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Abstract 

This paper presents a fast and novel algorithm for both radial and bilateral symmetry detection based on inverted gradient 
hash maps (IGHMs). A hash map is an associative array that stores image gradient magnitudes and orientations in the form 
of an inverted index. This mapping of image gradients to their locations permits points of interest to be located very 
rapidly without needing to search through the image. Unlike other symmetry operators it is able to detect symmetries 
without needing the range of the symmetry to be known apriori. It can also easily detect large-scale symmetry. The method 
is described and experimentally evaluated against existing methods for both radial and bilateral symmetry detection.  
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1. Introduction

The detection of symmetry is a fundamental process within 
many image-processing applications. Playing an important 
role in visual perception, it has a variety of uses in computer 
vision applications such as being an attentional operator, and 
a detector of man made and natural objects such as human 
faces. It is also useful for shape representation and 
characterization. While different kinds of symmetry can be 
detected, the most common are radial (rotational) and 
bilateral (reflective or mirror) symmetries. 

Perhaps the best-known symmetry detector is Reisfeld’s 
generalized symmetry transform [1]. This can detect bright 
and dark, isotropic or radial symmetries. It’s main drawback 
is its computation complexity, having an order of NK2, 
where N is the number of pixels in an image and K is the 
kernel size. A variety of other bilateral and radial symmetry 
detectors have been proposed in the literature such as those 
utilizing the Hough transform [2, 3, 4] which have an order 
of KBN, where B is the number of angular steps. Faster 
algorithms have been proposed for detecting only radial 
symmetry such as that of Loy [5] that has an order of KN. 

While Reisfeld’s algorithm requires 259 Mflops for a 30x30 
kernel and a 521x512 pixel image, the Hough based 
methods require around 34 Mflops, and Loy’s approach 
requires between 8-19 Mflops [6]. Detecting bilateral or 
radial symmetry across an entire image requires a kernel that 
is the same size as the image. In this case the required 
computing time becomes very large. A major limitation with 
many of these methods is that the scale or range of the 
symmetry to be detected needs to be known apriori. If it is 
not known, an iterative approach is required to find the 
symmetry using a different kernel size for each pass. This 
significantly increases computational requirements.  

Typical symmetry detection operates by either searching 
for matching gradients within a kernel using the image’s 
intrinsic Cartesian space or by using a one to many voting 
scheme using a parameterized ‘Hough’ accumulator space. 
In contrast, the method proposed in this paper operates 
purely in gradient space and avoids searching by using an 
inverted index. Until recently, inverted indices have only 
been used in for speeding up retrieval in databases [7]. Yet 
the concept of an inverted gradient space representation 
presents certain advantages for algorithms that exploit image 
gradients. Most importantly, by eliminating the need to 
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search for matching gradients within a kernel, it can reduce 
processing time by up to two orders of magnitude. 

In this paper a method for symmetry detection via an 
inverted gradient space representation using hash maps is 
presented in section 2. Experimental results for the 
performance of this algorithm relative to existing methods 
are presented in section 3 and conclusions in section 4. 

2. Method Description

This section begins with a definition of an Inverted Gradient 
Hash Map (IGHM). Section 2.2 presents the algorithm for 
detecting general symmetry directly from the IGHM. 
Section 2.3 discusses the detection discusses the detection of 
bilateral and radial symmetry. A complexity analysis of the 
algorithm is presented in Section 2.4. 

2.1. Inverted Gradient Hash Maps 

A typical image f, is a mapping of image coordinates (x,y) to 
pixel intensity values i: 

f : (x, y) → i where x, y[ ]∈ Ν2 (1) 

The derivative of the image intensity at a given coordinate 
(x,y) gives rise to the local gradient and is defined by the 
magnitude and orientation {m, θ} at that coordinate:  
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A mapping of image coordinates to their corresponding 
gradients is known as the gradient image g: 

g : (x, y) → {m, θ} (3) 

A reverse mapping from the image gradients to image 
coordinates is known as an inverted gradient image h. 

h : {m, θ} → (x, y) (4) 

While there is a single gradient for each image coordinate, 
there may be many image coordinates that have the same 
gradient. Thus, the inverted gradient image cannot be simply 
stored as a two dimensional array. Instead the inverted 
gradient image is best stored as a hash map where collisions 
in {m, θ} are resolved via chaining. This hash map is simply 
a two dimensional array of lists. These lists are indexed by 
the gradient magnitude and orientation and store the 
coordinates of the pixels having the indicated local gradient 
as depicted in Figure 1.  

The size of the two-dimensional hash map is determined 
by the desired angular and scalar resolution used for the 
values (m, θ). Typically m à 0..255 and θ à 0..360 in one 
degree increments. 

Figure 1. Inverse Gradient Hash Map Data Structure 

2.2. Symmetry Detection 

In Reisfeld’s transform a full search of the image is required 
to find potentially contributing pairs of pixels within a given 
range defined by the kernel size. Each pixel is checked 
multiple times. This is avoided using an inverse gradient 
hash map. A single pass is made through the image visiting 
each pixel only once in order to populate the hash map. 
Once the hash map is formed all of the relevant pairs of 
gradients can be found via a simple lookup and their 
contribution assessed in a single pass. 

The algorithm proceeds by simply looking up all the pairs 
of pixels having similar gradient magnitudes and opposing 
orientations (i.e. are rotated by approximately 180 degrees). 
A margin of up to +/- 45 degrees is used to include gradients 
that partially contribute to symmetry. This lookup results in 
two lists containing the coordinates of all the pixels 
matching the gradient criteria. A simple threshold can be 
used to filter out pixels below some predetermined noise 
floor.  The contribution of each pair of pixels in these two 
lists to the symmetry at the given orientation can then be 
calculated. Thus symmetry in specific directions can be 
readily determined or if desired, for all directions. 

In listing 1, a pseudo code description of the basic 
algorithm is given. The two outer two loops iterate over the 
entire hash table using indices a and m. Magnitudes below 
the noise floor thres are be ignored. The next two inner 
loops using indices b and n only iterate respectively over the 
range of (a + 45 + 180) and (a - 45 + 180) degrees and also 
(m – 5) to (m + 5) to allow for noise in the gradient 
magnitude. For each pair of indices (a, m) and (b, n) two 
lists containing the relevant points are referenced using two 
pointer variables ptrA and ptrB. For each pair of coordinate 
points, i and j in these lists, the contribution to the symmetry 
is calculated (as further described below) and accumulated if 
it is within the target range of influence. 
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Listing 1. Basic Symmetry Detection Algorithm 

function symmetry(IGHM, output, maxdist, thres) 
Begin 

  //-- visit all gradients in hash map -- 
 Foreach a = gradient orientations from 0…360 

 Foreach m = gradient magnitudes > thres 
    //-- get contributing gradient points -- 

      For (b = a-45; b < a+45; b++) 
      For (n = m-5; n < m+5; n++) 

var c = (b + 180) % 360 
      var ptrA = &(IGHM[a][m]) 

    var ptrB = &(IGHM[c][n]) 
  //-- walk coordinate lists -- 
  For (i=0; i< ptrA->len; i++) 

  For (j=0; j< ptrB->len; j++) 
var Dij = Distance(ptrA[i], ptrB[j]) 

  var Cij = Calc(a,b,ptrA[i], ptrB[j]) 
     var x = (ptrA[i].x + ptrB[j].x) / 2 

   var y = (ptrA[i].y + ptrB[j].y) / 2 
 If (Dij < maxdist) Output[x][y] += Cij 

    Endfor 
Endfor 

Endfor 
Endfor 

      Endforeach 
  Endforeach 
End 

The contribution Cij of each pair of pixels pi and pj is a 
function of the magnitude of the nominated gradient mi and 
mj, the deviation of the gradient orientation to the suggested 
axis of symmetry and optionally, the distance between 
contributing pixels Dij. This contribution is assigned to the 
halfway point qij between the contributing pixel pair. A two-
dimensional accumulator C is used to store the contribution 
of each pair at the halfway points. 

Given a pair of contributing pixels pi and pj, as depicted 
in figure 2, the first step is to determine the orientation of 
the suggested axis of symmetry φij. This is calculated as the 
normal to the vector connecting pi and pj , thus: 

φij = arctan2
pi (y)− pj (y)
pj (x)− pi (x)

"

#
$$

%

&
'' (5) 

Next the angular difference between the orientation of the 
suggested axis of symmetry φij and the orientation of the 
gradients θi and θj at each point is found, using a 
formulation that avoids costly transcendental functions. 

Δi = π − φij −θi −π

Δ j = π − φij −θ j −π
(6) 

The contribution of the gradients pi and pj becomes 

Cij =
mi ⋅mj

1+ Δi −Δ j
(7) 

To emulate the behavior of traditional symmetry detection 
algorithms a fixed threshold, maxdist, can be applied to the 
Euclidean distance Dij. This will limit the range of influence 
that gradients of the contributing pixels can exert by 
ignoring the contributions of points beyond this range limit. 

Figure 2. Geometry of points contributing to symmetry. 
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2.3 Bright, Dark Bilateral & Radial, Symmetry 

The algorithm presented in the foregoing discussion does 
not differentiate between the different types of symmetry. It 
can be further specialized to detect radial and bilateral 
symmetry as well as bright and dark symmetries. 

The basic algorithm detects symmetry by evaluating all 
potential gradients pairs irrespective of whether their 
orientation is directed towards or away from each other. It is 
possibly to restrict this to detecting only symmetry that 
pertains to bright objects on a dark background (bright 
symmetry) or dark object on a bright background (dark 
symmetry). To do this the orientation of the gradient relative 
to the halfway point needs to be determined. First the angle 
Ai from each point pi to the halfway point qij is found and 
similarly for Aj. 

Ai = arctan
qij (y)− pi (y)
pi (x)− qij (x)
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These values are next compared to the gradient orientation 
θi and θj at pi and pj. to see whether the gradients are aligned 
towards or away from Ai and Aj.  

ϕi = θi − Ai and ϕ j = θ j − Aj (9) 

Depending on the value of ψi  and ψj the contribution Cij for 
that pair is retained or set to zero. For bright symmetry the 
following relationship holds: 

Cij =
0 ϕi < 90∨ϕi > 270( )∧ ϕ j < 90∨ϕ j > 270( )
Cij otherwise
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(10) 

For dark symmetry the following relationship is used 

Cij =
0 ϕi > 90∧ϕi < 270( )∧ ϕ j > 90∧ϕ j < 270( )
Cij otherwise
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The differentiating feature between radial and bilateral 
symmetry is that radial symmetry has a focal point whereas 
the bilateral case has an axis of symmetry. Accordingly the 
detection of radial symmetries simply comes down to 
detecting strong isolated peaks and detecting bilateral 
symmetries requires finding axes of symmetry by means of 
line detection.  

Most images will have a large number of weak, local 
symmetries that will be detected. These are insignificant 

compared to the detected values from any global symmetry 
that may be present but result in a cloud of undesirable 
noise. Additionally, a single image may contain a number of 
strong overlapping symmetries that will complicate the 
separate identification of the symmetry. 

In the simplest case of radial symmetry detection, the 
noise can simply be ignored and the value and position of 
the maxima identifies the amount and location of any 
symmetry. Once a peak is found a simple neighbourhood 
search is performed to check its isolation and confirm that it 
corresponds to radial symmetry. Given a peak at (xp, yp) it is 
considered isolated if the magnitudes of its neighbours 
within a given distance are below a given threshold level 
relative to the magnitude of the peak. If I(a, b) is the 
intensity of the symmetry map at location a, b then for a 
given distance d and threshold t = 0..1, a peak is considered 
isolated if the following expression is true: 

xp, yp ⇔
i, j; I i, j( ) > t ⋅ I xp, yp( )
0; otherwise

⎧
⎨
⎪

⎩⎪j=y−d

j+d

∑
i=x−d

x+d

∑ (12) 

If the peak is not isolated, it suggests bilateral symmetry 
for which it is necessary to discover how the peak is related 
to other peaks in the image. Suitable line detection 
algorithms for this purpose include the traditional Hough 
Transform or the IGHM method for fast line detection [8] 
that is at least an order of magnitude faster than the Hough 
approach. Using the IGHM approach pixels contributing to 
lines of any given orientation are stored within a single 
column. As individual pixels may contribute to to lines with 
different y-offsets, pixel contributions can be apportioned to 
the correct potential lines. Potential lines are described in 
terms of their orientation θ and the shortest perpendicular 
distance R from the infinite extension of the line to a given 
origin. The perpendicular distance Ri from this line to the 
origin (x0, y0) where m = tan(θ) is given by equation (13): 

Ri =
−x0m+ y0 − yi + xim

m2 +1
(13) 

All collinear points of any given orientation in the IGHM 
will share the same distance to the origin. Thus lines are 
detected as the all the points with common orientation and 
distance to a given origin. The location, extent and 
orientation of detected lines give the axes of any bilateral 
symmetries that may be present in the image. Ideally, only 
the most significant lines are considered, being those with 
the greatest support in terms of extent and magnitude. 

2.4 Complexity Analysis 

From the foregoing discussion one can observe that the 
computational complexity of this method, given the three 
sets of two loops in the basic algorithm is in the order of: 
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(A * M) * (A/4 * 10) * (La * Lb) 
= k * A2 * M * La * Lb  (14) 

Here A and M are respectively the number of orientation and 
magnitude bins used in the hash map and are a function of 
the angular and scalar resolution used for the values (m, θ). 
The constant k for a typical implementation equals 2.5, but 
could be reduced if desired. La and Lb are the lengths of the 
two coordinate lists and are related to the load factor of the 
hash map. The load factor will be a function A and M 
relative to the image size in pixels N. Typically the average 
load factor Lf is defined as: 

Lf = N / (A * M) (15) 

Since on average the lengths of the two lists La and Lb will 
be equal to the load factor the following substitutions can be 
made to simplify the calculation of (12): 

A2 * M * Lf * Lf  
= A2 * M * N2 / (A * M) 2 

= N2 / M  (16) 

Although the worst-case complexity of this algorithm will 
never be greater than N2, in practice this upper bound will 
never be approached unless the hash map only a single bin 
for the gradient magnitude, which defeats the purpose of 
using a two dimensional hash map. The complexity using a 
360 x 256 cell hash map is unlikely to ever exceed N1.8 as 
can be seen from Table 1, for the different size images: 

Table 1.  Computational complexity at various sizes. 

Image Pixels Complexity 
256 x 256 N1.5 
512 x 512 N1.56 

1024 x 1024 N1.6 
2048 x 2048 N1.65 
4096 x 4096 N1.67 
8192 x 8192 N1.69 

1,000,000 x 1,000,000 N1.8 

This theoretical complexity is significantly better than the 
NK2 complexity of Reisfeld’s method and the KBN 
complexity of the Hough based methods. It is on par with 
Loy’s radial symmetry transform. This result is confirmed 
experimentally in section 3.3. 

In addition to the symmetry calculation the cost of 
generating the hash map and peak picking needs to be 
considered. As this is a linear operation with a complexity of 
N it makes fairly small contribution on the total complexity.  

3. Experimental Results

Results were obtained for three categories of experiments. In 
section 3.1 the performance of the IGHM method for 
detection of bilateral symmetry is presented and compared 

to existing methods. Section 3.2 presents the results of radial 
symmetry detection and contrasts this with the performance 
Loy’s fast radial symmetry transform. Finally, processing 
time results are presented in section 3.3. 

3.1. Bilateral Symmetry 

Bilateral symmetry detection experiments were run using a 
variety of images. For ease of comparison, a version of the 
“Cards, keys and hand” image from Reisfeld’s paper was 
used with the resulting symmetry maps shown in figure 3 
for Reisfeld’s method in the centre and the IGHM method 
on the right. A kernel size of 16 was used for Reisfeld’s 
method and the range of influence of contributing gradients 
in the IGHM method was also limited to 16. As can be 
observed the IGHM approach is better at localizing the 
symmetry of a wider range of sizes and suppressing noise.  

While symmetry detection algorithms typically work well 
for simple, small-scale symmetry such as that in figure 3, 
the real challenge is for detecting image wide symmetry. For 
this experiment the well-known Lena image [9] was first 
mirrored horizontally and then vertically around a central 
axis. This is shown in figure 4 with the originals on the left, 
the negative of the IGHM symmetry maps in the middle and 
the detected axes of symmetry shown in the right side 
images. No limits were placed on the range of influence of 
contributing gradients. Other images of natural and artificial 
objects such as human faces, a handbag and a geometric 
drawing are from the CVPR 2013: Symmetry Detection 
from Real World Images competition dataset [10] were also 
evaluated with successful detection of the bilateral 
symmetry as depicted in figure 5.  

To compare the ability of the IGHM method to detect 
image wide symmetry relative to Reisfeld’s method, this 
operator was applied with a kernel size of 256 to the 
mirrored Lena image used in figure 4. As the results in 
figure 6 show, the Reisfeld operator (right side) completely 
fails to identify the global bilateral symmetry in the image.  

3.2. Radial Symmetry 

The accuracy of IGHM based radial symmetry detection was 
evaluated against a wide range of natural images. These 
images are from the CVPR 2013: Symmetry Detection from 
Real World Images competition dataset [10]. Some images 
were relatively simple and others more complex. Some 
exhibited poor contrast between the symmetrical objects and 
their backgrounds. The radial symmetry in some of the 
images such as the palm tree, the flower, the fireworks, the 
camouflaged fish in the sand and the gyroscopic monument 
is not perfectly defined yet is still accurately detected. In 
other images, there are multiple symmetries both radial and 
bilateral. These test images and the negatives of their 
resulting symmetry maps are shown in figure 7. For this 
experiment no limits were placed on the range of influence 
of contributing gradients. As can be observed, being a global 
method, the IGHM approach is by default biased towards 
detecting large-scale symmetry. It can however be biased to 
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detecting small-scale symmetry by adjusting the influence distance of the image gradients as discussed in section 2.2.

Figure 3. Bilateral symmetry with the original image on the left, symmetry map produced by Reisfeld’s method 
using a kernel size of 16 in the middle and the IGHM based method with a Dij of 16. 

Figure 4. Symmetry of mirrored images with the originals on the left, detected symmetry in the centre and the 
resulting axes of symmetry superimposed over the original on the right. 
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Figure 5. Bilateral symmetry with the original images on the left, resulting symmetry map in the centre and the 
resulting axes of symmetry superimposed over the original on the right. 

Figure 6. Comparison of large field symmetry detection. The original is on the left, the and the symmetry maps 
produced by the IGHM and Reisfeld’s methods respectively in the middle and the right side. 

In a second set of experiments the accuracy of the IGHM 
method was evaluated against that of Loy’s state of the art, 
fast radial symmetry transform. Since that operates over a 
given range value, a number of different range values were 
used. These results are shown in figures 8a-c. The original is 
on the left and then towards the right side are the negatives 
of the resulting symmetry maps for pixel ranges of 8, 32, 64 
and 128. It can be observed that most of the time Loy’s 
method completely fails at detecting the symmetry 
irrespective of what range is selected. This is generally true 

for the more complex images shown in figure 8a. Figure 8b 
is the only one with correct detection of radial symmetry. 
However it is the symmetry of the of the bicycle wheel hub 
using a range of 8 pixels rather than the symmetry of the 
wheel itself that has been detected. Figure 8c shows that 
even for simple images when significant peaks are present in 
the resulting symmetry maps of simpler they are not located 
at the correct focal points. It can be noted that Loy’s fast 
radial symmetry transform can only reliably detect small 
circular areas and is hence more of a circular area detector 
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than a symmetry detector. This is evidenced by Loy’s paper 
that presents results for the detection of small circular 
regions within images only. While it can do so rapidly, the 
size of the symmetrical objects to be detected must be 
known apriori, otherwise their detection will completely fail. 

In contrast the IGHM method not only accurately detects 
the focal point of any radial symmetries present within an 
image, but does so just as quickly and without any prior 
knowledge about the sizes of symmetrical objects therein.  

Figure 7. Original images and their corresponding IGHM symmetry maps 
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Figure 8a. Original images and the resulting fast radial symmetry transform maps of ranges 8,32,64,128 

Figure 8b. Original images and the resulting fast radial symmetry transform maps of ranges 8,32,64,128 
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Figure 8c. Original images and the resulting fast radial symmetry transform maps of ranges 8,32,64,128 
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3.3 Processing Time 

The time performance of bilateral symmetry detection 
using the IGHM method was evaluated on a MacBookPro 
with a 2.6GHz Intel i7 with 16 GB of memory. The 
running time (in milliseconds) of Reisfeld’s general 
symmetry transform was measured for kernel sizes of 16 
and 256 as well as the running time for the proposed 
method with corresponding maximum gradient influence 
distance constraints. 

Table 2. Bilateral Symmetry Detection Time (ms). 

Image Reisfeld
-16 

Reisfeld
-256 

IGMH 
-16 

IGHM 
- -256 

Card, keys & hand  4,322 100,222 152 483 
Lena 256 x 256 4,535 104,097 811 2,527 
Elvis 256 x256 4,716 105,931 898 1,750 

These results were compared to those reported in the 
literature for two Hough based methods by Li et.al [2] and 
Yip [4]. The results reported by Li et.al. were obtained on 
a 2.2 GHz Pentium using Matlab and took from 10 to 20 
seconds for a 300x300 image. Li et.al. further reported 
that a native C language implementation, using simple 
64x64 pixel images and subsampling was able to run in 
under one second. R.KK Yip reported taking between 20-
50 seconds results using a 500MHz Pentium 2 for simple 
256x256 images of polygons, and about 50 minutes for 
more complex synthetic images. In comparison the 
proposed IGMH based method processes simple 256x256 
images in about 150ms. While it is half an order of 
magnitude faster when using small kernel sizes on 
complex images, the processing time is orders of 
magnitude less when considering image wide symmetry, 
as is predicted from the complexity analysis. 

Like the proposed method, Patraucean’s Hough voting 
based approach [3] is able to detect image wide mirror 
symmetries however no performance figures are reported 
other than that the validation time alone, for each 
symmetry candidate on an 800x600 image requires 2 
seconds on an 2.53GHz, Intel i5 based computer. Since 
typically between five to ten candidates need to be 
validated, the total time for the validation alone amounts 
to 10 to 20 seconds. This however does not include the 
time required for the selection of the symmetry candidates 
themselves. In contrast, for similar sized images the 
proposed IGHM based method completes the task in 
about 10 seconds.  

For radial symmetry the running time of the IGHM 
method was compared to Loy’s state of the art, fast radial 
symmetry transform. For the experiment a gradient 
magnitude noise floor of 32 was used, which gave 
accurate results for all of the test images. To make the 
comparison fair a range setting of 96 was used with Loy’s 
method as this gave the most accurate detection results. 
On average the running time in milliseconds of the IGHM 

method, was equivalent to Loy’s method as shown table 
3. Loy’s method was also run with a range setting of 16
for comparison. 

Table 3. Radial Symmetry Detection Time (ms). 

Image Loy - 16 Loy - 96 IGMH 
Card, keys & hand  77 412 219 
Clockface   200x200 52 272 718 
SpeedSign  200x150 42 201 278 
TapeRoll    200x150 38 193 75 
Turnbuckle 200x136 32 162 270 
Lena           256x256  101 546 299 

The running time of Loy’s method is directly proportional 
to the detection range setting as can be noted from the 
results. Yet if the size of the symmetrical objects to be 
detected apriori is not known then both Loy’s and 
Reisfeld’s methods have to be run multiple times, hunting 
for the correct setting. This increases the running time by 
a multiplicative factor. This is not the case for the IGHM 
method that does not require a range setting. If however 
the size is known before hand then the distance of 
gradient influence in the IGHM method can be limited 
with the effect of reducing the running time of the IGHM 
method further. Another factor that impacts the running 
time of the IGHM method is the setting of the gradient 
magnitude noise floor. In the experiments reducing the 
noise floor to a magnitude of 16, on average doubles the 
running time, but does not significantly affect to the 
detection accuracy. 

4   Conclusions 

Detection of symmetry is a fundamental task in image 
processing but it has traditionally been computationally 
expensive. While efficient algorithms have been 
developed for calculating radial symmetry, algorithms for 
the detection of bilateral symmetry are still relatively 
slow. This paper has presented a fast and novel approach 
to finding both radial and bilateral symmetry based on 
inverted gradient hash maps. The experimental results 
demonstrate that not only is it significantly faster than 
other methods for detecting bilateral symmetry but it can 
successfully detect such symmetry on large scales. It is 
also as fast as the fastest methods for radial symmetry 
detection, but is significantly more successful at finding 
radial symmetries. Future work will consider methods for 
automatically reducing the range of influence of gradients 
to reduce processing both time and symmetry map noise.  
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