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Abstract 
Hydropower is one of the most promising sources of renewable energy. However, a substantial initial investment requires 
for the construction of large civil structures. Feasibility study, detailed project report preparation, construction planning, and 
timely execution of work are the important activities of a hydropower plant. Energy generation in hydropower plants are 
mainly depends on discharge and head. Therefore, an accurate estimation of discharge and head is important to decide the 
plant capacity. Erosion, cavitation, and operation & maintenance are the key challenges in hydropower energy generation. 
Artificial Intelligence (AI) has become popular, which can be utilized for site selection, parameters assessment, and operation 
& maintenance optimization. In this paper, a literature review on applications of AI in hydropower has been presented, and 
an attempt has also been made to identify the future potential areas of hydropower plants.  
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1. Introduction

An increase in renewable energy generation poses critical 
challenges for grid stability. There are various popular 
renewable energy sources available in nature like solar, wind, 
and hydropower. Hydropower is generated by rotating the 
turbine through the water. Variability and intermittency 
characterize the majority of RES, making it challenging to 
predict power generation. These features make it more 
challenging to operate and maintain power systems, as more 
flexibility is needed to protect their regular operation and 
stability [1]. Now the power system operation has entered into 
the digital era, new technologies such as Internet-of-Things 
(IoT), real-time monitoring and control [2], as well as 
cybersecurity can contribute to more effective, safe, reliable, 
resilient, and sustainable power systems [3]. Hydropower is a 
renewable energy source, and almost 17% of the power is 
generated through hydropower. The construction and 
installation of a hydropower plant is a challenging task. Most 
of the hydropower plants suffer from erosion and cavitation 
problems due to silt in the flowing water. A typical layout of 
a hydropower plant is shown in Fig.1. The main components 
of hydropower plants are turbine, generator, and power 
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evacuation systems. Running a hydro machine in its defined 
efficiency zone may help to maintain the system's plant 
efficiency and life.  

Figure 1. A typical layout of a hydropower plant 
(Source: Electrical Engineering Info., India) 

Artificial Intelligence (AI) can be utilized in planning, 
feasibility study, discharge prediction, energy generation 
prediction, and maintenance planning. AI can be categorized 
into the following sub-sections.  
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a) Machine Learning

Machine Learning is an application of computers to perceive, 
process, and analyze data to solve real world problems. It uses 
computational methods to ‘learn’ information from the data. 
An increase in the number of samples for learning improves 
performance. There are two types of learning, supervised and 
unsupervised learning. Supervised learning trains a model to 
predict future effects on known input and output data, 
whereas hidden patterns are discovered in unsupervised 
learning on known input. 

b) Deep Learning

It is a process of implementing high-dimensional data to gain 
insights to solve more complex problems. Deep learning is a 
kind of machine learning in which a model learns directly 
from images, text, or sound to perform the classification task. 
Deep learning is typically conducted using the architecture of 
a neural network. The term ‘deep’ refers to the number of 
layers in the network. 

c) Artificial Neural Network (ANN)

A typical artificial neuron network configuration is depicted 
in Fig.2. where the inputs Xn are connected to neurons that 
multiply their weight (Wn) to generate the product WnXn and 
then all the weighted inputs are added. The result is the 
argument of the transfer function (f). Most common ANN 
architectures consist of one input layer, one output layer, 
whereas more than one hidden layer.  

Figure 2. A typical architecture of ANN 

A neural network can learn from data to recognize patterns 
and splits the data into abstraction layers. It can be 
conditioned on several examples to identify patterns of 
elements, power, and weights during connections. These 
weights are automatically updated for a defined learning rule 
until the neural network successfully completes the task. 

d) Fuzzy Logic

A mathematical tool focused on ‘degree of fact’ concepts 
instead of the standard conventional Boolean computational 
logic. Fuzzy logic is a simple way of converting an input 

space to an output. It usually starts with mapping input to 
output. Mapping inputs to the appropriate outputs requires 
determining the appropriate number of tips between input and 
output. 

e) Adaptive Neuro-Fuzzy Interface System
(ANFIS)

It is a kind of ANN, which is based on the inference system. 
Since it incorporates neural networks and fuzzy logic 
concepts, it can use the advantages of both within a single 
system.  

The remaining part of this paper is organized in the following 
sections. Section 2 is the main part of this paper that describes 
the literature review on applications of AI in hydropower. The 
review is focused on the application areas of AI for 
performance optimization, forecasting of parameters, 
monitoring and control optimization, policy and feature 
selection, feasibility study, evaluation and capability 
assessment, and Section 3 discusses the conclusions and 
future scope. 

2. Literature review

AI is a multidisciplinary field that uses various disciplines, 
such as computer science, neuroscience, economics, 
information theory, mathematics, psychology, control theory, 
and optimization with techniques and perspectives. The word 
artificial intelligence refers to the design and research of 
intelligent entities [4]. To review the application areas of AI 
in hydropower, it has been categorized in the following sub-
sections as given in Fig.3. 

Figure 3. AI application areas in hydropower 

i) Applications of AI for performance
optimization:

Various methods are presently being utilized for the 
performance optimization of the hydropower plant. Conteh et 
al. [5] developed an optimal load-shedding technique capable 
of shedding the required load. It utilizes the backpropagation 
artificial neural network. To further optimize the capability of 
load shedding for any range of input data, both neural 
network and fuzzy logic are combined to form an adaptive 
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neuro-fuzzy inference system. The first scenario was 
obtained by closing the breaker as the generation sources start 
operating at their maximum limit. Further, the second 
scenario was acquired by a sudden decrease in power, 
resulting in plant failure. Load shedding errors from the two 
methods show that the ANFIS method is more robust than the 
backpropagation artificial neural network method. Zhang et 
al. [6] compared the computing performance of various 
techniques. Figs. 4 and 5 show the training and test results of 
the XGBoost, MARS, ANN, and SVM models. 

For the test data, the RMSE, R2, bias factor, and MAPE 
between the FEM versus SCM estimates provided by the 
XGBoost model and found as 7.90, 0.99, 1.00, and 0.04, 
respectively. The MARS model has given the RMSE, R2, 
bias factor and MAPE for the test trends as 11.10, 0.97, 1.02, 
and 0.07, respectively. For the expected values from the ANN 
model, the RMSE, R2, bias factor, and MAPE were obtained 
as 11.73, 0.97, 1.00, and 0.07, respectively. The SVM model's 
RMSE, R2, factor bias, and MAPE were 17.40, 0.94, 1.01, 
and 0.06, respectively.  

(a)                                                                                (b) 

Figure 4. (a) Training and (b) Testing results of FEM wall deflection [6] 

Kurt et al. [7] investigated power generation on Kayabogazi 
Dam. Three smaller units were suggested for installation. An 
FL algorithm has been used to optimize the output of the 
turbines for the power capacity and power demand 

constraints, whereas Herath et al. [8] forecasted the price of 
energy. A summary of the application of AI for performance 
optimization of hydropower plants is given in Table-1.

Table 1. Summary of applications of AI for performance optimization 

ii) Applications of AI for the forecasting of
plant parameters:

Senthil et al. [9] predicted the sediment loading using ANN 
generated in a watershed. They concluded that the high 
variability of hydro-climatic factors with sediments makes 
the sediment modeling process cumbersome and tedious. 
Compared to other soft computing techniques, the M5 model 
performed well. For M5M1 and ANNSC22, RMSE was 
found to be 0.54, while the REPTree model performed worst 
(0.82). For the M5M1 and ANNSC22 models, the best value 
of the correlation coefficient is 0.96, while the correlation 

coefficient of the REPTReeM2 model is 0.90. Kumar et al. 
[10] applied the machine learning technique for the
forecasting of day plant load, which will help to stabilize the
grid. Fayaz et al. [11] used a deep learning algorithm to
predict energy consumption in buildings. For that, average
statistical measurement values of both periods were
calculated as given in Table 2. The statistical values show that
DELM has better efficiency than the other counterpart
algorithms.

Author(s) Method (s) Objective (s) Findings 
Conteh et al. [5] ANFIS Optimal load shedding that can shed the 

required amount of load for grid stability 
The intended quantity of load can be shed 
at a faster rate and enhances the stability 
of the system 

Kurt et al. [7] Fuzzy logic 
controller 

The operation of the turbines for the power 
potential and power demand constraints 
optimization using FL algorithm 

Selection of the number of units to optimize 
the energy generation 
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Table 2. Average values of statistical measures [11] 

Statistical 
Measures 

MAE MAPE RMSE 

ANN 2.4317 7.0830 4.8561 
ANFIS 2.4556 6.8841 2.8174 
DELM 2.1677 6.1271 2.4657 

Shamshirband et al. [12] used an ANFIS and CFD approach 
to predict the pressure gradient. The investigation results 
indicated that the input parameters and the number of rules 
significantly influence the algorithm's accuracy. Lounis et al. 
[13] investigated the performance of five pattern
classification algorithms to predict the discharge flow in
hydropower plants. The results indicated the strong
superiority of the neural network method over other
approaches. Egoigwe et al. [14] analyzed the flow rate of
hydroelectric plants, which varies with time due to the
rotation of the turbine. The results showed that the speed
regulation for hydropower generation had been 319.8 m/s and 
65 m/s, respectively with and without a fuzzy logic controller.
It means the Fuzzy Logic Controller yields better results and
increases turbine rotational speed. A general equation to
model the hydropower generator speed controller is given in
Eq.1.

𝑀𝑀(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝐸𝐸(𝑡𝑡) + 𝐾𝐾𝑖𝑖 � 𝐸𝐸(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
+ 𝐾𝐾𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1) 

Where Kp, Ki, and Kd are the proportional, integral, and 
derivative constants, respectively. E(t) is the error as a 
function of time, and M(t) is the controller output. The 
derivative mode accounts for the error, as the measurement 
method was corrupted at a faster response time. The digital 
equivalent of Eq.1 is given below: 

𝑀𝑀𝑖𝑖 = 𝐾𝐾𝑝𝑝 �𝐸𝐸𝑖𝑖 + 𝑇𝑇𝐾𝐾𝑖𝑖�𝐸𝐸𝑖𝑖 +
𝐾𝐾𝑑𝑑
𝑇𝑇

(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖−1)
𝑖𝑖

𝑗𝑗=1

�   (2) 

Where T is the sampling interval, Ei is Error at ith sampling 
interval, and Ei-1 is an error at a previous sampling interval 

𝑀𝑀𝑖𝑖 = 𝐾𝐾𝑝𝑝 �1 +
𝐾𝐾𝑑𝑑
𝑇𝑇
�𝐸𝐸𝑖𝑖 − �

𝐾𝐾𝑝𝑝𝐾𝐾𝑑𝑑
𝑇𝑇

�𝐸𝐸𝑖𝑖−1 + �𝑇𝑇𝑇𝑇𝑝𝑝𝐾𝐾𝑖𝑖�𝑆𝑆𝑖𝑖     (3) 
Where Si is the sum of error. 

Luna et al. [15] presented a TS-FIS model for inflow 
forecasting. The validation of the model has been performed 
using MAPE, RMSE, and MAE. The model has shown a 
good performance value of the mass curve coefficient varies 
from 79% to 98%. Abdulkadir et al. [16] modeled reservoir 
variables of dams for energy generation using a multilayer 
neural perceptron network. The neural network description 
received a strong forecast of 0.89 and 0.77 correlation 
coefficients for the Kainji and Jebba hydropower reservoirs, 
respectively. Li et al. [17] predicted the short-term power 
generation using a support vector machine (SVM) and the 
genetic algorithm (GA). Stokelj et al. [18] predicted the 
inflow of water using the neural network architecture. 
Shaktawat et al. [19] presented a Fuzzy tool to determine the 
cost overrun of a hydropower plant. Cost overrun in a 

hydropower plant results in a rise in the price of electricity 
production. The method for evaluating overruns would help 
the investors to determine uncertainty. 

Li et al. [20] applied a deep neural network for the prediction 
of power generation. As a result, the HGDNN model 
decreases the RMSE value to 202.92. In addition, HGDNN 
records an improvement of at least 6%, 9%, and 49% 
respectively on RMSE, MAE, and MAPE compared to the 
ST-ResNet. The measuring parameters are listed below. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑀𝑀
��𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡�

2
𝑀𝑀

𝑖𝑖=1

 (4) 

𝑀𝑀𝐴𝐴𝐴𝐴 =
1
𝑀𝑀
��𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡�  (5)
𝑀𝑀

𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑀𝑀
��

𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡

�   (6)
𝑀𝑀

𝑖𝑖=1

 

Where𝑋𝑋�𝑡𝑡 and 𝑋𝑋𝑡𝑡 are the predicted and actual hydropower 
generation value at time t, and M is the number of samples 
collected. 

Mamlook et al. [21] compared neuro-fuzzy programming 
using different choices for producing electricity. Based on the 
cost-to-benefit ratio, solar, wind, and hydropower were 
considered the best systems for generating electric power, and 
nuclear power is the worst choice. Valizadeh et al. [22] 
predicted the daily water level of the dam using ANFIS. 
Rising the reservoir level alongside precipitation as inputs in 
both sets of models significantly improved the fitness of the 
predicted and observed results. As the distance of the gauge 
station was unknown, the distance between gauge can be 
identified using various models in different time delays of the 
inputs; however, it demonstrates the appropriate length in 
inputs and outputs to provide a precise prediction. Oltean et 
al. [23] presented a method for constructing fuzzy models 
through subtractive clustering to allocate energy generation 
on cascaded hydropower plants. This model shows a 6.47% 
value for the mean absolute percent error in the test data set. 
For the model, 90% of the data in test data sets produced a 
fundamental percent error of less than 13.59%. The model 
was performed very well for much of the test data point. 
Cheng et al. [24] simulated the ANFIS model to forecast 
long-term discharge. For validation and training, the 
correlation coefficients between the predictive and 
observational values are found as 0.889 and 0.918, 
respectively. It has also been found that the ANFIS model can 
provide more accurate predictions by comparing results with 
a suitable ANN model.  

Dehghani et al. [25] applied the Grey Wolf Optimization 
(GWO) method coupled with the ANFIS to predict 
hydropower development. Twenty combinations of inputs 
were used, including the dam inflow, rainfall, and 
hydropower in various months, while the production was for 
one month of hydropower generation in all scenarios. Then, 
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the hydropower generation has been projected using the 
coupled model. Results showed that the GWO-ANFIS model 
could satisfactorily predict the hydropower generation while 
ANFIS was not better in nine input-output combinations.  

Kucukali et al. [26] concluded that the results of the ANN 
model showed a positive relationship between the real and 
predicted inflow of reservoirs with a relatively high 
correlation coefficient value for all selected locations. This 
shows the model is ideal for modeling the inflow of 
reservoirs. 

Ghosh et al. [27] proposed a new way of indicating HPP 
output. The MCDM and ANN methods were applied to give 
each of the required parameters. According to the data, the 
most important parameter (MIP) is water availability, while 
accessibility is the least important. The ANN model was 
created as a stand-alone HPP status prediction system. To 
allow ongoing evaluation of the possible site, a dynamic, 
adaptable time-variant version of the index could be 
developed. 

Alrayess et al. [28] utilized machine learning techniques in 
short-term energy generation forecasting. Three models 
ANN, Support Vector Machine (SVM), and Deep Learning 
(DL), were used to predict Almus HEPP's energy generation. 
The correlation values for ANN, SVM, and DL were found 
as 0.766, 0.682, and 0.998, respectively. Also, the squared 
correlation values for ANN, SVM, and DL were obtained as 
0.587, 0.466, and 0.995, respectively. The results showed that 
the DL algorithm performs better than other techniques.   

Hammid et al. [29] applied ANN to predict the output of 
hydropower plants in terms of net turbine head, water flow 
rate, and power generation on data collected over ten years 
during the study. ANN provides an efficient instrument of 
analysis and diagnosis to model the nonlinear plant output. It 
has been concluded that the ANN may predict the plant 
performance with a coefficient of correlation between the 
predicted and observed output variables has a value higher 
than 0.96. Stokelj et al. [30] presented an improved ANN 
model for the short-term water inflow forecasting and on 
successful bidding techniques. Feng et al. [31] developed a 

rockburst system based on Micro Seismic (MS) monitoring 
data and an enhanced Probabilistic Neural Network (PNN) 
model. To maximise the smoothing factor in the PNN 
parameter, the modified firefly method was utilised. The 
results reveal that the anticipated and learning samples had 
100% and 86.75% accuracy for accurate rockburst rates, 
respectively. 

Jalalkamali et al. [32] examined the potential of Neuro-Fuzzy 
(NF) and ANN techniques to predict groundwater levels. The 
NF computation techniques were also found to have higher 
efficiency than the ANN models. Kumar et al. [33] classified 
the daily volume of silt density, which can be used for the 
predictive analysis of operation and maintenance of 
hydropower plants.  

Bina et al. [34] estimated the aggregate day-ahead power 
demand of individual household appliances. Tree-based 
strategies for load forecasting have also been commonly used 
in DR [35]. For price scheme optimization of retailers or 
aggregators, GA typically considers individuals [36]. A lot of 
work is available on the baseline load estimation for 
residential areas [37, 38], industries [39], buildings, and 
office premises [40]. 

Most of the information at the market level concerned 
predicting competitive residential pricing schemes [41, 42, 
and 43]. However, forecasting aggregate loads may also 
concentrate on evaluating day-to-day peak demand, either at 
the building level or at the feeder or neighborhood level [44, 
45]. Also, residential load forecasting was conducted at 
different aggregation speeds [46].  

Table 3 gives the summary of applications of AI for 
forecasting hydropower plant parameters. 
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Table 3. Summary of the applications of AI for the forecasting of hydropower parameters 

Author(s) Method (s) Objective (s) Findings 
Senthil et al. [9] ANN Prediction of sediment loading REPTree model provides better insight with 

less computational time  
Fayaz et al. [11] ANN and ANFIS Energy consumption 

forecasting 
DELM is much better than ANN and ANFIS 
for short-term and long-term energy 
consumption projections 

Lounis et al. [13] Machine learning Flow prediction The neural network approach is superior to 
the other techniques 

Egoigwe et al. 
[14] 

Fuzzy logic 
controller 

Flow rate prediction When the speed reaches 254.8m/s, the 
fuzzy logic controller gives a better result 

Luna et al. [15] TS-FIS model Inflow forecasting The value of the mass curve coefficient 
(performance indices) varies from 79% to 
98%  

Abdulkadir et al. 
[16] 

ANN Energy generation prediction One day ahead energy generation has been 
predicted to stabilize the grid 

Li et al. [17] GA-SVM Energy generation prediction The GA-SVM model is an effective method 
for improving short-term forecasting 
accuracy 

Shaktawat et al. 
[19] 

Fuzzy logic 
controller 

Cost prediction The cost overrun of hydropower projects 
was calculated with ease and less 
computing time  

Li et al. [20] Deep neural 
network 

Generation prediction HGDNN method gives a better prediction of 
hydropower generation  

Cheng et al. [24] ANFIS Discharge prediction A comparison of the various membership 
functions for ANFIS shows that TRAPMF 
performs best in long-term discharge 
prediction 

Dehghani et al. 
[25] 

ANFIS Energy generation forecasting GWO-ANFIS can forecast the hydropower 
generation satisfactorily 

Ghosh et al. [27] MCDM and ANN Performance of hydropower 
plant prediction 

In terms of predictive power, the ANN model 
outperformed the regression model 

Alrayess et al. 
[28] 

ANN, SVM, and 
DL 

Short term energy generation 
forecasting 

The correlation values verified that the Deep 
Learning model gives results more 
accurately with high performance than ANN 
and SVM 

Hammid et al. [29] ANN Head prediction The ANN modeling can be used to predict 
the behavior of small hydropower plants  

Feng et al. [31] ANN Rockburst prediction The MIVA-MFA-PNN model is performing 
well for Rockburst prediction 

Jalalkamali et al. 
[32] 

ANN and Fuzzy 
logic controller 

Water level prediction The NF computing technique is suitable for 
modeling of the groundwater level  

Kumar et al. [33] SOM Predictive maintenance SOM can be used for daily silt data analysis 
and to plan the maintenance of the 
machines 

Bina et al. [34] Gaussian Copulas Aggregate demand forecasting The utilization of the distribution 
transformers and feeders can be improved 

Park et al. [37] SOM, K-means Baseline estimation In DR management, the data-driven 
approach is a possible method for CBL 
estimation where a large amount of smart 
metering data is collected 

Jazaeri et al. [38] Nonlinear 
regression, ANN 

Baseline estimation Among the techniques, machine learning 
produces the smallest bias 

Arunaun et al. [39] ANN Baseline estimation Baseline calculation by neural networks 
using the LM algorithm is the most accurate 
method  

Escriva et al. [40] ANN Baseline load forecast The versatile and adaptive algorithm based 
on artificial neural networks (ANNs) is 
suitable to predict building energy 
consumption accurately  
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iii) Applications of AI in monitoring and
control of Hydropower plants:

Monitoring and control are the essential aspects of a 
hydropower plant. Chapuis et al. [47] introduced a 
hydropower plant outflow controller structure. The outflow 
control has been distinguished by the fact that many actuators 
(turbines and weirs) were required to control the total outflow 
of the reservoir. Adhikary et al. [48] used Fuzzy Logic for 
safe reservoir control through spillway gates. They concluded 
that the predictive accuracy of the fuzzy model based on the 
Tabu Search Algorithm (TSA) is reasonable. Xu et al. [49] 
discussed the usage of the Smart Control Theory in terms of 
the description and optimization of control parameters based 
on the Fuzzy Control Theory and the Neural Network Theory. 

Theophilus et al. [50] presented a variable hybrid Fuzzy-
based logic controller and a graded neural network called the 
Neuro-Fuzzy technique. Fuzzy logic for reservoir control 
based on rule and membership function has been 
demonstrated in the design. This has improved the turbine 
speed's stability to ensure optimum hydropower generation 
within the expected range in real-time.  

Oǧuz et al. [51] proposed a risk management framework for 
the run of the river hydroelectric power plants. Expert 
judgments were also established for the relative value of the 
risk factors. The results of the survey showed that site 
geology and environmental issues were the most related risks. 

Falchetta et al. [52] analyzed the hydro-climatic extremes that 
affect the reliability of the electricity supply. The framework 
uses algorithms of random forest regression to reduce data 
scarcity and estimate volatility in river discharges while 
ungauged. The validated forecasts were used to determine the 
effect of hydro-climatic events on the efficiency of 
hydropower. Molina et al. [53] introduced a new design for 
hydropower plant operations based on monitoring various 
signals. To prevent malfunctions, the NNPM used an ART-
MAP to identify different situations from the plant state 
variables. Also, a unique process has been developed for the 
ART-MAP module to generate a complete training set. Table 
4 shows the summary of the applications of AI in the 
monitoring and control of hydropower plants. 

Table 4. Summary of the applications of AI in monitoring and control of hydropower plant 

iv) Application of AI in policy and feature
selection:

Wotawa et al. [54] demonstrated the uses of deep learning to 
find optimum reservoir operating policies in hydropower 
river systems. Deng et al. [55] analyzed the characteristics of 
load generation combining with the wavelet transform. PSO 
has been used to refine the initial neural network weights and 
thresholds. After being checked in some provinces by the 
actual case, the precision of the load prediction reaches 93.7% 
higher than the accuracy of the assessment criteria for the 
high-voltage network. Kentel et al. [56] evaluated the most 
sustainable option of low-head (LH) hydropower technology 
for hydropower generation at wastewater treatment plant 
outlets by analyzing the economic, technical, and 

environmental criteria. Due to its superior performance on 
financial and environmental requirements, the Archimedean 
screw is a better alternative than the Kaplan turbine for 
hydropower production at the outlet of a WWTP. Bai et al. 
[57] developed a Fuzzy logic model to derive optimum
macro-level operational rules for better performance and
power generation control. A fuzzy inference method using
"if-then" rules can model the qualitative dimensions of human 
understanding and reasoning processes without using detailed 
quantitative analyses. A summary of the applications of AI in
policy and feature selection for hydropower plants is given in
Table 5.

Reference Method (s) Objective (s) Findings 
Adhikary et al. [48] Fuzzy logic 

controller 
Reservoir control Tabu Search Algorithm (TSA) 

predictive accuracy of the fuzzy 
model is reasonable 

Theophilus et al. [50] ANFIS Reservoir control Design of Neuro-fuzzy controller to 
regulate water levels and control the 
flow  

Molina et al. [53] ANN Parameter for monitoring The ART model predicts variable 
values correlated with potential 
abnormal circumstances 
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Table 5. Summary of the application of AI in policy and feature selection 

v) Applications of AI for feasibility study:

Gunduz et al. [58] analyzed the feasibility of investment in a 
hydroelectric power plant using ANN based on the project 
costs and the amount of investments. Tripathi et al. [59] 
applied the Fuzzy Rating Tool to measure the risk associated 
with Boot hydropower projects in Nepal. Shimray et al. [60] 
concluded that site selection for plant construction is complex 
and requires careful consideration. Construction of 
hydropower plants requires heavy financial expenditure, 

manpower, and time constraints. Therefore, a systematic 
approach is necessary to prevent adverse effects on the 
environment and consequently on humanity. ANN-based 
formalism shows that MLP-GA can give precise priority to 
potential sites for the installation of hydropower plants. Table 
6 presents a summary of AI applications for the feasibility 
study of hydropower plants. 

Table 6. Summary of applications of AI for feasibility study 

vi) Application of AI for accuracy
evaluation and capability assessment:

Qu et al. [61] concentrated on the prediction of concrete dam 
deformation based on RS-LSTM on the theory of Rough Set 
(RS) and a Long-Term Memory (LSTM) network. Mosavi et 
al. [62] applied an ANFIS model to control the output voltage 
and the variable-speed turbine frequency. Pérez-Díazet et al. 
[63] analyzed the axial-flow propeller turbine control
capabilities of both the speed of the turbine and the position

of the guide vanes. An experimental setup of a hydropower 
plant was built to study the dynamics of the run-of-river plant, 
as shown in Fig. 6. Head is created through pump; 
asynchronous generator has been connected through a turbine 
to the grid with some control mechanism. A Venturi flow 
meter and torque meter has been installed to measure 
discharge and torque. The experiment showed that it is 
possible to increase the turbine's performance by changing 
the position of the guide vanes accordingly. 

Figure 6. Turbine test bench [63] 

Author(s) Method (s) Objective (s) Findings 
Ak et al. [56] Fuzzy logic controller Best criteria selection The Archimedean screw is a better 

alternative than the Kaplan turbine for a 
specific case of WWTP 

Bai et al. [57] Fuzzy logic controller Optimal operation rule selection It helps to operate a machine in its efficiency 
zone. 

Author(s) Method (s) Objective (s) Findings 
Gunduz et al. [58] ANN Investment feasibility The economic viability of a project can be analyzed 
Tripathi et al. [59] Fuzzy logic 

controller 
Risk assessment Risk index can be used as an early indicator of 

project problems  
Shimray et al. [60] ANN Site selection MLP-GA can accurately prioritize potential sites 

EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

06 2021 - 09 2021 | Volume 8 | Issue 28 | e1 



9 

Zaidi et al. [64] explained the methodology for data and 
machine learning on the energy-water nexus. It has been 
revealed that possible study topics and collaboration 
opportunities between the energy-water nexus and machine 
learning communities can lead to mutual synergistic benefit. 

Further, it may also be helpful to develop a demand elasticity 
model for the aggregation of consumers [65], and PSO can be 
used for scheduling the customers' consumption [66]. Table 7 
gives a summary of the applications of AI for accuracy 
evaluation and capability assessment. 

Table 7. Summary of the application of AI for accuracy evaluation and capability assessment 

3. Conclusions and Recommendations

Literature review on the applications of AI in the hydropower 
sector have been conducted, and the following conclusions 
have been drawn: 

i) AI is presently being utilized to forecast load, silt, head,
discharge, energy demand & supply, and site selection.

ii) The construction of a hydropower plant requires huge
initial investments. Therefore, proper planning is
necessary to optimize the resources. In addition to that,
it has been observed that the monitoring of machines at
part-load operation is essential to minimize losses.

iii) ANN has been mainly used for energy generation
forecasting, inflow prediction, energy demand
prediction, and economic feasibility analysis. On the
other hand, fuzzy logic has been mainly used for plant
operation optimization, energy cost prediction, and
reservoir operation. It has also been found that DELM
performs better than ANN and ANFIS for short-term
and long-term energy consumption prediction.

iv) In future AI can be utilized in effective monitoring and
operation & maintenance optimization of hydropower
plants.

Abbreviations: 

ANFIS Adaptive neuro-fuzzy inference 
system  

CBL customer baseline load  
CFD Computational Fluid Dynamics 
DELM Deep Extreme Learning Machine 
DL Deep learning  
DR Demand response 
GWO Grey wolf optimization  
HGDNN Hydropower Generation Forecasting 

with Deep Neural Network 

LM 
Algorithm 

Levenberg-Marquardt Algorithm 

MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MARS Multivariate adaptive regression 

splines 
MFA Modified firefly algorithm  
MIVA Mean impact value algorithm  
MLP-GA Multilayer perceptron-genetic 

algorithm 
NF Neuro-Fuzzy 
NNPM Neural Network Predictive 

Maintenance 
PNN Probabilistic neural network  
PSO Particle Swarm Optimization 
RES Renewable Energy Sources 
RMSE Root Mean Square 
SCM Supply Chain Management 
SOM Self-organizing map 
SVM Support Vector Machine 
SVRGA Support vector regression with genetic 

algorithm 
TRAPMF Trapezoidal membership function 
WWTP Wastewater treatment plant 
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