be joined in their
conditions. The generalized form of restriction to n-ary
is given by the rule (gres). Note that (gres) with two
operands is equivalent to (res).

Overriding union represents another type of inter-
action among two systems, similar to tight-union, but
where rules to infer the same situation have precedence.
The generalized form of overriding union to n-ary is
given by the rule (govr). Note that (govr) with two
operands is equivalent to (ovr). Note that overriding
union is left associative and non-commutative. The two
rules of union rely on the success of one or the other
- operationally, (union1) would first be used for evalu-
ations. If rule (union1) succeeds, then (union2) is not
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needed. Note that costs are added up for evaluations.
The rules above can be used in a backward-chaining
fashion to determine if a particular context or situation
currently holds. For example, (R1 + R2) ` (W,S) deter-
mines if situation S holds in worldW with respect to the
composition (R1 + R2), by pattern matching. The rules
can also be used in as a query to ask what contexts
or situations currently hold (or are happening), if S is
a variable instead of a given situation. For example,
(R1 + R2) ` (W,S?) asks what situations may be happen-
ing with respect to (R1 + R2), resulting in one or more
possible instantiations for S? (we denote a variable by
an identifier post-fixed by a “?”).

A composite context-aware system is formed by using
the above language of operators to compose context-
aware systems.

Action Systems
We define another category of systems called action
systems which takes situations or context recognized
from context-aware system(s) and map those situations
or context to actions. Similar to context-aware systems,
we can define operators on action systems. An action
system M is modelled simply as a relation between sets
of context and situations, and actions, i.e. M ⊆ ℘(S ∪
C ∪ {false}) ×A, where A is a set of actions.10 The
idea is that the context and situations are conditions
that must be satisfied before the action is taken. For
some action system M, S ∈ ℘(S ∪ C), and a ∈ A, we
will write mappings of the form (S, a) ∈M as (S⇒
a) ∈M, for readability. We will also often use the
constant false to represent a condition that can never
be satisfied. Actions with the false condition will never
be performed - this will be useful in compositions to
inhibit behaviours as we show later.

Sigma Operators on Action Systems
We also have Sigma expressions on collections of action
systems. We define four operators on action systems:
a-union (denoted by “∪”), a-intersection (denoted by
“∩”), a-restriction (denoted by “|”), and a-overriding
(denoted by “/”), as follows. Given two action
systems M1 and M2, M1 ∪M2 is simplify the set-
theoretic union of the corresponding relations, and the
intersection M1 ∩M2 is the set-theoretic intersection
of the corresponding relations. The purpose of a-
restriction is to cater for cases where different situations
or contexts map to the same actions, and the intention
is to aggregate (or “and”-ing) the situations or contexts
rather than simply “or”-ing them. For example, suppose

10We use relation rather than function for greater generality, allowing
non-determinism but do not discuss specifically how to deal with
non-determinism here.

we have M1 = {({s1, s2} ⇒ a1), ({s6} ⇒ a3)} and M2 =
{({s3, s4} ⇒ a1), ({s5} ⇒ a2)}. Then, forming the union
gives {({s1, s2} ⇒ a1), ({s3, s4} ⇒ a1), ({s5} ⇒ a2)}, which
means that action a1 can be triggered either by {s1, s2} or
{s3, s4}. However, suppose we wish to state that a1 is to
be triggered by {s1, s2, s3, s4}, or s1 ∧ s2 ∧ s3 ∧ s4. We do
this by using a-restriction, which is defined as follows:

M1 |M2 = {(S1 ∪ S2 ⇒ a) | (S1 ⇒ a) ∈M1 ∧ (S2 ⇒ a) ∈M2}
∪ {(S1 ⇒ a) | (S1 ⇒ a) ∈M1 ∧ ((S2 ⇒ a) <M2, f or any S2)}
∪ {(S2 ⇒ a) | (S2 ⇒ a) ∈M2 ∧ ((S1 ⇒ a) <M1, f or any S1)}

Then, when M1 = {({s1, s2} ⇒ a1), ({s6} ⇒ a3)} and
M2 = {({s3, s4} ⇒ a1), ({s5} ⇒ a2)}, we have

M1|M2 = {({s1, s2, s3, s4} ⇒ a1), ({s6} ⇒ a3), ({s5} ⇒ a2)}

The a-restriction operator allows a newly added system
to possibly inhibit an existing system since it adds
new conditions for triggering an action, and is
similar to output inhibition from Brook’s subsumption
architecture [13], as we illustrate below.

The operator a-overriding allows the rules of one
system to override those of another, but only with
regards to actions found in both systems, i.e. suppose
M1 has precedence over M2, then

M1 / M2 = {(S1 ⇒ a) | (S1 ⇒ a) ∈M1 ∧ (S2 ⇒ a) ∈M2}
∪ {(S1 ⇒ a) | (S1 ⇒ a) ∈M1 ∧ ((S2 ⇒ a) <M2, f or any S2)}
∪ {(S2 ⇒ a) | (S2 ⇒ a) ∈M2 ∧ ((S1 ⇒ a) <M1, f or any S1)}

Such an operator allows a newly added action system
to override the behaviour of a previous system.

A composite action system is formed as a composition
of action systems using the above operators (e.g., (M1 ∪
M2) ∩M3).

Context-Aware Action Systems
A context-aware action system is then a pair (E,M), com-
prising a (possibly composite) context-aware system E
and an action system M (which also may be compos-
ite). But to be meaningful, the situations which trigger
actions in M should be infer-able by E, for otherwise,
certain actions in M will never be triggered. Hence, for
a valid context-aware action system, at minimum, we
also require that for any (S⇒ a) ∈M, for any situation
S ∈ S, we have E ` (W,S), for some conceivable W , i.e.,
as long as there is the right sensor readings (with the
judgement of the system designer). We call this the
validation property.

Expressions formed using the Sigma operators are
called Sigma expressions, and corresponds to some
composite system.
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Scenarios of Using Sigma: Thing-Ensembles and
Sigma expressions
In this section, we illustrate the use of our formalism
to model a range of systems from different domains. In
each example, we first identify component context-ware
systems and action systems, and then describe how they
can be composed to form the desired system.

An Illustrative Example: Triggering the Television
We consider an example now of using our operators to
incrementally build a system. The system we intend to
build is an automatic turn TV on system, where a user
Seng sits down on an armchair (in front of a television)
and the television is automatically turned on.

We start with a basic version of the system which has
sensors in the armchair to detect Seng’s weight and then
infer the situation that Seng is on the chair, afterwhich
this is mapped to the action of turning on the television.

We can describe this system, calling it P = (Rp,M),
where Rp is the triple ({weight_sensor},Πp,Θp), where

(′reading(weight_sensor) = 65′ ⇒ seng_on_chair) ∈ Πp

that is, if the reading on the chair’s weight sensor is 65,
we interpret this to mean Seng is sitting on the chair,
and

Θp = {({seng_on_chair} ⇒ seng_ready_f or_tv)}

which states that Seng sitting on that chair implies he
is ready to watch television. And M only has one rule
which maps Seng ready for television to the action of
turning on the television, i.e.

M = {({seng_ready_f or_tv} ⇒ turn_on_tv)}

Figure 3 depicts this system.

Figure 3. A context-aware action system for the basic version.

Now, there are various shortcomings to such a basic
system, namely, when someone else sits on the chair
with the same weight as Seng. To further confirm Seng’s
presence, we can attach an RFID system to the chair that
can identify Seng (assume to have an ID of “0101”, for
example sake) as being nearby. We define this system as
Rq = ({RFID_sensor},Πq,Θq}), where

(′reading(RFID_sensor) = 0101′ ⇒ seng_detected) ∈ Πq

and

Θq = {({seng_detected} ⇒ seng_ready_f or_tv)}

which states that Seng detected by this RFID reader
implies he is ready to watch television.

Then, we can form the new composite system Rp �
Rq, using rule (gres), so that:

Rp � Rq = ({weight_sensor, RFID_sensor},Πp ∪Πq,Θp |Θq)

where

Θp |Θq ={({seng_on_chair, seng_detected} ⇒
seng_ready_f or_tv)}

Figure 4 depicts the extended context-aware action
system (Rp � Rq,M). If we instead wanted to model
suppression, i.e., to have the rules of Rq precede over
Rp, we can use Rq � Rp which uses only the rule in Θq
and ignores that in Θp.

Figure 4. A context-aware action system for the extended version.

Now suppose, a friend of mine invented a head
and eye (i.e., gaze) tracking system which can detect
if a person is actually looking at the television and
determines how long the person does so continuously,
and the idea is that a person expresses the intention
to watch television by staring at the television
continuously for at least 4 seconds.

We provide an abstract description of the sys-
tem as the following context-aware system Rr =
({gaze_sensor, tv_sensor},Πr ,Θr ), where

{(′reading(gaze_sensor) = 4′ ⇒ person_gazing_tv),

(′reading(tv_sensor) = 0′ ⇒ tv_of f )} ∈ Πr

and

Θr = {({person_gazing_tv, tv_of f } ⇒ person_want_tv_on)}

We also have the action system on the television that
uses this trigger M ′ given by:

M ′ = {({person_want_tv_on} ⇒ turn_on_tv)}

Now, considering that it would be useful to combine
M ′ withM in order to better regulate how the television
is switched on, we use the operator a-restriction,
forming

M |M ′ ={({seng_ready_f or_tv, person_want_tv_on} ⇒
turn_on_tv)}
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Figure 5 depicts the extended (valid) context-aware
action system

((Rp � Rq) ⊕ Rr ,M |M ′)

Figure 5. A context-aware action system for the extended (valid)
version.

For testing purposes, perhaps we may want to disable
M. We can then use a-overriding in the composition
M ′ / M, which only takes the rule in M ′ into account.
Or if we wanted to “or” the triggers for the turning on
the television, we would use a-union

((Rp � Rq) ⊕ Rr ,M ∪ M ′)

A key idea of our operator-based approach is not
only that different semantics of composite systems can
be easily stated using different expressions, thereby
clarifying their differences, but also, that our approach
enables incremental extensions to an existing system
while preserving the existing systems. We can define a
composite system without altering the definitions of its
constituent systems. The advantage is, of course, that
different compositions can be formed from the same
constituent systems.

We an use the overriding union on context-aware
systems to have a new system suppress the rules of
another, or use a-overriding or a-restriction to effectively
inhibit (depending on sensor readings) the action
triggers of a system.

Our approach also separates the context-aware
system from the action system, in order to provide
greater modularity, requiring only that the validation
property be satisfied when combining a context-aware
system with an action system.

Modelling Sensor Networks
We can use our formalism to model sensor networks,
with sensors only having context interpretation, i.e. of
the form (Σ,Π, ∅).

Consider a sensor network comprising a collection
of nodes (each with a camera and temperature sensor)
distributed throughout the fringe of a neighbourhood,
the purpose of which is to detect approaching bush
fires. We also assume each node has a position.

A node Ni , at position pi , denoted by Ni .pi is
represented by a context-aware system of the form

({camera, temp_sensor},Πi , ∅)})

where

{(′reading(camera) = f lame′ ⇒ f ire_seen),

(′reading(temp_sensor) ≥ 70′ ⇒ hot)} ⊆ Πi

Each node would have its own camera and temp_sensor
though notationally, we don’t distinguish among them
(if need be, we could use camerai and temp_sensori).
Assuming a sensor network N of n nodes distributed
at different locations, we can represent this by the
composition ⊕ni=1Ni(pi) (or we write this as ⊕N, where
N = {Ni | i ∈ {1, . . . , n}}). And we could pose queries such
as N ` f ire_seen? which will return true if fire is seen
at any one location. A query such as (N2 ⊕N3 ⊕N6) `
f ire_seen? asks if a fire is seen at nodes 2, 3 or 6.
Effectively, we can use our formalism to pose queries
to selected sensors or to different parts of the sensor
network or modify the semantics slightly to return the
node where fire is seen.

However, over the same physical sensor network,
one could define different compositions, relating to
different possible “behaviours” being sought. For
example, what would the composition ⊗N mean?
Physically, the sensor network is not changed, but ⊗N `
f ire_seen is true when fire is seen in all locations.
Extending nodes and the sensor network.
Now, let us consider adding m sensor nodes to the

sensor network for nodes Nn+1 to Nn+m. The above
compositions then extend to the n +m nodes easily. Let
M = {Ni | i ∈ {m + 1, . . . , n +m}}. Then, determining if

((⊗N) ⊗ (⊕M)) ` f ire_seen

is true asks if fire is seen in all of the n nodes and in any
of the new m nodes.

We can add a fire inference engine to each node Fi ,
denoted by (∅, ∅,Θi), where Θi has only one rule that
aggregates the context to infer the situation that a fire
occurs:

Θi = {({f ire_seen, hot} ⇒ f ire)}

Such a component Fi might correspond to a physical
component (later) attached to each of the sensors.

Then, let NFi = Ni + Fi represent an extended node,
NFi ` f ire is true when for node i, f ire is inferred. A
composition such as ⊕NF ` f ire denotes if this is true
for any node NFi in the set NF.

Now, we want to add smoke sensor nodes with an
inference component, denoted by N ′i , where

N ′i = ({smoke_detector},Π′i ,Θ
′
i )})
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where

{(′reading(smoke_detector) = yes′ ⇒ smoke_present),

(′reading(smoke_detector) = no′ ⇒ smoke_absent)} ⊆ Π′i

and
Θ′i = {({smoke_present} ⇒ f ire)}

And a network of smoke sensor nodes comprising a set
of k such nodes, denoted by S, can be distributed in the
same areas as the earlier n +m nodes.

A query on the composition such as (⊕S) ⊗ (⊕NF)) `
f ire is true if both the smoke sensor network and the
previous sensor network confirms there is a fire. But the
composition does not take into account the locations of
nodes explicitly.

Composing a NFi node with a smoke detector node
N ′j can be represented, such as Nij = NFi �N ′j which
denotes a node Nij = (Σij ,Πij ,Θij ), where:

Σij = {camera, temp_sensor, smoke_detector}

and

{(′reading(smoke_detector) = yes′ ⇒ smoke_present),

(′reading(smoke_detector) = no′ ⇒ smoke_absent),

(′reading(camera) = f lame′ ⇒ f ire_seen),

(′reading(temp_sensor) ≥ 70′ ⇒ hot)} ⊆ Πij

and

Θij = {({f ire_seen, hot, smoke_present} ⇒ f ire)}

Note that Nij might comprise two physically separated
nodes NFi and N ′j but abstractly, it can be represented
as (conceptually) one node.
Context Attributes for Context-Aware Systems. If

we associate a set of context attributes (e.g., location,
power available, etc) to each node, denoted using the
notation < node > . < property >, and form predicates
over these properties, we an define sets of nodes.

For example, the following is the set P of extended
nodes within distance r of here with high power levels:

P = {NFi | NFi .power = high

∧ dist(NFi .location, here) ≤ r
∧ i ∈ {1, . . . , n +m}}

We can then define compositions on these notes such
as ⊕P. We can also define a set of high powered smoke
sensor nodes in the same area:

P′ = {N ′i | N
′
i .power = high

∧ dist(N ′i .location, here) ≤ r
∧ i ∈ {1, . . . , k}}

A query on the composition such as (⊕P′) ⊗ (⊕P)) `
f ire is true if both P and P ′ confirms there is a fire in the
same area (but only as defined by the distance r from
here). Finer grained areas can, of course, be defined such
as a band given by r ′ ≤ dist(< node > .location, here) ≤
r, for some distance r ′ ≤ r.

Summary. What we have shown here are expressions
to represent extensions of a sensor network in different
ways as well as to represent abstract sensor nodes
(which might be physically composed from two or
more nodes). They serve as a notation to formally
and precisely represent different sensor networks (or
different parts of a sensor network) but yet can provide
a basis for operational meaning of queries.

Tiling Cooperative Digital Picture Frames

We consider modelling a collection of digital picture
frames on a wall; we assume that each digital picture
frame has a unique identifier and can sense if another
digital picture frame is near it, in four directions: above
it, to the left of it, to the right of it and below it.
Then, according to what each picture frame thinks
of its relative position, each picture frame then show
a particular picture. We assume that it is possible
to change the position of the frames - that they are
fastened to the wall by the owner and they can be
repositioned.

Each digital picture frame Fi (assuming 1 ≤ i ≤ 9) is
modelled as a context-aware action system with a frame
sensor (for sensing another frame in four directions
which returns a subset of {above, below, lef t, right}
depending on what is sensed) of the form Fi = (Ri ,Mi),
where Ri = (Σi ,Πi ,Θi) with

Σi = {f rame_sensori}

and

{(′above ∈ reading(f rame_sensori )
′ ⇒ f rame_abovei ),

(′below ∈ reading(f rame_sensori )
′ ⇒ f rame_belowi ),

(′ lef t ∈ reading(f rame_sensori )
′ ⇒ f rame_lef ti ),

(′right ∈ reading(f rame_sensori )
′ ⇒ f rame_righti ),

(′above < reading(f rame_sensori )
′ ⇒ ¬f rame_abovei ),

(′below < reading(f rame_sensori )
′ ⇒ ¬f rame_belowi ),

(′ lef t < reading(f rame_sensori )
′ ⇒ ¬f rame_lef ti ),

(′right < reading(f rame_sensori )
′ ⇒ ¬f rame_righti )} ∈ Πi
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and

Θi = { ({f rame_lef ti , f rame_righti } ⇒ hor_lineari ),

({¬f rame_belowi } ⇒ bottom_endi ),

({¬f rame_abovei } ⇒ top_endi ),

({¬f rame_righti } ⇒ right_endi ),

({¬f rame_lef ti } ⇒ lef t_endi ),

({f rame_abovei , f rame_belowi } ⇒ ver_lineari ) }

and Mi is of the form:

{({hor_lineari } ⇒ show_hlinei ), ({ver_lineari } ⇒ show_vlinei ),

({bottom_endi } ⇒ show_bottom_capi ), ({top_endi } ⇒ show_top_capi ),

({right_endi } ⇒ show_right_capi ), ({lef t_endi } ⇒ show_lef t_capi )}

Note that a frame might show multiple caps at the same
time depending on what frames it (not) detects, e.g., a
frame that is right ended and left ended at the same
time might show both a right cap and a left cap at the
same time. Each frame works independently and what
emerges is the overall pattern. The frames do not need
to communicate with each other, but merely to sense
each other’s proximity.

Figure 6 gives the idea of how the rules would result
in the different patterns being displayed.

(a) (b)

(c) (d)

Figure 6. Patterns from rules. (a) shows each of the six display
objects.
(b) shows a 3x3 configuration of nine frames and the pattern
displayed according to the above rules.
(c) shows the pattern for an L-shaped configuration of four frames
according to the rules above.
(d) shows the pattern for a horizontal configuration of four frames.

Next we add a particular frame that can gather
information from all other frames (assuming four
frames) and so detect the overall arrangement of all
the frames (including itself), including horizontally

linear, and vertically linear. The frame is denoted by
F′ = (R′ ,M ′), where R′ = (∅, ∅,Θ′), where Θ′ contains 12
rules as follows

({hor_lineari , right_endj , lef t_endk , hor_linearl} ⇒
conf ig_horizontal) ∈ Θ′

for i, j, k, l ∈ {1, 2, 3, 4}, i, j, k, l all different

since any of the four frames can be in the situation
hor_linear, right_end or lef t_end at a time, and at any
time, when the frames are lined up horizontal, two of
them will be hor_linear and one right_end and another
lef t_end, and for vertical configuration, another 12
rules as follows

({ver_lineari , bottom_endj , top_endk , ver_linearl} ⇒
conf ig_vertical) ∈ Θ′

for i, j, k, l ∈ {1, 2, 3, 4}, i, j, k, l all different

And M ′ then voices out which configuration the system
detects as follows:

{({conf ig_vertical} ⇒ say_vertical),

({conf ig_horizontal} ⇒ say_horizontal)}

The combined valid context-aware action system
comprising components from F1, F2, F3, F4 and F′ is of
the form

(R1 + R2 + R3 + R4 + R′ ,M1 ∪M2 ∪M3 ∪M4 ∪M ′)

Each Mi does its action as before but M ′ also utilizes
“inputs” from the Ris and R′ to perform actions. Here,
the idea is that F′ can be added to the Fis without the
Fis needing to change.

For aesthetic reasons, one might want to add new
digital frames to the system, that will alter (and
subtract from) the behaviour of an existing composite
system. For example, suppose we add new “inhibitor”
frames that will prevent certain shapes from ever being
displayed. Consider a frame Fiinh = ((∅, ∅, ∅),M i

inh−hline)
with no context-aware system but has an action system
M i
inh−hline which is an inhibitor for frame Fi , preventing

the frame from ever showing a horizontal line, of the
form:

{({false} ⇒ show_hlinei)}

So, the system (Ri ,Mi |M i
inh−hline) has a rule of the form

{({hor_lineari , false} ⇒ show_hlinei)}

which will never be satisfied, and so, the show_hlinei
action will never be performed regardless of the what
sensor readings are received.
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Incidentally, new tailored operators on frames can be
defined based on the Sigma operators. For example, we
can define an operator � on frames with the semantics:

F1 � F2 = (R1 ⊕ R2,M1 |M2)

where F1 = (R1,M1) and F2 = (R2,M2).
Then, we have:

Fi � Fiinh = (Ri ⊕ (∅, ∅, ∅),Mi |M i
inh−hline)

forming the (virtual) frame (or pair of frames) which
has restricted display compared to Fi alone.

Smarter Cars and Urban Awareness
There has been interesting developments in using
sensors to monitor city and urban environments.
The MIT SENSEable Real Time Rome project11 used
cellphones and GPS devices to discover movements
patterns of people and transportation systems in Rome,
enabling usage of streets and neighbourhoods to be
tracked and visualized. The more recent SENSEable
CURRENTcity12 project is working on visualizing the
real-time dynamic behaviours of cities including traffic
jams and gatherings. The Cityware initiative13 has a
project to monitor the paths of tourists using GPS
tracking.

There is also other work towards monitoring, in
real-time, traffic behaviour to provide, in advance,
information about traffic jams on roads. The notion
of crowd sensing and understanding events in the
city provides insight into life in the city for its
inhabitants and tourists. There is also work towards
supporting place-based awareness leading towards
what we call “legible places”, places that can be “read”
and “queried” like a book.

Modern cars will be equipped increasingly with
sensors from rain sensors, pedestrian sensing, adaptive
cruise control to parking sensors. Pedestrians can carry
sensors which cars can pick up to ensure that cars
don’t hit them. Cars can sense and detect approaching
emergency vehicles and react accordingly. Accurate
GPS (up to the metre) can help cars in manouvres
such as lane change and overtaking. Cars could become
aware of nearby parking slots and busy intersections.
There is a need for context-aware action systems to work
together, the car (as a whole if viewed as a context-aware
action system, with its subsystems), and the sensors in
the environment of the car.

We illustrate a scenario of car using sensors in the
urban environment to become better aware of where
vehicular and people crowds are. We imagine a future

11http://senseable.mit.edu/realtimerome/
12http://www.currentcity.org/
13http://www.cityware.org.uk; see Digital Footprints project.

urban environment which has sensors to detect crowds
of people and heavy traffic streets. And the car is able
to detect these sensors, connect to them and acquire
information about crowds (of people or vehicles) within
a preset radius from the current position of the car.
Such information might then be displayed on the car’s
computer on a map indicating nearby crowds. Let this
capability of a context-aware car be represented as an
action system with a rule that gets the crowd at a
position pos and displays that, represented by M =
{({crowd_at(pos)}, display_crowd(pos))}. A crowd sensor
embedded in the urban environment is represented by
context-aware systems of the form

R =({crowd_sensor},
{(′reading(crowd_sensor) = pos′ ⇒ crowd_at(pos))},
∅)

And the (R,M) represents the overall (distributed)
system, comprising a component on the car and a
component in the stationary urban environment. When
the car detects another crowd sensing system in the
infrastructure in the vicinity, say R′ in the same form
as R, it can employ this system, whether to confirm the
crowd position, i.e. we have (R ⊗ R′ ,M), or to provide
new crowd positions (R ⊕ R′ ,M). The car itself might
have sensors, represented by the context-aware system
R′′ which can be combined with infrastructure sensors:
(R ⊕ R′ ⊕ R′′ ,M).
Meta-Programming with Sigma Expressions. It is

possible to embed Sigma expressions into a program-
ming language, in order to form new compositions at
run-time, especially when the set of available context-
aware systems might change over time, e.g., upon dis-
covery of new systems.

With the smart car example earlier, consider a simple
event-driven program that can discover the presence of
context-aware systems in the vicinity, and recomputes
a composition based on discovered context-aware
systems. Let R′′ be the car’s own context-aware system,
and M, the car’s action system. We also introduce an
operator that takes a context-aware action system E,
and executes it (i.e., gets the sensor readings, performs
reasoning, and determines if any action should be
taken, and executes the action), denoted by execute[E].
Note that there are two ways that Sigma expressions
can be executed, in the forward-chaining (data-driven)
style as in execute[E], or using a backward-chaining
query style where, given a situation, determine if the
situation is occurring of the form E ` S?.

loop
initiate discovery of context-aware systems
Rd := discovered context-aware systems
execute[(⊕Rd) ⊕ R′′ ,M)]
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end

Note that the above algorithm works with the just-
discovered context-aware systems in the car’s vicinity;
as the car moves, a different set Rd of such systems will
be discovered.

Modular Robotics
Modular robotics involves building a larger robot from
the cooperation of a set of individual robots. The
Modular Robotics company14 have building blocks
which are classified into sense blocks, think/utility
blocks and action blocks, where sense blocks can
sense light, temperature, and distance from other
objects, think/utility blocks can map sensor inputs to
actions according to specific relationships (e.g., inverse,
maximum, minimum, etc), and action blocks performs
actions based on sensor inputs. For example, with an
Inverse thin/utility block between the Light Sensor and
the Drive sensor blocks, the robot drives slower when
the light gets brighter. Infrared ports are used by robots
to connect to neighbouring robots and sense distance
from to nearby objects.

Inspired by this approach, we represent a simple
system of modular robots, comprising context-aware
systems and action systems. Let sense blocks be denoted
by context-aware systems of the form Rs = (Σ, ∅, ∅). Let
think blocks be denoted by context-aware systems of
the form Rt = (∅,Π,Θ). Let action blocks be denoted by
action systems M.

Given the above blocks, we can form a configuration
of robots, represented by the composition (Rs + Rt ,M).
x sensor blocks, y think blocks and z action blocks can
be represented by compositions of the form

((R1
s + . . . + Rxs ) + (R1

t + . . . + Ryt ),M1 ∪ . . . ∪Mz)

But if each block has up to six interfaces, with z = 1 and
other blocks attached to it, we have x + y ≤ 6.

The work in [44] mentions the notion of roles which
map to sets of behaviours. A robot/block decides what
role to take up by sensing its context. Depending on
its role assumed, the robot then behaves in a certain
predefined way. Such roles can be encoded as a set of
rules in an action system.

Related Work
The Internet of Things has caught the attention of
the world, and involves the development of suitable
hardware, software and paradigms where everyday
objects can be linked to the Internet, can be sensed so
that data about them can be obtained, and where the

14See also http://www.modrobotics.com

things can be composed in useful ways [41, 47], e.g.
sensors used in building smart cities [14, 58]. However,
recent IoT visions aim to go further, including linking
smart things with social networks and embedding their
behaviours within the context of social interactions [40],
and adding a layer of data processing so that intelligent
perception and behaviours can be harnessed from
the Internet of Things [55]. This paper focuses on a
different, yet complementary, vision for the IoT, where
IoT systems or thing-ensembles can be built in an
incremental and compositional manner, e.g.,

• sensing capability is increased compared to the
previous system with the addition of new sensors,
in that what can be sensed previously can still be
sensed, and also new aspects can be sensed due to
the new sensors;

• action capability is increased with the addition
of new actuators so that, what can be done
previously is either enhanced or that more actions
can be taken, or better actions can now be taken,
apart from preservation of some previous actions;
and

• “intelligence” or reasoning capability can be
increased so that what was previously possible to
reason about is still retained but new rules added
allow further inferences to be made (even from
the same sensor system).

Hence, while IoT work is expanding rapidly, our work
focuses on the above aspects for future IoT systems. We
focus on reasoning with the components of a system
rather than with the data from IoT systems as in other
work such as [37, 51].

There are numerous middleware, frameworks and
toolkits for building context-aware systems in ubiqui-
tous computing environments, as surveyed in [6, 19,
27, 33]. However, our formalism aims at a programming
language based approach, combined with an operator-
based formalism; the operators theoretically define how
the constituents of two context-aware systems (or action
systems) should work together, but does not prescribe
how such integration can be carried out; the operators
could be implemented in different ways: Web services
could be used if the systems are distributed or propri-
etary protocols might be employed in the case of digital
appliances in the home. We aim towards a high level
specification language. In [39] is described a framework
where integration of heterogeneous legacy systems and
reusing components are helpful for incrementally con-
structing global smart spaces.

Among work on software engineering paradigms
and models for building context-aware systems, there
has been investigation of suitable abstractions. For
example, the sentient object model [8] encapsulates
the key features of a context-aware system comprising
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sensor capture and context-reasoning components. A
context-aware system in our model can be mapped
to a sentient object in their model, and they do not
provide composition operators as we do here. A survey
of programming languages supporting the notion of
context-oriented programming, as extensions to object-
oriented programming, is given in [3]; such languages
provide mechanisms to represent context as an explicit
concept in the language, and to model context-
aware execution of programs (or program fragments)
within a software system, especially when they cut
across objects. In several of these context-oriented
programming languages [15], context is represented in
the programs as layers, and during program execution,
such layers can be activated or deactivated. Context
propagators [5] has been proposed to capture the idea
of adaptations having dependencies on each other,
and such dependencies are themselves dependent on
context. The notions of isotope and context block
that represents conditions for execution of isotope
elements are proposed in [42]. In [29], a context-
aware application is programmed using an abstraction
called activity - policies are used to specify context-
aware behaviour and resources. The work in [20] uses
the notion of context graphs to define the context-aware
behaviour of applications, including the transitions
among states of the application, and what behaviours
are triggered in different situations. Our approach does
not represent states of the participating systems but
only how they should work together. Model-driven
approaches have been investigated for with CAMEL
(Context-Awareness Modelling Language) [46], where
context-sensing and adaptation to context can be easily
represented. In summary, different abstractions have
been proposed to represent context-aware behaviours,
many embedded within an existing programming
language and often also used in designing the
applications themselves. However, they have not
investigated a compositional operator approach as we
do here.

Due to the popularity of context-awareness in
pervasive/ubiquitous computing, there has arisen
formal systems to model context-aware behaviour.
Notable are those based on process calculi approaches,
such as the Context-Aware Calculus [59] which
has similarities with the ambient calculus (which
models processes with spatial notions), the calculus
of context-aware ambients which builds on the
ambient calculus [45], CONAWA which also builds
on ambient calculus ideas with a richer modelling
of context with several ambient-like trees [28], a
calculi about contextual reactive systems [10, 11],
and a bigraphical model of context-aware systems [9].
There has also been work on using the ambient
calculus as a basis for a programming paradigm [53].
However, our approach is not based on process

calculi and we adopt a software engineering style
approach of combining components structurally, rather
than combining process descriptions of run-time
behaviours as in the context-aware calculi approaches.
Then, in our approach, the behaviour of composed
components is then determined by following the
operational semantics rules and depends on the
actual content within the systems. Also, our approach
is at a different level of abstraction - details of
networking and communication are abstracted away
within the semantics of each operator; we only define
conceptually how the system should cooperate (a
mode of cooperation represented by the meaning of
an operator), and leave the protocol details to the
implementation. Our approach does not replace but
could complement such process calculi models of
context-aware behaviour; we use our formalism for
structural compositions, and then context-aware calculi
could then be used to model what happens at run-time
within a composition. Given descriptions of constituent
systems in a thing-ensemble, investigating translation
of a (a Sigma expression) into an initial context-aware
calculi expression and then reasoning about run-time
behaviour in the calculi could perhaps be an avenue for
future work.

Ideas from component based software engineering
(e.g., [23]), service composition (e.g., [18]) and modular
logic programming (e.g., [12]), share similarities with
our algebraic approach, and in fact, we draw inspiration
from operators for combining logic programs in our
work; however, the entities we compose are not
traditional software components, services, programs
but triples representing context-aware systems and
relations representing action systems.

The actor model [1] formalizes concurrent computa-
tions with the key notion of the actor, and multiagent
systems research (e.g., [54]) have formalized represen-
tations of software entities that are autonomous, proac-
tive and respond to environmentally sensed inputs.
However, the resemblance to our notion of context-
aware systems is superficial, given their emphasis on
proactive behaviours, and their machinery for that pur-
pose, and our operator language is unique in the way
that the constituent contents of systems are composed,
rather than multiagent cooperation ideas. While one
can consider modelling the context-aware action sys-
tems in our examples as agents, and then model their
cooperation protocols, and allow cooperation to emerge
at run-time (and it would be interesting future work
to do so), in our approach, the cooperation among
context-aware systems is essentially scripted out (using
the Sigma operators), and we adopt a global picture
view (from the programmer’s perspective) rather than a
decentralized view, with the operators abstracting away
protocol details.
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The work by Beal15 developed Proto, a functional
language where rules can be programmed that describe
the behaviour of a collection of nodes spread out across
space. Our work is different in that it focuses on a
small set of operators for combining and reasoning with
thing-ensembles (which may or may not be distributed
spatially).

Conclusion and Future Work
We have taken a first step towards providing a language
that can serve two purposes, given a set of context-
aware things that can communicate with each other, i.e.
a thing-ensemble, we can: (i) specify compositions of
context-aware things at design-time, and (ii) script ways
in which context-aware things should work together
at run-time. We built on the design philosophy and
operator language first introduced in [36], but here,
giving a thorough treatment with new operators and
a range of examples to illustrate the versatility of our
approach.

Based on the theoretical basis in this paper, future
work includes providing design and programming tools
based on Sigma, in order to demonstrate the feasibility
of our approach. While demonstrating the applicability
of Sigma in a wide range of applications, we have not
yet dealt with examples of greater complexity and of a
much larger scale. For example, an entire smart house
functionality could be modelled with our approach.

We have not discussed implementation details in
depth in this paper. There are two paradigms for
implementation when Sigma expressions are used for
scripting behaviours of things:

• orchestration: we can use a central coordinator
which will interpret Sigma expressions and when
contents of a particular system/thing needs to
be used, the coordinator can contact the system
(e.g., via Web services if the system provide a Web
service interface); essentially, most of the commu-
nication is between coordinator and systems, and
the coordinator consults the appropriate systems
as determined by the operators in the expression.

As an example, we sketch a strategy to imple-
ment a system comprising situation/context-
aware recognition and actions via an example
given earlier in Figure 5, corresponding to the
expression:

((Rp � Rq) ⊕ Rr ,M |M ′)

To implement a system described by the above
expression, the appropriate sensors as defined in
Rp, Rq and Rr , are needed, namely, the weight

15http://proto.bbn.com/commons/?q=user

sensor on the chair, the RFID sensor to detect Seng
and the gaze sensor worn by Seng. Computation
then proceeds in a (sensor) data-driven fashion
by converting the operational rules given earlier
into logic programming rules [34]. The readings
from the sensors are fed into the rules defining
the situation-recognition behaviours in Rp, Rq
and Rr to determine if any of the action-
triggering situations in M | M ′ are occurring
and if occurring, appropriate actions are taken.
Backward chaining as illustrated in [34] can be
employed, i.e. to determine if any of the situations
triggering an action as defined in M | M ′ is
occurring, we first do backward chain reasoning
on the rules, which then eventually results in
interrogating the sensors. The sensors are then
queried for their readings and if a situation-
triggering action is occurring, the appropriate
actions as defined by M | M ′ are taken, and if
not, no action is taken. When the sensor readings
change beyond a preset threshold, a similar chain
of reasoning is triggered to see if any action is now
to be taken. Future work will consider efficient
implementations of this idea.

• choreography: we can use a (mostly) peer-
to-peer interaction model where one of the
peers/things/systems (or a coordinator, albeit
with a diminished role compared to orchestration)
receives the Sigma expression from the user,
and then multicasts the expression to all the
things/systems in the thing-ensemble; each thing
involved in the composition (mentioned in the
expression) then communicates with other things,
appropriate to the given expressions.

For example, given an expression involving three
things, modelled as context-aware systems R1, R2 and
R3, and a query (R1 ⊕ R2) ⊗ R3 ` S to determine if
a situation S is occurring, then in the orchestration
approach, the coordinator interprets this expression,
and consults the component systems whenever their
sensors or rules needs to be used (according to
the operational semantics given earlier), e.g., what
we represent as finding a rule whose head matches
a situation such as ({S1, . . . , Sk , C1, . . . , Cm} ⇒ S) ∈ Θi
results in a service call to system Ri . In the
choreography approach, each Ri receives (say, from a
coordinator) a copy of the expression and the query
about S, and works out which other system(s) to
cooperate with and how it should interact with the
system(s), e.g., R1, on receiving the expression sees that
it is in ⊕ with R2 and so works with R2 to get a result,
and in a mutual decision determines that it should
forward its result to the next level, which is to R3. R3
works out its own result, and waits for a result from the
composition (or one of ) R1 and R2, and on receiving
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the result, does an ⊗ with the result and forwards the
combined result back to the coordinator. Future work
will investigate both paradigms.

While we have detailed a range of scenarios, practical
deployments of our approach is still needed, as well as,
extensive case studies. Future work will consider case
studies in smart city applications [58].16
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