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Abstract

ActiDote –activity as an antidote– is a system for manual wheelchair users that takes advantage of wireless
sensors to recognize activities of various intensity levels in order to allow self-tracking of the physical activity.
In this paper, we describe both the hardware setup and the software pipeline that enable our system to operate.
Laboratory tests using multi-modal fusion and machine learning reveal promising results on classifying
activity levels and assessing energy expenditure during wheelchair propulsion on ramps of different slopes
and speeds. Our results indicate that it is possible to implement a system that uses the accelerometer of a
smartphone as the only sensor in the wheelchair, i.e., by attaching it to the wheelchair frame. Additionally,
the user might wear a smartwatch equipped with an accelerometer to enrich the system and enhance its
performance.
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1. Introduction
Physical inactivity has been identified as a major
contributor to the exacerbation of physical illnesses [9].
The WHO identified it as the fourth leading risk
factor of global mortality after high blood pressure,
tobacco use and high blood glucose. Therefore, in recent
years, many actions against inactivity have come to
the fore [14]. For instance, diverse pedometer devices
have been developed to help people reach various
physical activity goals, like walking 30 minutes per
day or completing 10’000 steps per day. Moreover,
many smartphone applications attempt to help people
self-track their physical activity and motivate them
to continuously exercise. Unfortunately, an equivalent
application wheelchair users is missing and there

∗Corresponding author. Email: andres.perez-uribe@heig-vd.ch

is a clear absence of motivational devices that can
support the self-tracking of physical activity among
people with motor disabilities. The few studies that
have dealt with this issue concluded that current
commercial physical activity measurement devices are
not appropriate for wheelchair users [8], and to make
things worse, those users very often adopt sedentary
habits as a consequence of their disability. The result is
that obesity rates for adults with disabilities are higher
than for adults without disabilities [4].

In this paper we present ActiDote –activity as an
antidote–: a system based on wearable and wheelchair-
attached sensors that wirelessly communicate with
a smartphone to allow the tracking of the physical
activity of people with motor disabilities using
wheelchairs. This setup allowed us to develop machine
learning models capable of estimating the energy
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expenditure (EE) of a wheelchair user adopting a multi-
level modelling approach. The first level consists in
building a data-driven model recognising the activities
performed by the user (e.g., office work, locomotion,
resting) and then estimate the EE using pre-computed
activity-specific tables [6, 7, 15]. Moreover, given that
the activity in which users spend more energy in
most of the cases is related to locomotion, the second
level focuses on this activity and builds a data-driven
model of EE during locomotion using the measures of a
portable metabolic cart (K5 from Cosmed, Rome, Italy)
as ground-truth. We started by feeding our models with
data from the whole set of available sensors (i.e., those
attached to the wheelchair and those worn by the user),
and then we found the best subset of sensors in terms of
performance, availability, ease of installation and use.
Moreover, we decided to keep the sensor’s outputs in
the international system of units (SI) to make the system
easy to reproduce1. This choice allowed us to create
a smartphone application that identifies the intensity
of the physical activity being realized, integrating the
machine learning algorithms that analyse the sensor
data and provides a daily (and weekly) summary of
activities as a feedback to the user.

This paper is organized as follows. Section 2 presents
a summary of related works by other researchers. We
highlight the differences and the common points with
the proposed system. Section 3 briefly describes the
hardware setup that was used during the experiments.
Section 4 describes the ActiDote system and how
the models of EE were built. The details of both
levels of the system are given in Section 4.1 and
Section 4.2 respectively. They include the details of
the raw data and the features that were computed, as
well as the details of the models used for assessing
EE. Section 5 lists the results we obtained from the
tests in a controlled environment. Section 5.1 and
Section 5.2 show the performance of both levels of the
system which were evaluated using two independent
datasets. Moreover, Section 5.3 briefly presents the web
application that was developed as a means to give a
feedback to the users. Finally Section 6 concludes the
manuscript by summarizing the current state of the
project and giving some insights into further work that
should improve the performance of the system.

2. Related Work
The increasing availability of wearable sensors embed-
ded in smartphones, watches and physical activity
trackers has opened the door to a wide number of
applications, mainly in health and wellness improve-
ment. Many devices and services permit to monitor

1Avoiding the use of the so called “activity counts” delivered by some
commercial platforms.

physical activity, caloric intake, sleep quality, posture,
and other factors involved in personal well-being (e.g.,
the so-called Quantified-Self movement2). Typically,
commercial trackers collect data by means of sensors
like GPS, accelerometers, gyroscopes, barometers, heart
rate meters, thermometers, microphones, etc. As far as
the physical activity monitoring is concerned, recent
research and development has allowed to leverage the
power of accelerometers for building systems capable
of estimating energy expenditure (EE). Staudenmayer
et al. [17] used a single axis accelerometer and data-
driven models based on artificial neural networks to
estimate physical activity metabolic equivalents (MET)
and to classify activity into low-level activities, locomo-
tion, vigorous sports, and household activities. Vyas et
al. [19] show how the BodyMedia FIT (now Jawbone)
armband system was able to track EE by using machine
learning methods that fused the information of several
sensors (e.g., skin temperature, galvanic skin response,
heat flux, acceleration). Ruch et al. [15] compared
two machine learning approaches for estimating EE in
children. They compared the performance of artificial
neural networks vs. building a decision tree to classify
the activities and then using tables to estimate energy
expenditure. Even if both approaches provided good
estimations, they concluded that the use of activity-
type-specific information for subsequent EE prediction
might be a promising approach for future studies. Some
of these approaches to estimate energy expenditure
have achieved mass market penetration (e.g., Jawbone,
Fitbit, Nike+, Polar Loop, Garmin vivofit) and are avail-
able to the general public nowadays. Pande et al. [11]
compared the performance of some of the commercial
devices (i.e., Fitbit and Nike+ Fuel Band) with an online
estimation of EE made from the information collected
through the sensors in a smartphone (i.e., accelerometer
and barometer) and a machine learning model based on
artificial neural networks.

Unfortunately, it has been found that these gen-
eral public devices do not provide accurate estimates
of the energy expenditure of people using manual
wheelchairs, in particular, during wheelchair propul-
sion [3, 8]. Even the SenseWear Armband (SWA), which
has been validated as a means to estimate energy expen-
diture in overweight children, in patients with cancer,
and healthy children, has provided inaccurate measures
among the disabled population [18].

Several researchers have addressed the problem of
assessing energy expenditure of manual wheelchair
users providing alternative solutions to the general
public devices. Hiremath and Ding [7] tested an
accelerometer-based activity monitor in the task of
estimating EE. They fitted linear regression models

2http://quantifiedself.com
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by using information from two sensor locations i.e.,
waist and upper arm, and concluded that the latter
gave more relevant information when predicting energy
expenditure. Gendle et al. [6] were able to discriminate
whether a group of users performed low or moderate
effort. They obtained these encouraging results by using
information from an accelerometer mounted on the
frame of the wheelchairs. Nightingale et al. [10] tested
the ActiGraph GT3X+ and found that this device was
a reliable tool for determining mechanical movements
within the physiological range of human movement.
They built linear regression models using data from
three body locations: right wrist, upper arm and waist.
Moreover, they concluded that the model built from
the acceleration measured at the wrist explains more
of the variance and results in the lowest random error
when predicting physical activity energy expenditure
in manual wheelchair users. Garcia-Masso et al. [5]
used the Actigraph GT3X and extracted thirty-six
features from the acceleration signals. They built linear
regression models to estimate EE and concluded that
the sensor placed on the non-dominant wrist gave the
best results.

Herein, we report a solution that takes advantage
of some features that have proven useful in previous
works, i.e., using an inertial sensor on the wrist (which
can be easily worn), classifying activities into different
categories, using pre-computed tables of physical
activity intensity and modelling EE by using simple
regression models. On top of that, our work improves
the experimental setup by considering the case of self-
pushing the wheelchair through negative and positive
slopes. Last but not least, the ActiDote system does not
use the so-called “activity counts” delivered by some
devices (e.g., Actigraph GT3X) but uses acceleration
and speed data in raw SI units (i.e.,

[
m
s2

]
and

[
rad
s

]
) to

make it easier to export our findings to general public
applications.

3. Hardware Setup
We endowed an ordinary manual wheelchair with a
set of wireless sensors allowing to capture relevant
information to assess the energy expenditure of a
person. We based the selection of sensors on two
hypotheses:

• The type of activity can be estimated using
information captured with inertial sensors placed
on the wheelchair and on the user body

• It is impossible to accurately infer activity
intensity from inertial motion sensors only

The first hypothesis comes from previous experiences
done by other researchers. The second hypothesis comes
from some observations e.g., displacing a wheelchair on

(a) Wireless sensor board (b) Load cell coupled to the wheel

(c) Wheelchair, smartwatch and the modified wheel

Figure 1. Hardware setup

a regular surface will require much less energy than on
a sandy surface, and it can be more physically intensive
to stay static on an uphill than to move on a downslope.
In both cases inertial sensors capture very similar data.

We have thus equipped an ordinary wheelchair with
a set of Bluetooth Low Energy (BLE) sensors in order to
build a complete physical activity monitoring system.
We designed and build two sensing boards containing a
gyrometer, a accelerometer and some additional analog
inputs. One of these boards was fixed on the wheelchair
frame to measure the accelerations of the wheelchair
(and hence its tilt). The other board was fixed on the
wheel to measure the speed of the wheel and hence the
linear speed of the wheelchair (see Figure 1a).

Moreover, we modified one of the wheels in order to
assess the forces applied to it. We replaced the hand
rim separators by three load cells which measure the
tangential force applied to the wheel (by measuring
the mechanical deformation between the hand rim and
the wheel). Figure 1b depicts how each load cell has
been coupled to the wheel. The strain gauges on each
load cell are connected to form a Wheatstone bridge
topology. The two output signals from the bridges
are then amplified, compared and filtered. Finally, the
resulting signal is read by the analog inputs in the
sensing board. Figure 1c shows the complete hardware
setup.

Both sensing boards are equipped with a Blue-
tooth Low Energy (BLE) module. The module is the
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BLE113 developed by Bluegiga. It integrates a cali-
brated antenna at 2.4 GHz and a low consumption
microcontroller. The main advantage of this all-in-one
module is the reduction of the development time on
the hardware design and the full implementation of the
Bluetooth stack usable with a simple script language
named BGScript.

Finally, a commercial smartwatch (i.e., the Moto 360)
is fixed on the user’s wrist. It is also equipped with a
gyrometer and an accelerometer and is used to detect
arm motions in order to improve the model with
the detection of other gestures (e.g., auto-propulsing
the wheelchair, playing ping-pong or lifting weights).
Moreover, this smartwatch is also equipped with a
photoplethysmogram sensor used to monitor the user’s
heart rate (HR). HR measurements should help to
enhance the model by directly using physiological data
for estimating specific users caloric expenditure needs
and capacity.

All the data from custom sensors and the commercial
smartwatch are transferred through BLE to an Android
handheld device carried by the wheelchair user in order
to further perform data analysis.

4. Experimental Setup
The amount of energy spent by a person during a
given activity can be assessed using a mechanistic
approach if the right physiological variables are
measured. However, these measurements are not easy
to perform due to different practical constraints (e.g.,
sensors are expensive and not portable). Data-driven
approaches offer an alternative to the mechanistic
analyses which have been traditionally used for
modelling complex metabolic phenomena. Data-driven
models try to discover the relationships between the
variables involved in the analysis from the data, while
in mechanistic approaches these relationships are based
on prior theoretical knowledge about the phenomenon.
Indeed, in a data-driven approach, the variables used
do not necessarily have a physiological meaning, and in
most of the cases they are mere surrogates to a quantity
that is difficult to measure. One of the main strengths
of a data-driven approach is its robustness. The fact of
using the acquired data to build the model provides
a better tolerance to sensor imprecision given its non-
dependence on sensor calibration or precise sensor
positioning and orientation. While mechanistic analysis
relies on the understanding of a physical phenomena
that requires well defined inputs for obtaining an
accurate solution, data-driven approaches accept to
do not understand the phenomena, making it less
dependent on the accuracy of the inputs. Our approach
is thus to acquire as much pertinent sensor data as
possible for further identification of the required inputs
to build the model.

Figure 2. Block diagram of the ActiDote setup

The ActiDote system implements two levels of data-
driven modelling. The first level is a classification
model that must recognize which type of activity is
being done by the wheelchair user (green block in
Figure 2). Hence, it is possible to use pre-defined tables
of physical activity [1] to assess the actual energy
expenditure of the user in near real-time. The second
level is a regression model that is triggered only when
locomotion takes place (see pink block in Figure 2), and
must estimate the energy expenditure of the user from
the information provided by some sensors installed on
the wheelchair and/or worn by the person.

The outputs of both layers (pre-computed tables and
models) are transformed into metabolic equivalents
(MET) to give a feedback of physical activity intensity
to the user.

The ActiDote system gathers data from the inertial
sensors mounted on the wheelchair and worn by the
user, and from the force sensors mounted on one of
the wheels of the wheelchair. For model calibration
purposes, it also monitors the gas exchanges of the
user by using the K5 portable metabolic cart3. Table 1
shows a list of the most relevant variables that were

3Cosmed, Rome, Italy
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Table 1. List of the most important available variables. The strain
gauges were mounted on the wheel. The Chair sensor was mounted
on the frame of the wheelchair

Variable name N. of axes Units Source

Wrist acceleration 3 m/s2 Watch
Wrist angular speed 3 rad/s Watch
Wheel acceleration 3 m/s2 Wheel sensor
Wheel angular speed 3 rad/s Wheel sensor
Wheel force 3 Nw Strain gauges
Chair acceleration 3 m/s2 Chair sensor
Chair angular speed 3 rad/s Chair sensor
Heart rate 1 bpm K5
VO2 1 ml/min K5
VCO2 1 ml/min K5
VE 1 - K5

collected during the experiments. After some initial
tests, we determined that the heart rate measures given
by the smartwatch were too noisy and divergent to be
used. Therefore, we decided to only keep the heart rate
measures given by the K5.

4.1. Activity Recognition
In order to recognize different activities, we started
by determining the activities that should be detected
and learnt. We included activities such as: resting,
moving (e.g., at different speeds, in different ground
surfaces, given different slopes, self-pushed, pushed by
a caretaker), desk-work-like (e.g., desk work, working
on a computer, eating, being on the phone) or even
replacements (e.g., in the chair, from the wheelchair
to the toilet). These activities were grouped in several
classes of intensity ranging from sleeping (or None) to
vigorous. For the machine learning to take place, the
first step consisted in collecting data while performing
the activities we mentioned above. This operation was
carried out by an Android handheld device. The data
captures followed a protocol that encompassed five
activities: resting, desk work, self-pushing at medium
speed on a standard flat indoor floor, self-pushing on an
ascending slope, and external pushing by a caretaker.
Each activity defined in the list was associated to
an intensity level: none, light, moderate and vigorous.
The protocol required no predefined order for doing
the activities, but defined that each activity had to
be performed for five minutes straight. This was a
precaution to make sure that the model had enough
examples of each activity and was therefore able to
learn all of them correctly. This protocol was obviously
only designed for laboratory purposes and was used
to train a model to recognize such activities. The long
term goal was to be able to classify captures free from
any protocol, such as captures that any wheelchair
user would do in a normal day. To ensure the activity

recognition model performed well, we chose to train
it on a specific data capture, and then to test it
on another data capture and the other way around.
This way, we could be sure that our predictive model
generalized well on the activities themselves and not on
setup dependent variables. Furthermore, we grouped
the obtained data following an early fusion pattern
and downsampled the Moto 360 accelerometer data
by decimation from 50 Hz to 15.635 Hz. Therefore, at
the end of the data collection step, we had two fully
labelled datasets of roughly 25 minutes with 5 minutes
by activity and a 15.635 Hz sampling rate.

Feature extraction. We rolled two windows of respec-
tively 5000 and 1000 ms over the data gathered from
the wheelchair sensors (not the K5) and we computed
the median, standard deviation and energy of the signal
of the windows leading to each sample (included). We
were therefore left with two datasets of respectively
22471 samples (24 minutes) and 23439 samples (25
minutes).

Additionally, we prepared alternative datasets by
hand crafting and hand-picking some of the features
that we know are good discriminants of the activity
classes we have. These features were namely: the
median chair acceleration in the x-axis over the last
5000 ms, the magnitude of the standard deviation of
the chair three-axis accelerometer values over the last
1000 ms, the median wrist acceleration in the x-axis
over the last 5000 ms, the magnitude of the standard
deviation of the wrist three-axis accelerometer values
over the last 5000 ms.

Modelling tool. As a lot of the extracted features are
redundant and correlated, the best choice for an off-
the-shelf model was random forest (RF). This is a model
introduced by Breiman in 2001 [2] that bags (short for
bootstrap aggregates) classification and regression trees
(CART) and randomly samples a subset of the features
at each split. In doing so, the model averages many
noisy but approximately unbiased models, and hence
reduces the variance. For classification, a committee of
trees casts a vote for the predicted class. As trees are
invariant under linear modification of input, this also
speeds up the activity recognition chain since no further
preprocessing is required. The splitting criteria was the
entropy and the number of estimators in the RF model
was 1000.

4.2. Energy Expenditure during Locomotion

In order to build data driven models of energy expen-
diture, we collected data following the experimental
protocol shown in Table 2.
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Table 2. Experimental protocol used for capturing data on the
treadmill. Each checked cell represents a test composed of five
minutes of recovery time plus five minutes of activity. Unchecked
cells represent tests that were dangerous or too difficult
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Figure 3. Example of one of the tests in the protocol

We used a large treadmill4 to set the speed and incli-
nation of the wheelchair, and a K5 portable metabolic
cart5 to quantify the actual energy expenditure of the
user. Calibration procedures were performed before
each session according to the manufacturer’s instruc-
tions. Each checked cell in Table 2 represents a test
of 10 minutes: 5 minutes of rest time and 5 minutes
of activity. Unchecked cells represent tests that were
dangerous or too difficult. The treadmill did not move
during the first five minutes. During this time the user
rests in the wheelchair and should remain relaxed in
order to recover from the previous effort. Once the five
minutes of recovering have passed, the treadmill starts
moving at the desired speed (blue line in Figure 3) and
hence the user starts to consume oxygen (green line).
As it can be seen in Figure 3, the variables measured
by the metabolic cart needs some time to reach its
final and stable value. Once the stable value is reached,
we can speculate that the exercise is purely aerobic,
and that the respiratory exchange ratio (RER) is stable.
Therefore, we only consider as valid data the last three
minutes of each part of the test.

4Saturn HP Cosmos, Traunstein, Germany
5Cosmed, Rome, Italy

Table 3. Description of the three subjects who participated in
the treadmill experiments. Age is expressed in years, weight in
kilograms and height in centimetres

Age Weight Height Gender N. tests

Subject 1 36 73 175 M 2
Subject 2 24 87 184 M 1
Subject 3 26 53 158 F 1

Table 3 shows a characterization of the three subjects
who participate in the experiments.

Feature extraction. Table 1 shows a list of some of
the available variables. The variables provided by the
sensors installed on the wheelchair were sampled at a
fixed frequency of 15.635 Hz (i.e., sampling period of
0.064 s). On the other hand, the sampling frequency of
the variables measured by the metabolic cart depends
on the breathing frequency of the subject. Thus, during
a pre-processing step we transformed the data gathered
by the metabolic cart and put the whole set of variables
to the same frequency.

Moreover, we extracted time windows of 30 seconds
of length from the data within the last 3 minutes of
each part of the test (i.e., recovery and activity) and we
computed the average and the standard deviation of the
data in these windows.

The variable we want to predict is the energy
expenditure (EE) of the person on the wheelchair. To
determine the EE during exercise we used the measure
of oxygen metabolised by the person (i.e., VO2) given
by the portable metabolic cart. We transformed the VO2
into kilo-calories per minute [kcal/min] as it is shown in
equation 1.

1MET B
1kcal
kg.h

B
3.5mlO2

kg.min

EE

[
kcal
h

]
= VO2

[
ml
min

]
/3.5

EE

[
kcal
min

]
= VO2

[
ml
min

]
/210 (1)

MET s =
60 · EE[ kcalmin ]

body_mass[kg]
(2)

We used the value of EE in kilo-calories per minute
as target of the models we want to build. We preferred
to measure the EE in kilo-calories per minute since
these units are better suited for the usage of daily life6.
However, it is possible to express EE (power) and energy
in the international system of units (Watts [W] and

6People are already accustomed to measure energy in calories when
assessing metabolic rate and metabolic intake.
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Joules [J]) if the ActiDote system is used as a means
to assess energy expenditure in studies of physical
disability. Equation 3 shows how to transform the value
of VO2 into power in Watts.

1cal B 4.18J

1
kcal
s

=
4.18[J] · 1000

1[s]
= 4180

[ J
s

]
= 4180[W ]

EE

[
kcal
s

]
= VO2

[
ml
min

]
/12600

P ower[W ] ≈ VO2
[
ml
min

]
/3 (3)

Moreover, equation 2 shows how to compute
metabolic equivalents (MET) from the results given by
the model.

Modelling tool. Figure 4 shows the correlation between
the EE and other available variables (i.e., features
from sensor data). Only correlations higher than 0.52
(correlation between EE and time) are shown.

As it can be seen in Figure 4, there are a lot of
variables which are highly correlated with the EE of
the subject. These high correlations indicate that the
relationship between EE and the available variables are
mostly linear, or at least, that they can be explained by
a linear model. Following this intuition, we decided to
fit some linear regression models to predict the EE of
the person as a function of some subsets of available
variables.

5. Results
This section summarizes the results of the two
modelling layers of the ActiDote system.

5.1. Activity Recognition
Given that we are mainly interested in having a global
feedback of the activities done during the day, we
filtered the output of the classifier using a modal filter
of 1 minute to reject errors due to fast variations in the
classification of activities.

To assess the performance of the models we
performed a leave-one-test-out validation scheme in
which we used one dataset for building the model
and the other for validating it. We repeated this cross-
validation 10 times to ensure that the results are not just
found by chance. Finally, the classification performance
was measured with the F1-Score (weighted averaged
over all the tests and all the classes).

We employed the scikit-learn [13] package of Python
to train and validate the random forest classification
models.

Table 4. F1-scores on training and validation datasets for both
training orders

Training Set Prediction Set Train Validation

Dataset 1 Dataset 2 0.99 ± 0.00 0.77 ± 0.03
Dataset 2 Dataset 1 0.99 ± 0.00 0.99 ± 0.00

Still Work
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Figure 5. Example of a feature leading to a wrong classification
of activities Still and Work. The first dataset on the left side, the
second one to the right

Using all features. Table 4 shows the performance of
the classification of activities when all the features are
used as inputs to the models. Each row in the table
represents a different order for training and validation,
each column contains results on the training set (by out-
of-bag score) and on the validation set.

As we see in Table 4, both ways of training and
validation are not equivalent. Indeed, the score on
the validation set when trained on the first dataset
drops dramatically compared to the same score when
trained on the second one. This indicates a disparity
between the two captures which has important effects
on the final performance given that the datasets are
small. Some features, like the energy of the chair
accelerometer signal in the x-axis over the last 5000 ms
which is shown in Figure 5, can be discriminant on one
of the datasets but not in the other one.

Such problems should disappear if the models are
built using more data, capturing a more general
view of the process being modelled. Another way of
overcoming that issue would be to manually select
features that we know from expert knowledge are
relevant for characterizing the activities we defined.

Manually selected features. In this section we show the
results we obtained when using the features described
in Section 4.1. The performance of the models built
from those features are presented in Table 5. Moreover,
Figure 6a depicts the confusion matrices of ground
truth against predictions with the first dataset used
for training and the second dataset used for validating.
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Figure 4. Highest correlation values between each available variable and the EE

Table 5. F1-scores on training and validation datasets with
manually selected features

Training Set Validation Set Train Validation

Dataset 1 Dataset 2 0.99 ± 0.00 0.94 ± 0.02
Dataset 2 Dataset 1 0.99 ± 0.00 0.98 ± 0.00

Figure 6b, on the other hand, shows the same matrices
but with reverse training-validation order.

5.2. Energy Expenditure during Locomotion
In order to chose the best combination of inputs
and the best model, we perform a leave-one-test-
out validation scheme. We fit four models, each time
keeping apart the data of one of the test to assess
the validation performance. In each case we computed
the coefficient of determination (R-squared) between
the predicted and the target values. We employed
the statsmodels [16] package of Python to build and
validate the linear regression models. Table 6 shows the
results we obtained.

As it can be seen in Table 6, the best results
are obtained when using features only from the
wheelchair and the wrist (R2 = 0.859). The worse
results were obtained when using variables from the
wheel only, especially in the case of S3. It seems
that the distribution of the features computed from
the wheel data are very different when subject S3
pushed the wheelchair. Features computed from wheel
data even decrease the performance in they are used
with features computed from chair data (R2 = 0.809
to R2 = 0.754 and R2 = 0.809 to R2 = 0.745). Besides,
placing sensors on the wheel is not practical if one
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Figure 6. Confusion matrices of the models built with the
manually selected features
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Table 6. Performance (R2) of the models built with different
combinations of inputs

Description S1 R1 S1 R2 S2 S3 Mean

all features (af) 0.889 0.913 0.842 0.774 0.855
af - no load cells 0.875 0.891 0.764 0.829 0.840
chair features 0.887 0.866 0.674 0.809 0.809
wheel features (wf) 0.707 0.723 0.681 0.051 0.540
wf - no load cells 0.446 0.608 0.579 0.016 0.412
wrist features 0.857 0.889 0.822 0.791 0.840
chair and wheel (cw) 0.863 0.881 0.767 0.505 0.754
cw - no load cells 0.818 0.795 0.650 0.716 0.745
wheel and wrists (ww) 0.884 0.883 0.852 0.751 0.843
ww - no load cells 0.874 0.871 0.855 0.808 0.852
chair and wrist 0.899 0.925 0.773 0.838 0.859

thinks about building an end-user system. On the
other hand, features computed from wrist data seem
to increase the performance in every case i.e., chair
and wrist is better than chair only (R2 = 0.859 vs. R2 =
0.809), wheel and wrist is better than wheel only (R2 =
0.843 vs. R2 = 0.540 and R2 = 0.852 vs. R2 = 0.412).
Indeed, models built from only wrist data perform
quite well (R2 = 0.840). As far as the chair features are
concerned, they are not the best nor the worse in the
ranking. Chair features have a good performance (R2 =
0.809) compared to wheel features, with the additional
advantage of being easy to obtain given that installing
sensors on the wheelchair frame is easier than installing
sensors on the wheel.

Another interesting conclusion to draw from this
analysis is that whether the model uses or not the force
sensors (load cells), it does not seem to greatly influence
the performance of the resulting model. In one of the
cases i.e., wheel and wrist, it is even better not to use
the features coming from the load cells. The hypothesis
that the force would be a good predictor of the energy
when the wheelchair goes up through a slope does
not hold for the experiments we performed. However,
more experiments need to be done in order to reject
this hypothesis especially in the case of static efforts or
diverse ground surfaces.

It is worth to notice that subject S1 participated twice
in the tests and hence two of the datasets were collected
by the same person. Therefore, during repetitions S1
R1 and S1 R2 of the cross-validation tests, one of the
datasets in the training data was generated by the same
user generating the validation data 7. This explains why
the performance of the models when S1 is used to assess
the performance are always a little bit higher.

7The data are not identical, they were collected during two different
sessions, two different days.

Towards a Mobile Application. Using the results shown
in Section 5.2 as guidance, we performed a selection
of the most interesting features to build a real world
implementation. We considered two use cases: (1) the
user has a smartphone that can be attached somewhere
to the wheelchair frame and (2) the user additionally
has a smartwatch connected to her/his smartphone.
Even if it would increase the performance of the system,
we did not consider the case of installing sensors on
the wheel since it would make the installation of the
system more complicated and thus, less users would
have access to the application.

We applied a backward elimination scheme of feature
selection to the two aforementioned scenarios i.e, chair
features, and chair and wrist features. Figure 7 shows
the performance of the resulting models.

In the case of using features from the wheelchair
frame only, we found that it is possible to build an
accurate (R2 = 0.81) linear regression model using the
standard deviation of a single axis of the accelerometer
i.e., the axis of movement (X). Those results are very
encouraging because it means that a light smartphone
application could deliver good approximations of
energy expenditure if the smartphone is attached
to the wheelchair frame. The linear model using a
single feature from the wheelchair frame is shown in
Equation 4, where F1 is the standard deviation of the
X axis of the accelerometer attached to the wheelchair
frame.

EE = 4.263 · F1 + 1.252 (4)

On the other hand, using features from the
wheelchair frame and from the wrist it is possible to
build a slightly better model (R2 = 0.82) which employs
two additional features: the average and the standard
deviation of the acceleration of the wrist (magnitude).
The linear model using a single feature from the
wheelchair frame and two features from the wrist is
shown in Equation 5, where F1 is the standard deviation
of the X axis of the accelerometer attached to the
wheelchair frame, F2 is the average of the magnitude
of the acceleration measured at the wrist and F3 is the
standard deviation of the magnitude of the acceleration
measured at the wrist.

EE = 2.964 · F1 − 0.577 · F2 + 0.564 · F3 + 6.842 (5)

Both solutions need to be further tested in order to
evaluate their robustness and to know how they behave
in different real world situations (e.g., locomotion over
different ground surfaces).

5.3. Feedback Visualization
A graphical summary of the amount of time spent on
activities of different levels of intensity can be exploited
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Figure 7. Results of the models created after undergoing the
feature selection process. The R2 values shown were computed
using cross-validation

in a straightforward way to motivate more regular
physical exercise. We developed a web interface that
shows both the current day summary and a history of
the previous week. The interface in its current state is
depicted in Figure 8.

The application gives estimations of the amount of
calories burnt by using two approaches. On the one
hand it employs the classification made by the first
model (i.e., random forest) for indexing a table of
pre-computed values of MET [1]. On the other hand,
and only if the wheelchair user is pushing her/his
wheelchair (i.e., locomotion), the application employs
the second model (i.e., linear regression) to compute
an estimation of the energy expenditure in kilo-calories
per minute. This estimation is more specific and thus
precise since it considers more variables compared
to a pre-computed table which does not take into
account variables like the acceleration or the speed.
Kilo-calories per minute are then transformed to MET
to have a measure of activity intensity.

Moreover, the statistics shown by the application
are related to the following intensity levels: Sleeping
(or None), Light, Moderate, and Vigorous. These levels
were computed by using the model proposed by Pate
et al. [12] for classifying the MET intensity of physical
activities as follows: light, < 3 METs; moderate, 3-6
METs; vigorous, > 6 METs.

6. Conclusions
The ActiDote system aims at providing a solution to the
problem of assessing energy expenditure in the case of
wheelchair users. By using a data-driven approach it is
able to classify activities belonging to different levels,
and to use this classification to convey a meaningful
value of energy expenditure. For the specific case of
locomotion, ActiDote is able to compute a more precise
estimation of the energy expenditure by indirectly
taking into account more information e.g., the speed
of the wheelchair and the inclination of the terrain., by
means of sensors already present in a mobile device.

Compared to the results presented in other state-of-
the-art works [5–7, 10], the ActiDote system has been
additionally tested considering wheelchair propulsion
on ramps of different slopes. The outcome is a model
that yields meaningful estimations in a larger set
of conditions. However, the results we show in this
article come from tests made at the laboratory, and
therefore more tests are needed before claiming a
correct estimation in a real-world environment. We
need to further test the complete system particularly
in e.g., different ground surfaces, people with a wider
range of ages.

The final setup of ActiDote does not employ the
load cells installed on the wheel of the wheelchair.
This is positive since it makes possible to implement
the system using the accelerometer in a smartphone
as the only sensor in the wheelchair (by attaching the
smartphone to the wheelchair frame). Additionally, the
user should wear a smartwatch to enrich the system and
ameliorate its behaviour. On the other hand, without
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Figure 8. The web interface for the end user feedback

the force sensors it would be impossible to differentiate
between different ground surfaces, and to correctly
assess the EE during static efforts. Further tests need to
be done in order to assess to what extent the load cells
are not necessary to estimate with little error the EE of
the user.

Using two levels of modelling i.e., first performing
activity recognition to make a coarse estimation of
EE and then improving the estimation for the most
significant class using specific models, also have some
limitations. This approach implies that the designer
of the system has to know the relevant activities
beforehand in order to create a classifier that is able to
perform in the specific context of each user. In most of
the cases a set of general activities should work i.e., rest,
desk-work, locomotion; but it is impossible to be sure
that these activities will match the preferences of every
user of the system.

We still need to embed the activity recognition
algorithms into the current version of the smartphone
application and detect whether the user pushes the
wheelchair her/himself or if it is being pushed by a
care-taker. In our current work, we considered self-
pushing and being pushed as two different activities
and managed to discriminate between them.

Last but not least, to evaluate the acceptability of the
final application, we need to run the system on data
gathered from real motor disabled people using our
wheelchair.
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