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Abstract. Advances in the metering infrastructure of the electric grid
allow two-way communication capabilities between the utility center and
a vast array of smart meters installed in the grid’s distribution and trans-
mission components. Nefarious users that manage to compromise inse-
cure smart meters can alter the payload transmitted from these meters,
and abruptly increase or reduce electricity demand in a coordinated man-
ner. This malicious practice, known as false data injection attack, can
destabilize the grid. This paper describes a practical framework for di-
agnosing false data injection attacks in the smart grid. We propose a
behavioral-based monitoring system that can be installed at home-area
networks for detecting the aforementioned anomalies. We demonstrate a
real-world prototype of our system engineered with inexpensive devices
such as Raspberry Pi’s and Z-Wave wireless sensors, and evaluate its
performance with real data.

Key words: Smart grid, anomaly detection, false data injection attacks,
statistics, algorithms, software, monitoring, real-world measurements.

1 Introduction
The modernized electric grid, or smart grid, is a “system of systems” that inte-
grates two-way communication capabilities in order to enable the grid’s efficient,
reliable, secure, and resilient operation [1, 2]. The power grid leverages func-
tionality introduced by Advanced Metering Infrastructure (AMI) nodes that are
installed to provide real-time pricing estimates, accurate information for power
demand, and network diagnostics (such as voltage frequencies) to the utility.
Demand response schemes, the introduction of renewable energy sources (e.g.
solar and wind), and the deployment of micro-grids underline the requirement
for anomaly-free and robust operation of the smart metering infrastructure.
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Fig. 1. System Architecture.

At the same time, these data communication capabilities end the grid’s iso-
lation with “external” communication networks such as the Internet, and instill
an array of new security threats. A plethora of vulnerable industrial control or
smart grid devices can easily be enlisted with simple scanning tools [3, 4]. Cases
where adversaries were capable of inflicting physical damage onto critical smart
grid infrastructure have already been documented; the list includes the Stuxnet
worm and the attacks against Iranian nuclear facilities [5], the compromise of a
steel mill in Germany [6], and the cyber attacks on the Ukrainian power grid [7].
Nefarious users that manage to infect AMI meters in an orchestrated manner
(e.g., via self-propagating malware) can manipulate their energy readings, and
abruptly increase or reduce the energy demand reported to the utility. These
false data injection attacks can compromise demand response schemes and en-
danger the grid’s stability and state estimation process.

Our proposed solution is a a monitoring system for the detection of false
data injection attacks in residential smart meters. The engineered solution is
based on inexpensive hardware that operate in a federated manner in home-area
networks, and apply correlative monitoring techniques to detect the onset of ab-
normal AMI activities. Our system consists of off-the-shelf “Internet-of-Things”
(IoT) devices, such as Raspberry Pi’s and Z-Wave wireless sensors, which col-
lect measurements from a home-area network (e.g., motion, temperature, circuit
power load—see Figure 1). Our main contributions are twofold: 1) we illustrate
the design and implementation of a situational-awareness system in home-area
networks using broadly accessible IoT devices—our original prototype was engi-
neered with devices that cost roughly 400 USD; and 2) we leverage the sensor
measurements obtained from our situational-awareness system to transition to
practice an anomaly detection methodology for diagnosing bad data injection at-
tacks in smart grids. The monitoring algorithm, recently proposed by our team
in [8], utilizes the sensor readings to learn, in a correlative manner, their asso-
ciation with the home’s power consumption. This is achieved by fitting a linear
regression model that is hence employed to forecast the energy usage using the
independent observations (i.e., the wireless sensor readings). Large deviations
between the actual meter values and the predicted values are flagged as anoma-
lies by our sequential hypothesis testing module (see [8] for more details). Our
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prototype is currently being utilized in a real-world setting at a model house
(see [9]) at NextEnergy, Inc.1 Code can be downloaded from [10].

This paper is organized as follows: Section 2.1 presents the measurement
framework that is based on Z-Wave sensors; in Section 2.2 we give a brief
overview of our statistical-based diagnosis system, and in Section 3 we demon-
strate our platform using real-world data collected at the NextEnergy facility.

2 System Description
2.1 Real-time Monitoring and Measurements

The architecture of our framework is illustrated in Figure 1 as it is currently
deployed at NextEnergy, Inc. The model house at NextEnergy [9] is relatively
small (about 400 sq. ft.) with two main rooms, a living room and a bedroom.
It also has a small bathroom and a kitchen, and is equipped with several home
appliances such as a smart TV, stove, microwave, laundry machine, and dryer.

The monitoring setup includes two Raspberry Pi’s, several Z-Wave wireless
sensors, and a USB microphone utilized as a “sound sensor”. In particular, we
used three Fibaro-branded [11] Z-Wave multi-sensors (i.e., motion, temperature,
and luminosity), one Ecolink door sensor[12], one Aeotec energy switch [13] and
an Everspring water/flood sensor [14]. The Z-Wave sensors measure such factors
as the temperature, humidity, and luminosity in the home in each room, and
the USB microphone provides a measure of the ambient noise volume in the
room. Each of these indicators provide information about how many residents
are home and what they might be doing, which helps inform the linear model
about how much power the home should be using.

All Z-Wave sensors are paired with the “Z-Way server” Pi that is equipped
with a RaZberry daughter board mounted on the GPIO pins. This Pi runs the
Z-Way server, a control program used to manage and monitor Z-Wave home
automation networks and associated IoT devices. The Z-Way network can be
managed via a web interface hosted on the Pi to change various settings and
collect data from the sensors. The above-mentioned sensors were included into
the network by using the standard “sensor inclusion” procedure [15].

A second Raspberry Pi node is utilized to poll data from the “Z-Way server”
Pi and to run the anomaly detection algorithm in real-time. Although our system
can be deployed on a single Pi, we elected to use two in order to avoid possible
computational bottlenecks that could arise on a single-node design. The two
nodes communicate over an Ethernet point-to-point network. The “Data Analyst
Pi” retrieves sensor data from the “Z-Way server” every 15 seconds by issuing
one HTTP GET request per sensor data-point using the Z-Way JSON API [16].

Along with the data retrieved from the Z-Wave sensors, we used a separate
off-the-shelf USB microphone as a sound sensor. The microphone is installed
on the “Data Analyst Pi” which runs an audio analyzer tool, Sound eXchange
(SoX) [17]. Our code calls the arecord and sox command-line tools every 15

1 NextEnergy, a Detroit-based organization, provides experimentation facilities and
laboratories for developing and testing advanced energy-related technologies.
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seconds in order to obtain the maximum sound amplitude recorded by the mi-
crophone during the sample period. For further details of the installation and
tools used to implement the sound sensor refer to [10].

Energy Harvesting Sensors. We also examined the option of using energy
harvesting sensors for our home-area measurements. These are inexpensive sen-
sors that get powered by ambient energy sources such as solar, and thus offer the
advantage of being battery-free. In particular, we tested EnOcean’s door/window
magnetic contact sensor (STM 320U) [18], wireless switch (PTM 210U) [19], and
wireless temperature sensor (STM 332U) [20]. All the EnOcean sensors were
paired with “EnOcean Pi” [21], a device that can be mounted on the GPIO pins
of a Raspberry Pi, which operates on 902 MHz and acts as a bridge controller for
the EnOcean sensors. “EnOcean Pi” runs an “FHEM” server (analogous to the
Z-Way server, albeit with less functionality) which is a control program used to
configure and monitor a variety of IoT devices including EnOcean and Z-Wave
sensors. The “EnOcean network” is similar to its Z-Way counterpart in terms
of sensor management and data collection; each sensor is included in the net-
work by pressing the “LRN” button after turning on inclusion mode in the web
interface [22], and data can be polled with an HTTP request.

Despite their battery-free capabilities we decided not to include these sensors
in our NextEnergy deployment. In a residential setting, these sensors (except the
PTM 210U switch which is based on micro electro-dynamic power generation)
cannot always receive sufficient light energy necessary for their seamless opera-
tion. If the sensors experience low incident light intensity (luminescence) of 200
lux or less for any longer than a few days, they produce unreliable measurements.
Thus, we opted for Z-Wave sensors and the USB Microphone only.

2.2 Anomaly Detection Module

The sensor data retrieved from the “Data Analyst Pi”, along with the total
electricity consumption retrieved by our system directly from the home’s smart
AMI meter, are employed for detecting false data injection attacks. We posit the
following linear regression model:

t = w1x1 + . . .+ wMxM + ε,

where t is the target/response variable (the total power consumption in Watts),
xi, i ∈ {1, 2, . . . ,M} are the independent variables (regressors) and ε is a noise
term that is normally distributed with zero mean and variance 1/β. The inde-
pendent variables are the sensor observations that provide ambient information
about the home-area network. The regression coefficients wi, i ∈ {1, . . . ,M} and
the other model parameters are obtained through the training phase, outlined
below. For completeness, we next present an overview of our statistical anomaly
detection module. Further details can be found in our previous work [8].

We denote the sensor observations by the feature vector x = (x1, . . . , xM )>.
To train our system and learn the model parameters, we obtain training data for
a period of size N ; t := (t1, . . . , tN )> represents the target values in the training
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set, and {x1, . . . ,xN} are the corresponding covariate values. We construct the
N × M measurement matrix X by stacking the input variables of each data
point. The imposed model implies that given the value of x, the corresponding
value of t has a Gaussian distribution with mean equal to y(x,w) = w>x and
variance β−1. Thus,

p(t|x,w, β) = N (t|y(x,w), β−1). (1)

Assuming the data is drawn independently from (1), the likelihood is p(t|X,w, β) =∏N
n=1N (tn|y(xn,w), β−1). We follow a Bayesian approach; this allows us to per-

form a training phase and select the “best” model (i.e., one that avoids over-
fitting and has low variance) without the explicit need for cross-validation runs.
A prior of the model parameters w is introduced, and we consider a conjugate
prior that is a zero-mean, isotropic Gaussian governed by a single parameter α,
i.e., p(w|α) = N (0, α−1I), where I is the identity matrix of appropriate dimen-
sion. The posterior distribution takes the form of another Gaussian

p(w|t) = N (w|mN , SN ), (2)

with mN = βSNX>t and S−1N = αI+βX>X. The optimal parameter vector w∗

in y(x,w) is obtained by maximizing the posterior distribution, and equals w∗ =
mN . The model hyper-parameters α and β are learned through the iterative
process we describe in [8]. Implementation details and our code are in [10].

After the completion of the algorithm’s training period, each set of obser-
vations xn acquired every 15 seconds is utilized by the “Data Analyst Pi” to
obtain an estimate/prediction, t̂n := y(xn,w

∗), of the house power consump-
tion for that time point. The “Data Analyst Pi” compares this prediction with
the actual power consumption reported by the smart meter at the same time
slot, and significant differences between the two are flagged as anomalies by the
sequential hypothesis testing methodology we proposed in [8].

Our hypothesis testing module utilizes the predictive distribution of the
model. This takes the form

p(tn|xn, t, α, β) = N (tn|m>Nxn, σ
2
N (xn)), (3)

where the variance of the predictive distribution is given by σ2
N (xn) = β−1 +

x>nSNxn. The first term represents the noise in the data, and the second term
reflects the uncertainty of predictions associated with the parameter vector w∗.

The predictive distribution plays the role of Null Hypothesis or reference
distribution, denoted as Fn, for the differences (referred as errors henceforth)
between the actual and the predicted power consumption. Following [23], for
each new observation (tn,xn) we calculate the error en := tn−m>Nxn, and then
find the p-value corresponding to that error using the reference distribution
Fn. We are interested in employing a hypothesis testing criterion for detecting
sequences of “abnormally” small p-values. We monitor for anomalies by utilizing
an Exponentially Weighted Moving Average (EWMA) control scheme [24, 23],
known as Q-charting in quality control. EWMA allows us to tame the false alert
rate and obtain higher test power (i.e., correctly rejecting the Null hypothesis
when it is indeed false). We refer the reader to [8, 10] for further details.
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Table 1. Predictive power and analysis of variance for the independent variables (re-
gressors/covariates) obtained using our infrastructure during the seven-day measure-
ment study starting on Wednesday, 22 Feb. 2017 00:00 EST.

Regressor Variable Corr. Coeff. with power Var. Explained R2 (%)

Motion sensor 1 (living room) 0.20 4.11
Motion sensor 2 (bedroom) 0.11 1.13
Motion sensor 3 (outside) 0.06 0.35
Luminosity 1 (living room) 0.24 5.95
Luminosity 2 (bedroom) 0.18 3.38
Luminosity 3 (outside) 0.13 1.65
Temperature 1 (living room) 0.06 0.32
Temperature 2 (bedroom) 0.10 0.92
Temperature 3 (outside) 0.05 0.23
Sound sensor (living room) 0.20 3.85

3 Numerical Experiments and Evaluation
This section evaluates our system using real-world measurements collected at
NextEnergy. To test our implementation of the proposed system, a measurement
study was conducted throughout the week of February 22nd–28th, 2017. During
this study, the model house was inhabited from approximately 9am–9pm (12
hours) by 1-2 members of our research team. The intent of the study was to
recreate the realistic living conditions that could influence a home’s power usage.
The participants took care to act as if they were inhabiting the home, going so
far as to cook meals and use the appliances such as the microwave and laundry
machines in order to simulate real-world living conditions.

An analysis of variance (ANOVA) was conducted on the collected data to
determine which input features explain the most amount of variability in the
data. In particular, by performing a regression analysis on each covariate, one
can calculate the coefficient of determination R2, defined as R2 = 1 − SSE

SST
,

where SST is the total sum of squares, and SSE is the error sum of squares
(see [25]). Table 1 describes the results of this analysis, and shows a clear cor-
relation between several key covariates (such as motion and luminosity) with
the house’s power consumption2. The most informative variables appear to be
the motion, luminosity, and sound sensors in the living room. This is likely due
to the fact that the living room was the room which was most often occupied
by the researchers throughout the experiment. We also examined the inclusion
of temporal information in our regression model; the high correlation coefficient
(0.99) between the power consumption at time n and n − 1 suggested that an
auto-regressive model could improve prediction performance.

The prediction and detection performance for February 25th, 2017 illustrate
the effectiveness of our algorithm. We study two models: one where only the
features of Table 1 are used (Figure 2), and one where a temporal feature was
also added (Figure 3). The system uses a one-minute data granularity and is
initially trained for 24 hours before the first forecasting/detection period can

2 Some covariates were not included in this analysis due to their invariant zero values.
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Fig. 2. NextEnergy data: prediction and detection performance. We observe the
predicted values as reported by our system (solid black line) and the actual power
consumption (dotted blue line) for a single day. The lower panel shows differences
between predicted and actual electricity consumption.
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Fig. 3. NextEnergy data: performance of the auto-regressive model.

begin; it is then re-trained at the mark of every hour on the previous day’s data.
To evaluate the detection system in the presence of “bad data” attacks, three
attacks were manually injected at 6am, 12pm, and 6pm (red shaded regions in
Figure 2). All attacks had a duration of 30 minutes and magnitude of 500 Watts.
The colored bars indicate the number of alerts thrown by the system; red regions
indicate between 21 and 30 alerts were raised in a one-hour period, yellow regions
indicate 11–20 alerts were raised, and green regions signify 1–10 alerts.

Contrary to our prediction, the error charts of Figures 2 and 3 show that
the first model demonstrates a better anomaly-detection accuracy; it is able to
track all three injected attacks with few false positives (see Table 2). Many more
false positives and false negatives are observed in Figure 3 (green regions), likely
because the auto-regressive model led to overfitting and therefore adjusts too
well to the attacks and can only detect the beginning and end of each anomaly.

Table 2. True Positives(TP), False Positives (FP) and False Negatives (FN) for auto-
regressive and non-auto-regressive models.

Regressive Model TP FP FN Precision Recall F1-Score

Without auto-regression 79 22 11 0.7822 0.8778 0.8272
With auto-regression 1 11 89 0.0833 0.0111 0.0196
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4 Related Work
Our proposed methodology falls under the category of anomaly-based detection,
and complements signature-based and specification-based detection methods [26,
27, 28]. Signature-based methods are suitable for identifying malware that have
already appeared in a smart grid environment and whose activities have been
documented in malware databases. Such systems examine packets as they arrive
to the utility’s control center and look for known binary patterns (e.g., Snort [29]
is a representative example of such systems). Specification-based detection is
accomplished by measuring deviations from a normal operational profile that is
predefined. Examples include finite state machine monitors, data validation with
range checks, authentication monitor and physical health inquiries for catching
unresponsive nodes, and verification of system state [30, 31].

One shortcoming of relying on prior knowledge recorded in black-lists is
that new malware activities will not be uncovered. Similarly, specification-based
methods can be cumbersome to fine-tune; finding a valid range for the AMI power
demand and supply is not easily determined. Further, subtle attacks might exist
that involve modifying control parameters in a way that appears to be within
a normal range, but still being capable of inflicting system damage. Instead, an
anomaly-based method identifies attacks by checking for significant deviations
from normal traffic patterns; it monitors the signal of interest to find its normal
behavior, and detects outliers when a statistic exceeds a predefined threshold.

Existing anomaly-based defenses against adversaries that inject spurious data
measurements into the power grid follow a “network-view” perspective. Such
countermeasures for detecting false data injection appear in [32, 33, 34, 35]. [32]
proposes an adaptive cumulative sum test combined with a multivariate hypoth-
esis testing problem to prevent an erroneous grid-state estimate. [33] studies a
graph theoretic method for securing an optimal set of meter measurements so
that state estimation is not compromised. [34] couples anomaly-based methods
with a data integrity check to combat stealth attacks, while [35] looks for incon-
sistent grid behavior using clustering techniques. [36] sheds light into situations
of multiple adversaries performing injection attacks, and discusses optimal de-
fense strategies from game theory. Instead, we tackle the problem from a different
vantage point. The “home-area view” we suggest aims to detect arbitrary data
injection attempts at their origin, i.e., compromised residential smart meters.
Our framework complements the above-mentioned work since the alert output
signal generated by our method could serve as an additional input that can be
communicated to the utility (via a secure, alternate channel).

5 Conclusions
We have presented a practical framework for the detection of false data injection
attacks in smart electric networks. The proposed system employs correlative
monitoring to detect the onset of “spoofed-data” incidents in smart meters. The
collected data are analyzed in a Bayesian linear regression model that helps us
learn the normal operating regime of a meter’s power consumption. Significant
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and persistent deviations from this regime are treated as outliers and reported
by our system as anomalies. Our system is deployed with broadly accessible,
inexpensive devices such as Raspberry Pi’s and wireless sensors for home-area
networks. We tested our proposed system in a real-world environment at a model
house in Detroit, Michigan, and have presented results which show that the
system can accurately detect injected attacks.

Future work includes the examination of new prediction models, especially
models that can better capture the non-linear relationship between the response
variable (power consumption) and the independent input features measured
within a home-area network. Special attention should be paid towards the design
of a system that can be trained efficiently on off-the-shelf computer nodes such
as the Raspberry Pi so that the system remains low-cost and accessible.
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