
Data Flow Analysis on Android Platform with
Fragment Lifecycle Modeling and Callbacks
Yongfeng Li1, Jinbin Ouyang1, Kai Ma2, Shanqing Guo2, Bing Mao1

1State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology
Nanjing University Nanjing, China
2School of Computer Science and Technology, Shandong University, China
guoshanqing@sdu.edu.cn

Abstract

Smartphones carry a large quantity of sensitive information to satisfy people’s various requirements, but the
way of using information is important to keep the security of users’ privacy. There are two kinds of misuses
of sensitive information for apps. On the one hand, careless programmers may leak the data by accident. On
the other hand, the attackers develop malware to collect sensitive data intentionally. Many researchers apply
data flow analysis to detect data leakages of an app. However, data flow analysis on Android platform is quite
different from the programs on desktop. Many researchers have solved some problems of data flow analysis
on Android platform, like Activity lifecycle, callback methods, inter-component communication. We find that
Fragment’s lifecycle also has an effect on the data flow analysis of Android apps. Some data will be leaked if we
don’t take Fragment’s lifecycle into consideration when performing data flow analysis in Android apps. So in
this paper, we propose an approach to model Fragment’s lifecycle and its relationship with Activity’s lifecycle,
then introduce a tool called FragDroid based on FlowDroid [7]. We conduct some experiments to evaluate
the effectiveness of our tool and the results show that there are 8% of apps in our data set using Fragment.
In particular, for popular apps, the result is 50.8%. We also evaluate the performance of using FragDroid to
analyze Android apps, the result shows the average overhead is 17%.

1. Introduction
With the progress of technology, smartphones have
pervaded into all aspects of human life, and have
become an indispensable part of daily life. Compared
with the traditional PC devices, smartphones carry
more user privacy data, such as location information,
contact information, fingerprint information, text
message records, which brings endless attacks against
smartphones. The security protection of smartphones
has become a problem which needs to be solved
urgently. According to the recent report [1], in the
current smartphone markets, Android platform market
share has been far more than the iOS platform. This
means protecting the privacy of Android users is very
important.

On Android platform, there is a variety of malware.
In the research of Jiang’s team [2], they classify
the malware based on behavior. In their malware
classification, there are many kinds of malware which

collect users’ privacy information and leak it out.
Sometimes, privacy information is not leaked by
malware intentionally. Developers always use some
third-party libraries to develop an Android app
conveniently, which is hard for developers to know
the details of data flow in the libraries. And when
they pass privacy information to the library procedure,
information may be leaked. The library itself can also
lead to information leakage.

To protect the privacy information, there is a kind
of technology called taint analysis, whose main task
is to record the data flow relationship among some
specific objects. In taint analysis, before propagating the
data flow, some nodes called sources (in data leakage,
these are sensitive APIs which get information like
GPS, location, etc.) should be specified. During the
data flow propagation, taint analysis will check if the
data flow reach nodes called sinks (APIs which send
messages). Through taint analysis, privacy information

1

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Keywords: Data Flow, Fragment, Android, Program Analysis

Copyright © 2017 Yongfeng Li et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/XX.X.X.XX

Received on 27 November 2017, accepted on 29 November 2017, published on 7 December 2017

leakage which violate predefined rules will be found.
There are two approaches to perform taint analysis on
Android platform: dynamic analysis and static analysis.
Some dynamic analysis techniques like TaintDroid [3],
Droidscope [4] have been proposed. These approaches
all are suffering from the code coverage problem, that is,
when running an app, some code may not be executed.
Moreover, as mentioned in [5], malware can use the
runtime information to decide whether it is running on
a monitor or not. Then, it can decide whether to trigger
malicious behaviors or not.

Static analysis is performed with scanning the apps
instead of executing programs, which avoids the
problems mentioned above. However, it demands to
emulate the runtime state of an app approximately.
Previous researchers [6][7][8][9][10][11] have proposed
some approaches to solve the problems in static analysis
on Android platform. Chex [6] is a static analysis system
designed to solve the component hijacking problems
of Android apps. To handle the multiple entry points,
Chex conducts data flow analysis for code reachable
from each entry point, and then combines these results
to find data flow between code splits. FlowDroid [7][8]
models the taint-analysis problem within the IFDS
[12] framework for inter-procedural distributive subset
problems. FlowDroid generates a dummy main method
for each app to model the control flow transfers between
component lifecycle methods. FlowDroid also models
the control flow of callback methods in a dummy main
method. Amandroid [9] and IccTA [10] handle the inter-
component communication when performing data flow
analysis. AmanDroid calculates all objects’ points to
information, while IccTA handles the situation when
Activity is not the target of ICC based on FlowDroid.
EdgeMiner [11] conducts a deep study of callback
methods in Android system. EdgeMiner proposes an
automatic approach to extract callback methods and
their corresponding registration methods in Android
system. FlowDroid can apply EdgeMiner’s result to get
more precise data flow information.

The fragment introduced in Android 3.0(API level
11) is mainly to support a more dynamic and flexible UI
design for the large screen(such as tablet PC). Because
of the much larger screen of tablets’ compared with that
of smartphones, more space can be used to combine and
exchange UI components. On account of the Activity
layout divided into fragments, you can modify its
appearance and keep the changes in return stack which
is managed by Activity itself. Fragments is part of the
behavior or the user interface of Activity. We can use
multiple fragments combination in an Activity to build
multiple pane UI, and reuse a fragment in multiple
Activities. We can put the fragment as a modular part of
the Activity, which has its own lifecycle and can receive
their own input events. Moreover, we can dynamically
add, replace, and remove some fragments. None of

the previous researchers have described Fragment’s
lifecycle has an effect on data flow analysis. When
performing data flow analysis, some data flow will
be missed without taking Fragment’s lifecycle into
consideration, which will lead to false negative when
analyzing data leakage in apps. Moreover, malware can
also adopt Fragment’s lifecycle to evade the detection
method based on data flow and control flow analysis.
Moreover, Fragment’s lifecycle is not independent as it
depends on Activity’s lifecycle. So we also model the
interaction between Activity and Fragment. Malware is
out of the scope of this paper, so we don’t discuss it in
this paper.

To summarize, this paper makes the following
contributions:

• We find that Fragment’s lifecycle has an effect on
data flow analysis on Android apps. And we do
some research to reveal the relationship between
Fragment’s lifecycle and Activity’s lifecycle.

• We model all the Fragments’ and Activities’
lifecycle control flow transfers in a control
flow graph, then we make an extension on
Flowdroid [7]. All of the lifecycle methods are
contained in a dummy main method. With using
the extended tool, we can perform information
leakage detection without false negative caused
by Fragment’s lifecycle.

• We make an in-depth evaluation of the extended
tool. The experiments’ result include the statistics
of the Fragment usage in Android apps and
the runtime performance after modeling the
Fragment’s lifecycle.

2. Background and Motivation
2.1. Background
In Android, an application’s execution is driven by
system events. When an event occurs, Android system
invokes the predefined method which implemented by
developers. Android adopts a component-based mech-
anism to simplify the development of apps. There are
four kinds of application components: Activity, Service,
Content Provider, Broadcast Receiver. Each app is com-
posed of many application components, and the com-
ponents’ execution is controlled by system according to
events. When performing data flow analysis in Android
apps, components’ lifecycle must be taken into con-
sideration. Previous researchers[7][8][9][10] have mod-
eled the lifecycle of four main application components.
But in 3.0, Android introduces Fragment to support
more dynamic and flexible UI designs on large screens,
such as tablets. In Android apps, Fragment is always
included in an Activity which has its own lifecycle, so
does the Fragment. The lifecycle of Fragment and its

2

 Yongfeng Li et al.

EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Activity
starts

Fragment is
added

onCreate()

onStart()

onResume()

Activity is
running

New activity is started

onPause()

activity is no longer
visible

onStop()

onDestory()

Activity is
shut down

Process is
killed

Other
applications

need
memory

User
navigates

back to
activity

Activity
comes to the
foreground

onAttach()

onAttach()

onCreateView()

onActivityCreate()

onStart()

onResume()

Fragment is
running

onPause()

User navigates
backward or
bragment is

removed/replaced

Fragment is
Added to the

Back stack, then
removed/replaced

onStop()

onDestoryView()

onDestroy()

onDetach()

Fragment is
destroyed

Activity
comes to the
foreground

onRestart()

The fragment
returns to the

layout from the
Back stach

Destroyed

Stopped

Paused

Resumed

Started

Created

Figure 1. Fragment Lifecycle

relationship with Activity’s lifecycle are described in
Fig 1.

As is depicted in Fig 1, when a Fragment starts,
onAttach(), onCreate(), onCreateView(), onActivityCre-
ated(), onStart() and onResume() will be invoked by
Android system one by one. When the app is paused, for
example, Fragment’s onPause() method will be invoked
if the user presses the home button. When the memory
is low, Android system will recycle some memory, so the
onStop() method will be invoked. When the user navi-
gates back to the app, Fragment’s onStart() and onRe-
sume() method will be invoked to restore the Fragment.
When the user kills the app, onDestroyView(), onDe-
stroy(), onDetach() will be invoked. Moreover, the Frag-
ment’s lifecycle depends on Activity’s lifecycle. Thus
we can’t use Fragment alone. Activity’s lifecycle dom-
inates Fragment’s lifecycle. So the Activity starts and
pauses before Fragment, while stops and destroys after
Fragment. Thus, Activity’s onCreate(), onStart(), onRe-
sume() will be invoked before Fragment’s onCreate(),
onStart() and onResume(). And Activity’s onPause(),
onStop(), onDestroy() will be invoked after Fragment’s
onPause(), onStop(), onDestroy().

Android provides the tool class named
android.os.AsyncTask, which makes it easy to
create asynchronous tasks, eliminating the need

MyAsyncTask extends AsyncTask<Params, Progress, Result>
{

 onPreExecute()
 //Runs on the UI thread before doInBackground(Params...).

 doInBackground(Params... params)
 //Override this method to perform a computation on a background thread.

 onProgressUpdate(Progress... values)
 //Runs on the UI thread after publishProgress(Progress...) is invoked.

 onPostExecute(Result result)
 //Runs on the UI thread after doInBackground(Params...).

 onCancelled()
 //Applications should preferably override onCancelled(Object).

}

Figure 2. AsyncTask

to write task threads and Handler instances to
accomplish the same task. As is depicted in Fig
2, when the AsyncTask starts, the methods of this
class(onPreExecute(), doInBackground(Params...
params), onProgressUpdate(Progress... values),
onPostExecute(Result result)) will be executed in

3
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Data Flow Analysis on Android Platform with Fragment Lifecycle Modeling and Callbacks

public class LifecycleActivity extends Activity
{

public String NativePhoneNumber = "default";
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
LifecycleFragment fragment = new LifecycleFragment();
getFragmentManager().beginTransaction()

.replace(R.id.container, fragment).commit();
}
protected void onPause() {

super.onPause();
NativePhoneNumber = telephonyManager.getLine1Number();

}

}

public class LifecycleFragment extends Fragment
{

private String NativePhoneNumber = "default";
private LifecycleActivity attachedActivity;
@Override
public void onAttach(Activity activity)
{

super.onAttach(activity);
attachedActivity = (FragmentLifecycle) activity;

}
public void onResume()
{

super.onResume();
NativePhoneNumber = attachedActivity.NativePhoneNumber;

}
public void onPause()
{

super.onPause();
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("134444", null, NativePhoneNumber, null, null);

}
}

Figure 3. Motivation Example

order. This method doInBackground (Params ...
params) must be overrided to perform a computation
on a background thread. The sensitive behavior may be
hidden in this medthod.

2.2. Motivation
In this section, we demonstrate our motivation by
introducing some code snippets. As is depicted in Fig
3, there is an Activity named "LifecycleActivity" and
a Fragment named "LifecycleFragment". "LifecycleAc-
tivity" overrides two lifecycle methods onCreate() and
onPause(), "NativePhoneNumber" is a field in this class.
"LifecycleFragment" overrides three lifecycle methods
onAttach(), onResume() and onPause(). "LifecycleFrag-
ment" also has two fields named "NativePhoneNumber"
and "attachedActivity". The first one stores string value,
while the second one stores the reference of Activity this
Fragment attached to. In "LifecycleActivity", onCreate()
method invokes replace() method to attach a "Lifecy-
cleFragment" to this Activity. onPause() method invokes
getLine1Number() and stores the phone number to field
"NativePhoneNumber". In "LifecycleFragment", onAt-
tach() method stores attached Activity’s reference to
field "attachedActivity". onResume() method passes the
the field "NativePhoneNumber" of "attachedActivity"
to its field "NativePhoneNumber". onPause() method
invokes sendTextMessage() and sends out the value
stored in "NativePhoneNumber".

FlowDroid models the application components’
lifecycle in a dummy main method, but the Fragment’s

lifecycle is not in this dummy main method. So if we
use FlowDroid [7] to detect data leakage in this app,
it will report nothing. FlowDroid has generated control
flow graph before data flow analysis and the Fragment’s
lifecycle methods are not in this graph, so data flow
will not propagate out of these lifecycle methods. But
actually, this app leaks the phone number through
sending text message. AmanDroid [9] also can’t detect
this data leakage, because it doesn’t consider Fragment’s
lifecycle as well.

From figure 1, we know that when "LifecycleActiv-
ity" starts, the system invokes onCreate() method, then
the "LifecycleFragment" is attached to this Activity.
At the same time, Android system invokes the lifecy-
cle method onAttach() of "LifecycleFragment". In this
method, the reference of "LifecycleActivity" is passed
to "attachedActivity". When "LifecycleActivity" is acti-
vated, the onResume() method of "LifecycleFragment"
is invoked, so the string value in "NativePhoneNumber"
of "LifecycleFragment" is "default". At this moment,
if user leaves "LifecycleActivity" Activity, the lifecy-
cle method onPause() of "LifecycleFragment" will be
invoked. It sends the value of "NativePhoneNumber"
which is "default". It means the information leakage
has not happened so far. Then the lifecycle method
onPause() of "LifecycleActivity" will be invoked, so
the string value in "NativePhoneNumber" of "Lifecy-
cleActivity" will be the phone number. When user
navigates back to "LifecycleActivity", lifecycle method
onResume() of "LifecycleFragment" will be invoked,
and the value of "NativePhoneNumber" in "Lifecy-
cleFragment" will be the phone number. If the user
leave "LifecycleActivity" again, the lifecycle method
onPause() of "LifecycleFragment" will be invoked, and
the phone number will be leaked through text message
this time.

From the description above, we can learn that
this app gets phone number through the lifecycle
method onPause() of "LifecycleActivity", and sends a
text message with the phone number in the lifecycle
method onPause() of "LifecycleFragment". During this
process, the Activity’s state changes many times.
Some data flows will be lost if we don’t model
the control flow transfers between lifecycle methods
when state changes, which will make malware evade
detection with some state-of-art static analysis tools like
FlowDroid and Amandroid. Besides control flow, some
data dependencies between parameters of lifecycle
methods also need to be handled carefully. For example,
in lifecycle method onAttach() of "LifecycleFragment",
its parameter, which is passed by Android system, is
the Activity it attached to. When performing data flow
analysis, we should take this data dependence into
consideration.

4
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

 Yongfeng Li et al.

2.3. Goals and Assumption
In this paper, we focus on Fragment’s lifecycle and its
effects on data flow analysis. We propose an approach to
model Fragment’s lifecycle and implement a tool named
FragDroid. FragDroid is based on FlowDroid [7], so its
data flow analysis has the same limits as FlowDroid. It
can’t deal with native code and decide the target objects
or methods for java reflection.

3. System Design
We demonstrate FragDroid’s work flow in Figure 4. As
is depicted in this figure, FragDroid takes six steps to
analyze an app. First of all, it parses the manifest file
and then the app’s entry points like Activity, Service
will be obtained. Then, FragDroid scans the Activity’s
lifecycle methods to find Fragment registrations. At
the same time, FragDroid gets the Activity’s layout
xml file. Next, FragDroid parses the layout file to find
the Fragment registration because Fragment can be
attached in layout file as well. And then, Fragment gets
some Fragments, but Fragment can also be declared in
callback methods. So in the callback methods, some
Fragments can be attached to Activity dynamically.
The work flow will go back to step two unless no
new fragments and callback methods can be found. At
last, FragDroid generates a dummy main method to
model the control flow transfer between the lifecycle
methods of Fragment and Activity. A demo of dummy
main method’s control flow is shown in Figure 5. After
the dummy main method has generated, FragDroid
builds the call graph and perform taint analysis just as
FlowDroid does.

4. Implementation
4.1. Identify Fragments which attached to Activity
In order to model the Fragment’s lifecycle, we must
find all Fragments what an app’s Activities contain
at first. In an Android application, Fragments can be
attached to an Activity through two approaches. Firstly,
developers can attach a Fragment to an Activity by
declaring in the Activity’s layout file. This file is an
xml file, in which Fragment is declared by ’fragment’
tag. For this kind of registration, we can scan the
Activity’s onCreate() method and get its layout file,
then the fragment can be identified. Secondly, devel-
opers can attach Fragment to an Activity through some
registration methods like FragmentTransaction.add() or
FragmentTransaction.replace(). It is more complex here
to find this kind of Fragment registration than in the
first approach because these registration methods can
be invoked during Activity’s lifecycle. Moreover, users
can change the Activity’s user interface dynamically
through callback methods like onClickListener(). Frag-
ment registration can also happen in these callback

public static void dummyMainMethod()

{

int $i0 = 0; LifecycleActivity$r1; LifecycleFragment $r2;

label01:

if $i0 == 1 goto label07;

$r1.<LifecycleActivity: void onCreate()>();

label02:

if $i0 == 2 goto label03;

$r2.<LifecycleFragment: void onAttach(Activity)>($r1);

label03:

if $i0 == 3 goto label04;

$r2.<LifecycleFragment: void onResume()>();

label04:

if $i0 == 4 goto label05;

$r2.<LifecycleFragment: void onPause()>();

label05:

$r1.<LifecycleActivity: void onPause()>();

if $i0 == 5 goto label03;

label07:

return;

}

Figure 6. Dummy Main Method IR Code of Motivation Sample

methods. In order to find this kind of registration, we
scan all lifecycle methods of the Activity implements.
Then, we scan the Fragments’ lifecycle methods and
callback methods until no new Fragments’ lifecycle and
callback methods can be found.

4.2. Deal with data flow between Activity and
Fragment
In an Android app, Activity and Fragment have not
only control flow relationships, but also some data
flow dependencies. For example, as is shown in Figure
3, the parameter of lifecycle method onAttach() in
LifecyceFragment is passed by Android system. We
need to handle this situation, otherwise some data flows
will be lost. To solve this problem, we can modify the
code of Fragment because we just need to maintain the
data flow relationship instead of running the app. We
create a new private field ’attachedActivity’ in the class
for Fragment’s onAttach() and getActivity() method.
When generating dummy main method, for each
Fragment, we pass the related Activity to Fragment’s
onAttach() method. And then, in onAttach() method,
the passed Activity is stored in ’attachedActivity’. To get
the correct Activity, we rewrite the getActivity() method
whose return value is ’attachedActivity’.

4.3. Create Dummy Main Method
After getting all Fragments each Activity contains, we
need to generate a dummy main method to model

5
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Data Flow Analysis on Android Platform with Fragment Lifecycle Modeling and Callbacks

Parse manifest file

Parse method code

Parse layout file

Generate dummy
main method

Build call graph

Perform data flow
analysis

Apps

Find
Fragment

registration

Figure 4. System Architecture

LeakageAct La = new
LeakageAct();

La.onCreate();

La.onPause();

La.onStart();

La.onRestart();

La.onDestroy();

La.onResume();

Lf.onAttach();

Lf.onCreate();

Lf.onCreateView();

Lf.onStart();

Lf.onResume();

Lf.onPause();

Lf.onStop();

Lf.onDestroy();

Lf.onDestroyView();

Lf.onDetach();

LeakageFrag Lf = new
LeakageFrag();

La.onStop();

p

p Callbacks

p

p

p

Figure 5. Dummy Main Method Control Flow

the control flow transfers between lifecycle methods of
Fragment and Activity. Figure 5 shows us the dummy
main method’s control flow when an Activity only
contains one fragment. If an Activity contains multiple
Fragments, the situation will be more complex. We will
describe how to solve it in the next section. In order
to create a dummy main method whose control flow
is like Figure 5, we use a conditional jump instruction
to model the control flow transfer among lifecycle
methods.

We use the motivation example to demonstrate the
creation of the dummy main method as is shown in
Figure 6. In this figure, at first, conditional value ’i0’,
Activity ’r1’ and Fragment ’r2’ is declared. In lable01,
it creates a conditional jump whose target is label07
because this Activity may not be executed. If the
condition is not met, ’r1’ will invoke onCreate() method.
In label02, the fragment’s onAttach() method is invoked
depending on the conditional jump. Although we can

get the Fragments which can be attached to an Activity,
but we don’t know which Fragments are attached to
the Activity at an exact moment. We don’t implement
the Activity’s onStart() and onResume() methods, so in
label03, Fragment’s onResume() is invoked. When the
Activity is paused, the Fragment’s onPause() method
has been invoked before Activity’s onPause() method.
So in label04, Fragment’s onPause() is invoked. And in
label05, Activity’s onPause() is invoked. The Activity’s
state can be resumed, so in label05 there is a conditional
jump going to label03. In label07 the app is terminated.

4.4. Handle the AsyncTask
In this section, we describe how to deal
with the AsyncTask in the Fragment. When
the AsyncTask starts, the methods of this
class(onPreExecute(), doInBackground(Params...
params), onProgressUpdate(Progress... values),
onPostExecute(Result result)) will be executed in order.

6
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

 Yongfeng Li et al.

This method doInBackground (Params ... params)
must be overrided to perform a computation on a
background thread. Therefore, when we encounter the
use of AsyncTask, we take the method doInBackground
(Params ... params) of this class into consideration,
which can make the control flow graph completely.

4.5. Handle One Activity Carried with Multiple
Fragments

In the last section, we have described how to create a
dummy main method when an Activity only contains
one Fragment. Actually, multiple Fragments can be
attached to an Activity. Sometimes it is required to
modify the entire page, but creating a new Activity
is unnecessary. It can be efficient to use an Activity
to manage multiple Fragments. News application, for
example, can use a fragment to display article list on the
left and another fragment to display the article on the
right. Therefore, users do not need to use an Activity
to select articles and use another Activity to read the
article, but can choose articles within an Activity. In this
section, we will show how to deal with this situation.
If multiple Fragments are attached to an Activity, the
lifecycle methods of Fragments are invoked according
to the order of attaching these Fragments. Take an
Activity with two fragments as an example, when the
lifecycle methods of Fragments are invoked, as is shown
in Figure 5, the first attached Fragment’s onAttach()
to onActivityCreated() will be invoked after Activity’s
onCreate(). As there are two Fragments, the second
attached Fragment’s onAttach() to onActivityCreated()
will be invoked after the first Fragment’s. Fragments’
onStart(), onResume(), onPause(), onStop() are also
invoked in the Fragments’ attached order. And the first
Fragments’ onDestroyView(), onDestroy(), onDetach()
has been invoked before the second Fragment’s.
However, as is described in section 4.1, Fragments in
an Activity can be dynamically added or replaced by
callback methods. Thus we can’t exactly know the order
of how Fragments are added. In this paper, we assume
the Fragments are attached in any order.

We show this kind of control flow transfer in Figure 7.
In this Figure, we assume there are three Fragments in
an Activity. The vertexes labeled as a, b, c, have the same
lifecycle method like onResume() of each Fragment. For
the process from onAttach() to onActivityCreated(), we
use an intermediate method to invoke them one by one.
To make the dummy main method generate the control
flow transfer as is shown in Figure 7, we can generate
the code shown in this figure. In the code, we use a
conditional jump statement to model the execution.
The lifecycle methods can be executed in any order by
emulating different conditions.

1 2 3 4 5 6 7 8 9 >9
The Amount of Fragment

0

100

200

300

400

500

600

700

800

T
h
e
 A

m
o
u
n
t

o
f

A
p
p

757

225

77 85 76
53

32

115

29

128

Figure 8. Distribution of The Number of Fragments

5. Evaluation
5.1. Dataset & Experiment Setup
We collect 19342 apps from three popular Android
markets (baidu [17] ,xiaomi [18] and anzhi [19]). In
order to measure the amount of Fragments in the
most popular apps, we also select 887 apps from
baidu market according to their downloads. To test
the efficiency of FragDroid, we develop some test apps
based on lifecycle methods of Fragment and Activity
which override different lifecycle methods.

We conduct experiments on a computer equipped
with Intel(R) Core(TM) i7-4770k CPU(3.5GHz) and
16GB of physical memory. The operation system is
Windows 7.

5.2. Summary of Fragment Usage in App
The experiment results of Fragment usage of apps in the
two data sets mentioned in the last section are shown in
Figure 8 and Figure 9. In the first app data set, 1557
apps in 19342 cases use Fragment. This means, for an
ordinary app, the probability of using Fragment is 8%.
In the second app data set, 451 apps in 887 cases use
Fragment, the probability is 50.8%. We also give the
statistic result for multiple fragments can be attached to
one activity in figure 10. According to these figures, we
conclude that the more popular the app is, the higher
its possibility of using Fragment is.

Figure 8 lists the distribution of the number of
Fragments in the first app data set. From the figure, we
find that 45.8% of apps which use Fragment only have
one kind of Fragment, and Activities share the same
user interface provided by this Fragment. Most of apps
(91.9%) have less than 10 kinds of Fragments. Figure
9 shows the result of the second app data set, we can
see that more kinds of Fragments are contained in one

7
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Data Flow Analysis on Android Platform with Fragment Lifecycle Modeling and Callbacks

a

b
c

entry

exit

entry:
label 1:

if i == 1 goto label 2;
a();

label 2:
if i == 2 goto label 3;
b();

label 3:
if i == 3 goto label 4;
c();

label 4:
if i == 4 goto label 1;

exit:

Figure 7. Control Flow Sequence of lifecycle Methods When There are Multiple Fragments

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 >9

The Amount of Fragment

39

26

18

36

20

5

128

101

44

34

Th
e A

m
o

u
n

t o
f A

p
p

s

Figure 9. Distribution of The Number of Fragments for Popular
Apps

Number of apps
using fragment

Number of activities carried
with multiple Fragments

First
dataset

1557 9941

Second
dataset

451 2916

Figure 10. Distribution of the number of Activities carried with
multiple Fragments

app, 28.3% apps have more than 10 kinds of Fragment
classes.

0

20

40

60

80

100

120

140

160

180

200

[0,50) [50,100) [100,150) [150,200) [200,250) [250,300) >=300

The Amount of source-sink pair ([a,b) is interval)

no fragment

analyze fragment

145

117

169

146
136

176

81

69

52

78 80

112

73

61

T
h
e A

m
o
u

n
t o

f
A

p
p

Figure 11. Distribution of source-sink Pairs

5.3. Data Leakage Results

The result of data leakage in the second app data set
is shown in Figure 11. This figure contains the results
of analyzing and do not analyzing Fragment. In this
figure, we find that when we don’t consider Fragment
lifecycle, 47.4% of apps report more than 150 source to-
sink pairs. After Fragment’s lifecycle is modelled, 57.3%
of apps report more than 150 source-to sink pairs. The
amount of source-to sink pairs has an average increase
of 18 in an app. In this experiment, we demonstrate that
Fragment’s lifecycle has an effect on the data leakage
detection result.

8
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

 Yongfeng Li et al.

0

2000

4000

6000

8000

10000

12000

14000

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) >=60

Analysis Time ([a,b) is interval)

no fragment

analyze fragment

4865

6034

1238
791

132316 105132 53 26
711845

12675

10751

T
h
e A

m
o
u

n
t o

f
A

p
p

Figure 12. Distribution of Analysis Time

0

50

100

150

200

250

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) >=60

Analysis Time ([a,b) is interval)

no fragment

analyze fragment214

64

233

123

164
157

44

126

13

96

11

149

56

19

T
h
e A

m
o
u

n
t o

f
A

p
p

Figure 13. Distribution of Analysis Time for Popular Apps

5.4. Runtime Performance
The runtime performance of FragDroid is shown in
Figure 12 and Figure 13. The experiment result of the
first app data set is depicted in Figure 12. As is shown
in this figure, when we do not analyze Fragment, 90% of
the apps can be finished in 20s and the average time is
12s. After analyzing Fragment, 80% of the apps can be
finished in 20s and the average time is 14s. It means that
after we modelled the Fragment’s lifecycle, the average
overhead is 17%. The experiment result for popular app
data set is shown in Figure 13. After Fragment analysis,
the overhead is 114%. The run time of analysis is highly
depended on the amount of Fragments this app using.

6. Discussion
Current data flow analysis techniques on Android
platform are not perfect. In this paper, we focus on
fragment’s lifecycle, and get a more complete control

Tool Goal
Modeling fragment’s
lifecycle

CHEX Component Hijacking No

IccTA Inter-component privacy leaks No

FlowDroid Data Leakages No

AmanDroid Compute IDFG No

EdgeMiner Callback Methods No

FragDroid Data Leakages Yes

Figure 14. Comparison of different taint analysis Tools

flow which is the prerequisite for data flow analysis.
We have no in-depth analysis of native code and java
reflection, so the data flow may be not precise enough.

7. Related Work

Previous researchers have proposed some approaches
to solve problems in static analysis on Android
platform. We summarize the differences of existing
static analysis tools in Figure 14. CHEX [6], FlowDroid
[7], AmanDroid [9] are three tools which perform static
data flow analysis on Android platform. CHEX [6] is
designed to detect the component hijacking problems
in Android apps. When performing data flow analysis,
CHEX analyzes each program split which includes code
reachable from a single entry point at first. Cross
split data flow are analyzed based on those system
dependence graphs [24] which will be generated for
every program split. FlowDroid [7] is aimed at detecting
data leakages in Android apps. It models data flow
analysis problem within the IFDS [25] framework
for inter-procedural distributive subset problems. It
also models the Activity’s lifecycle in a dummy main
method. AmanDroid [9] is an Android data flow
analysis framework. It computes an inter-component
data flow graph (IDFG) which contains all objectsąŕ
points-to information in both flow and context-sensitive
way. IccTA [10] makes a more complete analysis on
Android inter-component communication. It can decide
the implicit intents’ target, which can be Activity or
Service. EdgeMiner [11] focuses on Android’s callback.
EdgeMiner designs an automatic approach to find
callback methods on Android platform. These callback
methods can be adopted to complement other data flow
analysis tools like FlowDroid. None of the tools above
considers Fragment’s lifecycle, which may lead to the
overlook of some data flows. Thus, in this paper we
model the Fragment’s lifecycle.

There are also some tools analyzing apps dynami-
cally. TaintDroid [3] is one of them to modify the Dalvik
virtual machine. Every instruction is interpreted by

9
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Data Flow Analysis on Android Platform with Fragment Lifecycle Modeling and Callbacks

Dalvik, so TaintDroid can record the data flow rela-
tionship between objects. DroidScope [4] is an emu-
lation based Android malware analysis engine that
can be used to analyze Java and native components
of Android Applications. It performs taint analysis
on native instruction and dalvik instruction, so it’s
more precise than TaintDroid. SMV-HUNTER [13] is
a tool designed to identify apps which is vulnerable
to SSL/TLS Man-in-the-Middle attacks. AppAudit [14]
is an efficient program analysis tool that detects data
leakages in mobile applications. It combines static and
dynamic analysis to overcome the shortcomings of each
individual analysis.

Malware detection is an important topic in Android
security research. RiskRanker [15], TriggerMetric [28]
and DroidRanger [16] are heuristic-based malware
detection tools. RiskRanker determines a malicious app
according to risk behavior is performing in the app.
TriggerMetric captures the static dependence relations
between user inputs and sensitive operations providing
critical system functions in programs. DroidRanger
analyzes the permissions that malware and benign apps
apply, then it identifies the combination of permissions
which are frequently used in malware and rarely
used by benign apps. Drebin [21], DroidAPIMiner[26],
DroidMiner [22], DroidSIFT [23] and DR-Droid [27]
identify malware based on machine learning algorithm.
Drebin and DroidAPIMiner extract permissions and
security APIs an app using to construct feature vector.
DroidMiner uses control flow, while DroidSIFT uses
data dependence. DR-Droid proposed a new Android
repackaged malware detection technique based on code
heterogeneity analysis, and the features in DR-Droid are
extracted from each dependence region to profile both
benign and malicious dependence region behaviors.

8. Conclusion
In this paper, we describe how Fragment’s lifecycle can
influence the data flow analysis result and propose an
approach to model Fragment’s lifecycle. To model the
Fragment’s lifecycle and its relationship with Activity’s
lifecycle, we design a tool FragDroid to generate a
dummy main method which can model the control flow
transfer between Fragment’s and Activity’s lifecycle
methods. Our tool is built based on FlowDroid [7]. We
perform some experiments using apps crawled from
some alternative app markets. Experiments show that
8% of the selected apps use Fragment, and for most
popular apps, the probability is 50.8%. We also evaluate
our tool with the same data sets, the result shows the
average overhead is 17%.

9. Acknowledgments
We would like to thank the anonymous reviewers
for their comments. This work was supported in

part by grants from the Chinese National Natural
Science Foundation (61272078, 61073027, 90818022,
and 61321491), and the Chinese National 863 High-
Tech Program (2011AA01A202).

References
[1] iOS and Android Capture Combined

98.4% Share of Smartphone Market,
http://www.macrumors.com/2016/02/18/

ios-android-market-share-q4-15-gartner/

[2] Zhou, Y., & Jiang, X. (2012, May). Dissecting android
malware: Characterization and evolution. In Security
and Privacy (SP), 2012 IEEE Symposium on (pp. 95-109).
IEEE.

[3] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun,
B.G., Cox, L.P., Jung, J., McDaniel, P. & Sheth, A.N.
(2014).TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2), p.5.

[4] Yan, L.K. & Yin, H. (2012). Droidscope: seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis. In Presented as
part of the 21st USENIX Security Symposium (USENIX
Security 12) (pp. 569-584).

[5] Vidas, T. & Christin, N. (2014). June. Evading android
runtime analysis via sandbox detection. In Proceedings
of the 9th ACM symposium on Information, computer
and communications security (pp. 447-458). ACM.

[6] Lu, L., Li, Z., Wu, Z., Lee, W. & Jiang, G. (2012, October).
Chex: statically vetting android apps for component
hijacking vulnerabilities. In Proceedings of the 2012
ACM conference on Computer and communications
security (pp. 229-240). ACM.

[7] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., ... & McDaniel, P. (2014, June). Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (p. 29). ACM.

[8] Fritz, C., Arzt, S., Rasthofer, S., Bodden, E., Bartel,
A., Klein, J., ... & McDaniel, P. (2013). Highly precise
taint analysis for Android applications. EC SPRIDE, TU
Darmstadt, Tech. Rep.

[9] Wei, F., Roy, S., & Ou, X. (2014, November). Amandroid:
A Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(pp. 1329-1341). ACM.

[10] Li, L., Bartel, A., Bissyandĺę, T.F., Klein, J., Le
Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau,
D. & McDaniel, P. (2015, May). IccTA: Detecting
inter-component privacy leaks in Android apps. In
Proceedings of the 37th International Conference on
Software Engineering-Volume 1 (pp. 280-291). IEEE
Press.

[11] Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel,
C., Vigna, G. & Chen, Y. (2015). EdgeMiner: Auto-
matically Detecting Implicit Control Flow Transitions
through the Android Framework. In NDSS.

10
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

 Yongfeng Li et al.

http://www.macrumors.com/2016/02/18/ios-android-market-share-q4-15-gartner/
http://www.macrumors.com/2016/02/18/ios-android-market-share-q4-15-gartner/

[12] T. Reps, S. Horwitz, and M. Sagiv. (1995). Precise
interprocedural dataflow analysis via graph reachability.
In POPL ąŕ95, pages 49ĺC61.

[13] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., &
Khan, L. (2014). Smv-hunter: Large scale, automated
detection of ssl/tls man-in-the-middle vulnerabilities in
android apps. In In Proceedings of the 21st Annual
Network and Distributed System Security Symposium
(NDSSąŕ14.

[14] Xia, M., Gong, L., Lyu, Y., Qi, Z., & Liu, X. (2015,
May). Effective real-time android application auditing.
In Security and Privacy (SP), 2015 IEEE Symposium on
(pp. 899-914). IEEE.

[15] Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X.
(2012, June). Riskranker: scalable and accurate zero-
day android malware detection. In Proceedings of
the 10th international conference on Mobile systems,
applications, and services (pp. 281-294). ACM.

[16] Liang, S., & Du, X. (2014, June). Permission-
combination-based scheme for android mobile malware
detection. In Communications (ICC), 2014 IEEE
International Conference on (pp. 2301-2306). IEEE.

[17] Baidu android market, http://shouji.baidu.com/

software/

[18] Xiaomi android market, http://app.mi.com/
[19] Anzhi Android market, http://www.anzhi.com/
[20] Android malware genome project, http://www.

malgenomeproject.org/

[21] Arp, D., Spreitzenbarth, M., Hĺźbner, M., Gascon, H.,
Rieck, K., & Siemens, C. E. R. T. (2014, February). Drebin:
Effective and explainable detection of android malware
in your pocket. In Proc. of NDSS.

[22] Yang, C., Xu, Z., Gu, G., Yegneswaran, V., & Porras, P.
(2014). DroidMiner: Automated mining and character-
ization of fine-grained malicious behaviors in android

applications. In Computer Security-ESORICS 2014 (pp.
163-182). Springer International Publishing.

[23] Zhang, M., Duan, Y., Yin, H., & Zhao, Z. (2014, Novem-
ber). Semantics-Aware Android Malware Classification
Using Weighted Contextual API Dependency Graphs.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (pp. 1105-
1116). ACM.

[24] Horwitz, S., Reps, T., & Binkley, D. (1990). Interprocedu-
ral slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems (TOPLAS),
12(1), 26-60.

[25] Reps, T., Horwitz, S., & Sagiv, M. (1995, January). Precise
interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(pp. 49-61). ACM.

[26] Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner:
Mining API-level features for robust malware detection
in android. In Security and Privacy in Communication
Networks (pp. 86-103). Springer International Publish-
ing.

[27] Karim O. Elish, Xiaokui Shu, Danfeng Yao, Barbara
Ryder, and Xuxian Jiang. Profiling User-Trigger Depen-
dence for Android Malware Detection. Computers &
Security (C&S). 49, 255–273. March 2015.

[28] Ke Tian, Danfeng Yao, Barbara Ryder, and Gang Tan.
Analysis of Code Heterogeneity for High-Precision
Classification of Repackaged Malware. In Proceedings
of Mobile Security Technologies (MoST), in conjunction
with the IEEE Symposium on Security and Privacy. San
Jose, CA. May 2016.

11
EAI Endorsed Transactions

 201 - 1 2017 | Volume 4 | Issue 1 | e

Data Flow Analysis on Android Platform with Fragment Lifecycle Modeling and Callbacks

http://shouji.baidu.com/software/
http://shouji.baidu.com/software/
http://app.mi.com/
http://www.anzhi.com/
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/

	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation
	2.3 Goals and Assumption

	3 System Design
	4 Implementation
	4.1 Identify Fragments which attached to Activity
	4.2 Deal with data flow between Activity and Fragment
	4.3 Create Dummy Main Method
	4.4 Handle the AsyncTask
	4.5 Handle One Activity Carried with Multiple Fragments

	5 Evaluation
	5.1 Dataset & Experiment Setup
	5.2 Summary of Fragment Usage in App
	5.3 Data Leakage Results
	5.4 Runtime Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments

