
Coupling equation based models and agent-based
models: example of a multi-strains and switch SIR
toy model
Nghi Quang Huynh 1 , Tri Nguy en-H uu 2,3,5 , Arna ud Grignard 5 ,
Hiep Xuan Huynh 1 , Alexis Drog oul 2,4

1DREAM-CTU/IRD, CICT-CTU, Cantho, Vietnam
2IRD, Centre Ile-de-F rance, 32 avenue Henri Varagna t, 93140 Bondy , France
3Facul té des Sciences de Semlalia, Univ ersité Cadi Ayyad, Marr akech, Maroc
4Univ ersity of Science and Technol ogy of Hanoi, Hanoi, Vietnam
5IXXI, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07

Abstract

Modeling in ecol ogy or epidemiol ogy gener all y opposes tw o classes of models, Equa tion Based Models and
Agent Based Models. Mathema tical models all ow predicting the long- term dynamics of the studied systems.
How ever, the variability betw een individ uals is difficul t to represen t, wha t makes these more suitable models
for larg e and homog eneous popula tions. Mul ti-agent models all ow represen ting the attributes and beha vior
of each individ ual and theref ore provide a grea ter lev el of detail. In return, these systems are more difficul t to
anal yze. These approaches have often been compared, but rarel y used sim ul taneousl y. We propose a hybrid
approach to couple equa tions models and agent-based models, as well as its implemen tation on the modeling
pla tform Gama [8]. We focus on the represen tation of a classical theoretical epidemiol ogical model (SIR model)
and we ill ustr ate the construction of a class of models based on it.
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1. Introduction
Agent Based Modeling and Equa tion Based Modeling
are tw o common modeling approaches for dynamical
systems. Equa tion Based Models (EBMs) usuall y
describe the dynamical processes at the gl obal scale
(at the popula tion lev el in ecol ogy) while Agent Based
Models (ABMs) describe the same processes at the local
scale (at the individ ual lev el in ecol ogy). Each approach
offers differen t adv antag es and drawbacks. The scale
at which the processes are represen ted determines the
way the model is constructed: gl obal processes, a small
number of par ameters and no individ ual variability for
the EBMs; individ ual processes, high lev el of detail
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for ABMs. EBMs do not take into accoun t individ ual
variability , assuming tha t mean fie d approxima tions
convenien tly describe the dynamics at the gl obal lev el.
ABMs are relev ant when this individ ual variability has
strong effect on the dynamics emerging at the gl obal
lev el. Additionall y they all ow explicit represen tations
of the inter action netw ork of individ uals when its
topol ogy has consequences on the dynamics of the
system and the emerg ence of properties at the gl obal
lev el. ABMs also offer the possibility of an easy
integr ation of GIS and social netw ork inf orma tion.

Apart from conceptual aspects, the comm unity of
the modeler has a strong inf uence on which approach
will be chosen. A strong knowledg e in mathema tics is
needed to understand and buil d equa tions for the EBM
approach. As a coun terpart , mathema tics offer pow erful
tools to anal yse EBMs, providing a lot of in-depth
inf orma tion about the dynamics, such as equilibria and
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long term dynamics. ABM approach is more intuitiv e,
and pla tforms such as Netl ogo or Gama propose
modeling tools aiming at a wide audience. A few papers
have been dev olved to the comparison or the coupling
of both approaches. As an exam ple of a coupling of
EBMs with ABMs, we ref er to some particle transport
models [10 ] based an oceanic curren t model based on
physics and Partial Differen tial Equa tion, which output
is used in a ABM tha t describes the dispersal of fis
larv a. How ever, to our knowledg e, there are very few
models of strong coupling of an ABM with an EBM, in
the sense tha t both models use the outputs of the other .
Such a model has been dev eloped by [1] for a model of
pedestrian mov emen ts. The model is based on an ABM
describing the mov emen ts of individ uals in the streets
of a city. Each road segmen t betw een tw o crossroads
can be replaced by a mathema tical transport model in
order to red uce the amoun t of resources needed for the
sim ula tions. At each intersection, the ABM feeds the
EBM with the number of individ uals entering the road
segmen t, then the EBM gener ates agents at its end.

In this article, we ill ustr ate the benefit of hybrid
models embedding equa tions inside agents with a
specifi class of models: epidemiol ogy models with
mul tiple str ains for the virus. Epidemiol ogy models
describe the evolution with time of epidemics within
a host popula tion. Usuall y, the host popula tion is
divided in sev eral categ ories: susceptible individ uals
(hosts without disease but which can get inf ected),
inf ected individ uals, recov ered individ uals (hosts
imm une to the disease). Many categ ories can be
added depending on the disease and the model
requiremen t, such as quar antined individ uals, inf ected
but still not inf ectious, etc. Both classes of models
are commonl y used: the firs and most famous, the
SIR model by Kermack & McKendrick [9] being an
EBM. Epidemiol ogy EBMs consider the popula tion at
the gl obal scale: they are compartmen t models, each
compartmen t corresponding to a variable represen ting
the popula tion size in a giv en categ ory, or the density
at a giv en location. Evolution of the popula tion size
(demogr aph y and transition from one compartmen t
to another , such as newl y inf ected individ uals being
transf erred from the susceptible compartmen t to the
inf ected compartmen t) in a compartmen t is governed
by differen tial equa tions. Such continuous models also
have discrete equiv alen ts. ABMs represen t each host
individ uall y. Hosts can chang e sta te (e.g. susceptible to
inf ected) over time, giv en probabilistic and algorithmic
rules.

In epidemiol ogy, EBMs often rela te to biol ogical or
theoretical studies and have been used to model poten-
tial public heal th outcomes bef ore testing str ategies
directl y on popula tions. As an exam ple, Shul gin et al.
[17 ] discuss the benefit of a pulse vaccina tion using a
classical SIR model. ABM focus more on studies with

sociol ogical aspects using graphs theory: they all ow
examining the role of social netw orks, transporta tion
systems, and responses to changing contexts on the
evolution of epidemics [11 ]. As an exam ple, we ref er
to Auerbach et al. [2] study the propag ation of HIV
in a sexual contact netw ork of 40 men. Usuall y, both
approaches are used separ atel y. In this article, we focus
on a particular class of epidemiol ogy models: mod-
els with str ain-pol ymorphic pa thog ens. Mul ti-str ains
models with evolutionary processes and inter actions
are a major concern in epidemiol ogy. EBM and ABM
approaches have both been used: as an exam ple, Roche
et al. [16 ] propose an ABM of inf uenza with str ain-
pol ymorphic pa thog ens, based on an EBM model.
Roche et al. decided to use an ABM beca use the original
EBM fails to foll ow co-inf ections and consequen tly to
incorpor ate re-assortmen t. One of the main challeng es
is to defin proper ly the nature of str ains space [20 ].
A common approach is to consider a linear space of
par ameters. Evolution can be continuous, in which case
the possible of str ain is infinite or discrete. In the la ter
case, models found in the liter ature use a finit number
of str ains. This approach is relev ant for pa thog ens for
which the differen t str ains can be enumer ated. In EBMs,
the number of str ains is usuall y constr ained by the
nature of systems of differen tial equa tions, which use
a fi and finit number of equa tions. But evolution
and pol ymorphism can giv e rise to unf oreseen types
of str ains, which can chang e the number of possible
str ains. In order to release this constr ain t, we introd uce
a sim ple epidemiol ogy model with dynamical chang e of
the number of str ains.

2. Related Work
In this part , we presen t the curren t sta te of the art
of coupling the Agent-Based Modeling approach and
Equa tion-Based Modeling approach. Although these
tw o approaches aim at a common objectiv e, they are
distinct by their modeling formalism. The necessity
of coupling and comparing the tw o approaches has
been raised in sev eral research studies. They use a
common methodol ogy: expl oration is alw ays done by
implemen ting an agent-base model beside an equa tion-
based without the support of an agent-based modeling
framew ork neither an equa tion-based framew ork.

2.1. Equation-based model
The equa tion-based models [5] predict the long- term
dynamics of the studied systems. they use mathema tical
formalism based on Ordinary Differen tial Equa tions or
Partial Differen tial Equa tions. The modelling approach
is gener all y driv en by the principle of parsimon y
(or Occam’s razor), which means tha t the model
shoul d be kept as sim ple as possible, with as few
par ameters as possible. Although, if a stochastic
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approach is possible, a deterministic approach is
pref erable when possible. In addition, processes are
considered at a gl obal scale (e.g. in ecol ogy: at
the popula tion lev el instead of the individ ual lev el),
assuming tha t the processes tha t govern the system
at such a scale can be determined (often using mean
fie d approxima tion). For exam ple, the demogr aphic
dynamics of a popula tion can be described at the
gl obal lev el using a par ameter call population growth
rate, which can be deriv ated from the mean of
offsprings per individ ual per time unit. Due to such
approxima tions, the variability betw een individ uals
is difficul t to represen t, making these models more
suitable for larg e and homog eneous popula tions.
Mathema tics often provide useful anal ytical tools to
fin the properties of ODE models, such as equilibria
and asym ptotic dynamics. The evolution of the system
can be determined from mathema tical proofs, which are
more robust than just sim ula tions. For those reasons,
such models can be easil y anal ysed and are useful
for making predictions. On the contrary, transla ting
the studied processes into equa tions requires a good
knowledg e of similar physics or mathema tical models.
Processes also have to be sufficien tly smooth in order
to fi their mathema tical description. As a summary ,
such models require a larg e amoun t of work upstreams,
but they offer conceptuall y good possibilities of anal ysis
downstreams (the technical issues tha t coul d be
encoun tered in mathema tical proofs is not discussed
here).

EBMs have been widel y used for epidemiol ogy
modeling. A pragma tic reason is tha t mathema tical
anal ysis methods were the only available methods, as
computers and EBM were not available to Kermack
and McKendrick in 1927. How ever, there are man y
conceptual reasons wh y EBM are a reasonable choice
for modeling epidemics. Firstl y, epidemics arise in larg e
popula tions, and the transmission and remission rates
variability among individ uals can be easil y represen ted
according to familiar distribution laws, making such
processes easy to describe at the popula tion lev el
using mean fie d approxima tions. Secondl y, the anal ysis
of the equa tions provide useful prediction tools for
epidemiol ogy: one can determine conditions on the
par ameters for which the epidemics will arise or not.
For exam ple, the basic reprod uction number R0 can
be computed with the par ameters of the model, based
gener all y on transmission and remission rates. Values
grea ter than one mean tha t an epidemics outbreak will
occur , such an event can be then predicted without
sim ula tions.

2.2. Agent-based model
Agent-based models [7] are used to represen t the
attributes and beha vior at the individ ual lev el, and

theref ore to provide a grea ter lev el of detail. They can
describe strong individ ual variability , not only for the
attributes of the individ uals of a same popula tion, but
also for their beha vior . They are often associa ted to
small time scales, which correspond to the individ ual
processes time scales. In return, these systems may
be more difficul t to anal yze and prediction almost
rel y on sim ula tions (apart from some ABMs which are
actuall y probabilistic mathema tical models tha t can be
anal ysed with mathema tical tools). Beca use of the larg e
number of par ameters, it can be difficul t to test the
model sensitivity to one of them. A larg e amoun t of
anal ysis, dependen t on sim ula tions and on the assumed
prior distribution of par ameters has to be perf ormed in
order to provide syn thetic resul ts. ABM use a specifi
languag e to describe in detail the aspects of agents:
perception, action, belief , knowledg e, goals, motiv ation,
inten tion, reflexion etc. Processes can be written as
algorithms, offering more freedom to the modeler , as
complex decision structures can be used (e.g. if the
beha viour of individ uals depends on some condition, an
if-then-else construct can be used). The ABM approach
also proposes a more intuitiv e way to buil d the model:
processes can be represen ted as close to the perception
of the modeler . As a summary , such approach proposes
an easy and intuitiv e work upstreams, but requires a
larg e amoun t of work downstream to provide relev ant
resul ts. In addition, the larg e number of par ameters
combined with the often larg e size of popula tion
considered means tha t such a model may need a very
importan t amoun t of resources to run sim ula tions.

Interest of epidemiol ogists in ABMs relies on the
ability to giv e a detailed description of the netw ork
of transmission, and such models have been dev eloped
alongside graph theory . Such models are useful to
represen t singular events (one inf ected individ ual
entering a larg e susceptible popula tion) and the
stochasticity associa ted to such events. Such models
are used to represen t the worldwide propag ation of
inf ection due to air travel. Depending on the disease,
a detailed beha vior of the inf ection vector can be giv en.

2.3. Coupling EBM and ABM

In [19 ], the authors study the difference betw een agent-
based modeling and equa tion-based modeling in a
ind ustrial suppl y netw ork project in which netw ork’s
domain suppl y are modeled with both agents and
equa tions. They also summarize the resemblance and
variety of tw o approaches with a sug gestion to use
one or another . Their study is part of the DASCh
project (Dynamical Anal ysis of Suppl y Chains). DASCh
incl udes three species of agents: Compan y agents, PPIC
agents and Shipping agents. It also integr ates a fixe set
of ordinary differen tial equa tions (ODE).
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Figure 1. Coupling approach example: people moving on the road
are represented in the form of equation, and in form agents at
the crossroads

Coupling and comparing agent-based and equa tion-
based is also found in [15 ] where Rahmandad
et al. examine in contrast the dynamic of well-
know SEIR model which describe the common and
importan t context of the spread of contagious disease.
They compare and valida te an ABM and EBM for
epidemiol ogical disease-spread models, as well as in
[18 ] in which an ABM and an EBM of the 1918
Spanish f u are compared. In this publica tion, a model
valida tion framew ork for choosing ABM or EBM i
proposed.

In [13 ], it is proposed to use only one appropria te
modeling formalism instead of tw o approaches, and
inf er an EBM from an ABM SIR model by expl oring
the ded ucible par ameters like number of individ ual in
popula tion, rates of inter actions base on dimension of
environmen t. They have done a study with the measure
based on disk graph theories [12 ] to link ABM with EBM
dynamical systems applied to theoretical popula tion
ecol ogy.

Another coupling approach is proposed in [14 ], [1]
or [4]. In the sim ula tion of emerg ency evacua tion
of pedestrians in case of a tsunami in Nha trang
City, Vietnam, people mov e along the road netw orks
as agents. The agent based model of individ uals
mov emen ts are replaced by equa tion models for the
roads with higher traffic. This transf orma tion giv e
the model an addition of time and resource for such
evacua tion model which usuall y take into accoun t hug e
popula tions.

All these approaches provide mechanisms tha t all ow
inter action betw een sev eral models but they still have
the foll owing disadv antag es:

- In gener al, these approaches are not generic and are
difficul t to be re-im plemen ted in differen t domains and
contexts.

- There are no consider ation of the differences in
spa tial and tem por al scales.

- There are no framew ork tha t support coupling
of heterog eneous models betw een equa tion-based
modeling and agent-based modeling par adigm.

3. Description of the epidemiology model
In the presen t paper , we discuss the concept of
integr ating EBM inside ABM. We buil d a model
composed of sev eral sub-models. Each sub-model ref ers
to an EBM or ABM. Instead of choosing betw een
an ABM or EBM approach as in previous works for
the gl obal models, sub-models are integr ated in a
framew ork tha t all ows using both par adigms at the
same time.

As a demonstr ation, we introd uce a mathema tical
epidemiol ogy model with dynamical chang e of the
number of str ains. The epidemiol ogy dynamics for a
giv en str ain is described by a classical EBM, while the
str ain evolution dynamics is described by an ABM.

The equa tions of the mathema tical model will be
embedded into agents, each agent represen ting a
differen t str ain. Each str ain is char acterized by differen t
values of the par ameters. In order to ill ustr ate the
benefit of the hybrid approach, the mono-str ain
mathema tical epidemiol ogy model has to verify tw o
conditions:

• the model must be as sim ple as possible, with
very few par ameters. This condition all ows a good
tractability of the model. Beca use each str ain
corresponds to particular values, it is easier to
monitor the dynamics of evolution of str ains with
a low number of par ameters;

• epidemics outbreak does not fade away with
time. This condition ensures tha t the evolution of
str ains can be monitored over an infinit period of
time. Such a condition is not met with the classical
SIR model [9] and thus a slightl y differen t class of
compartmen t models must be chosen.

3.1. Mono-strain models
We base our study on a common mono-str ain SIS model,
which is a compartmen t model with tw o compartmen ts
S , I which are respectiv ely the number of susceptible
and inf ected individ uals at a giv en time. The evolution
of the S and I popula tions is governed by a system of
differen tial equa tions, which reads:{

dS
dt = −βIS + γI
dI
dt = βIS − γI

(1)

where the total popula tion I + S is constan t over
time and normalized to 1. In presence of inf ected
individ uals, the number of susceptible individ uals
inf ected per unit of time is proportional to the to
size of the inf ected popula tion and the proportion
of susceptible individ uals in the total popula tion.
The coefficien t of proportionality is written β and is
called the infection transmission rate. Finall y, constan t
γ corresponds to the recov ery rate, the rate at which
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inf ected individ uals recov er from the disease and
become susceptible again. Such a model corresponds
to diseases for which there is no long term imm unity ,
such as common cold and inf uenza. The SIS model
has an explicit anal ytic solution and its dynamics is
well known. Let us introd uce the basic reproduction
number R0 = β/γ . A well know resul t is tha t if R0 < 1,
the epidemic dies out , while if R0 >, the epidemics
spreads and the system tends tow ard an equilibrium
with a inf ected popula tion of size 1 − 1/R0 . Theref ore,
such a model verifie the tw o previous conditions: there
are only tw o par ameters (β and γ), and the dynamics
tends tow ard a steady sta te with a persisten t inf ected
popula tion.

A SIR model modify so as incorpor ate vital dynamics
can be used. Such a model use a third compartmen t
R which represen ts the recov ered individ uals, who are
free from the disease and who cannot be inf ected again.
The model reads:

dS
dt = µ − µS − βIS
dI
dt = βIS − (γ + µ)I
dR
dt = γI − µR

(2)

Constan t µ is the popula tion renew al rate, which
means tha t popula tions S , I ad R suffer from a natur al
mortality rate of µ, while new individ uals are prod uced
with the same fertility rate µ. The basic reprod uction
number is β/(µ + γ). If R0 > 1, the dynamics tends
tow ard a steady sta te with a inf ected popula tion
density of µ/β(R0 − 1). This model also verifie the tw o
conditions. The model has three par ameters, how ever
par ameter µ is not rela ted to the disease and won’t affect
the str ains monitoring.

3.2. Multi-strains models, with a constant number of
strains
Usuall y, mul ti-str ains models are sta tic, meaning tha t
N is constan t over time and there is no new str ain tha t
was not presen t at time t=0. Such approach is consisten t
with the mathema tical approach of dynamical systems:
the number of equa tions is the same once and for all.
We propose a dynamics approach where str ains can be
crea ted or remov ed. The previous models are modifie
in order to consider n differen t str ains, the str ain i being
char acterized by a couple of par ameters (βi , γi), n being
constan t. The inf ected popula tion density is denoted Ii .

The modifie SIS models reads:
dS
dt = −

n∑
i=1
βiIiS + γiIi

dI
dt =

n∑
i=1
βiIiS − γiIi

(3)

A str aightf orw ard anal ysis of the system shows
tha t appart from the disease free equilibrium (DFE)
(1, 0, . . . , 0), there exist n equilibria

Ei = (1 − γi /βi , 0, . . . , 0, γi /βi , 0, . . . , 0)

where the non-zero elemen t corresponds to the
popula tion inf ected by str ain i. If R0 > 1, all those
equilibria are unstable but the one tha t maximizes
γi /βi . Let us denote i∗ the number of the str ain
corresponding to the stable equilibrium. The systems
tends tow ards this equilibrium, with a non-n ull
inf ected popula tion density , with individ uals inf ected
only by the str ain i∗. Theref ore this model ill ustr ates the
competitiv e excl usion among the str ains: only the str ain
with the highest fitnes surviv es.

Similar ly, the SIR model with vital dynamics and n
differen t str ains reads:

dS
dt = µ − µS −

n∑
i=1
βiIiS

dI
dt =

n∑
i=1
βiIiS − (γi + µ)Ii

dR
dt = γiIi − µR

(4)

Similar resul ts can be obtained, with only one str ain
surviving in the long term. One shoul d notice tha t such
a model introd uces sim ple competition betw een the
str ains as cross-imm unity is not considered. Theref ore
there is only one gl obal compartmen t for recov ered
individ uals, which is common to all str ains. In
this model, we only take into accoun t virus str ains
muta tions. Host ecosystem, evolutionary processes and
host variability impose selection on virulence [6].
Evolutionary ecol ogy epidemics models coul d benefi
for such approach, mixing agents and equa tions.

3.3. Multi-strain models, with varying number of
strains
We now consider models in which the number of
str ains varies with time: str ains are remov ed when the
corresponding popula tion is too low, and a new str ain
is crea ted when a random muta tion occur in an existing
str ain. Formall y, the models can be described by the
systems of equa tions 3 and 4, except tha t tw o rules are
added:

• when the popula tion of str ain i drops bel ow a
threshol d σ , str ain i is remov ed from the system.

• for each str ain i, a muta tion can occur with
a probability p. When the muta tion occurs, a
density m of individ uals is remov ed from the
popula tion inf ected by str ain i. A new str ain n +
1 is crea ted, with an initial inf ected popula tion
density In+1 = m. New par ameters βn+1 and γn+1
are randoml y chosen with reg ard to old values βi
and γi .
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In our study , we decide to chose the values βn+1
and γn+1 according to a unif orm distribution on the
respectiv e interv als [0.7βi , 1.3βi] and [0.7γi , 1.3γi].

4. Hybrid concept and implementation

Mathema tical models often do not consider systems
of equa tions with a varying number of equa tions.
Here we propose to use ABM with agents embedding
equa tions in order to buil d a system of equa tions tha t
can evolve with time. Strains are represen ted by agents
which can comm unica te with each other . For each
str ain, there is one equa tion describing the evolution
of inf ected individ uals corresponding to tha t str ain.
Such a system is an ABM and an EBM in the same
time: each str ain is considered as an individ ual, but the
popula tion of susceptible and inf ected is considered at
the gl obal lev el. Each str ain is an entity tha t embeds an
equa tion. The inter action betw een individ uals form a
larg e dynamics set of equa tions. It can be seen either as:

- an ABM composed of str ains, each individ ual
embedding an equa tion. Inter actions betw een the
individ uals giv e rise to a non-sta tic system of equa tions,
and so to an EBM tha t evolves with time.

- an EBM, in which each equa tion is represen ted by
an agent corresponding to a str ain which is dynamicall y
linked to the others. The EBM is a non-classical one, in
the sense tha t it can be dynamicall y be chang ed.

The model has been implemen ted on the Gama
pla tform [8], which all ows embedding equa tions. In an
equa tion associa ted to an agent, it is possible to ref er to
the variable and equa tions embedded in other agents,
in order to buil d dynamicall y a set of equa tions.

The str ains are susceptible to muta tions, and
so to evolution through competition for resources
(popula tion susceptible to the disease). From time to
time, a str ain is randoml y selected for muta tion, a
new str ain of one individ ual being crea ted, and the
par ameters beta and gamma for the new str ains being
chosen randoml y with values close to the ones of the
old one. The set of equa tions is upda ted dynamicall y,
and the new str ain joins competition for resources.

4.1. Dynamics of the model
The model we buil t ill ustr ates a phenomenon of genetic
drifts. According to excl usiv e competition principle, the
str ains with the smaller fitnes final y get discarded
from the pool. Depending on the frequency of the
muta tion events and on random aspects, it happens
tha t sev eral str ains coexist for a short period (up to
20 in our sim ula tion with par ameters ...) According to
expecta tion, the drift tends tow ards par ameter rang e
where beta is larg e and gamma is small.

Figure 2. Representation the dynamic of "Switch" model

4.2. Model "Switch"
We ill ustr ate our coupling methodol ogy by implemen t-
ing a hybrid model, called Switch, combining equa tions
and agents on the modeling pla tform Gama. We buil d a
class of SIR model based in both ABM and EBM (figur
2), in which people are represqen ted by agents when the
density is low, and by equa tions if the density is higher ,
a til ting mechanism for moving from an approach to
another .

Both models are based on the same assum ptions.
They involve tw o processes: contamina tion and recov -
ery. The ABM model also adds spa tial inter actions
and dispersal. The mathema tical model is indeed a
mean fie d approxima tion of the ABM and represen ts
the dynamics at the gl obal scale, while ABM shows
the dynamics at local scale. The contamina tion and
recov ery processes happen frequen tly with a "unif orm
distribution " over time.

- Assum ption i) implies tha t processes can be
represen ted at a continuous time;

- Assum ption ii) all ows to replace probabilities
of processes occurrences by expectancies; final y
assum ption iii) all ows to consider tha t all individ ual
have the same number of neighbors.

- Assum ption iii) popula tions are considered to be at
sufficien tly high density; popula tions are considered as
homog eneous for spa tial distribution of individ uals, as
well as for the distribution of each type of individ uals
(S, I and R).

Considering tha t assum ption i) hol ds is rather natu-
ral, as processes occur along constan t time steps. Epi-
demiol ogical models usuall y assume tha t popula tion
densities are high, thus condition for assum ption ii)
seems to be natur all y fulfilled How ever, in a larg e
popula tion, the density of inf ected (or even suscep-
tible) individ uals may be very low. Indeed, a usual
condition for such kind of model is the introd uction
of a small group of inf ected inside a disease free
popula tion. Mathema tical model are deterministic and
ignore the variability due to stochasticity which al ter
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the dynamics: if one inf ected individ ual is introd uced
in the popula tion, if basic reprod uction rate R0>1, and
epidemic outbreak will be predicted by the mathema t-
ical model. How ever, in real cases or for ABM, there is
a chance to avoid epidemic outbreak as contamina tion
may not occur thanks to the stochasticity of inf ection
process. Assum ption iii) may not be possible for spa-
tiall y explicit ABM, as spa tial distribution does not
remain constan t and spa tial pa tterns coul d appear , like
contamina tion waves. Assum ption iii) makes tha t the
EBM, as mean-fie d approxima tion of ABM, is also the
the "limit " (in the mathema tical sense) of the EBM when
spa tial process tends to spa tial homog eneity , which is
achiev ed by letting the neighborhood of an individ ual
tend to cover the whole environmen t, or by increasing
the speed of mov emen t of individ uals (well mixed
popula tions).

Comparing both EBM and ABM is exhibiting the
differences due to approxima tions done for the ABM
model due to assum ptions ii) and iii). Assum ption
ii) is at the heart of the model switch problema tic:
EBM shoul d not be used when the conditions for this
assum ption are not fulfilled Assum ption iii) also add
a challeng e to model switching, as corrections have
to be made in order to represen t into the ABM the
effects of spa tial structures tha t have been hidden
by the approxima tion made with this assum ption.
Furthermore, switching from EBM to ABM introd uces
an explicit spa tial distribution of individ uals, for which
assum ption iii) doesn ’t have to be made. The spa tial
distribution, hidden in the EBM, may have to be
gener ated.

The tw o models are based on SIR models assum p-
tions. Individ uals can be in three differen t sta tes: sus-
ceptible individ uals (S): the individ ual is disease-free
and can be contamina ted by contact with an inf ected
individ ual (I). After some time, inf ected individ uals
recov er from the disease (or die). They are assumed
to be in a recov ered sta te (R): they are imm une to the
disease and do not take part anymore in the inf ection
dynamics. The models involve the foll owing processes:

- inf ection: transmission of the disease from inf ected
individ uals. This depends on the contact rate betw een
susceptible individ uals and inf ected individ uals;

- recov ery: inf ected individ uals heal and recov er from
inf ection;

- mov emen ts: individ uals are assumed to mov e
within the considered environmen t. There are tw o type
of mov emen t, one is random walking and other is not
random, (figur 3).

Hypothesis found in both models:
- Recov ery rate: the remission rate is very similar in

the agent-based model and the equa tion-based model.
In the ABM, par ameter gamma is the probability to
recov er per time unit. In the EBM model, the par ameter
gamma is a mean-fie d approxima tion, which means

Figure 3. Two type of deplacement of agent in an environment

tha t the number of recov ered individ uals giv en by the
EBM model is exactl y the expectancy of the number
of recov ered individ uals giv en by the ABM model
(provided tha t there is no inf ection occurring at the
same time). Stochasticity of recov ery rate appears at low
I popula tions, otherwise both models fit

- Contact rate: in the presen t models, contact are
define in a similar way for the mathema tical model
and the agent-based model. In the agent-based model,
tw o individ uals are considered to be "in contact "
if they are in each other’ s vicinity for one time
step. In mathema tical model, space is not explicitl y
represen ted, but the average number of neighbours
can be determined. Stochasticity of contact rate appear
beca use of size of neighbourhood (strong variability in
number of hosts neighbours) and speed of hosts (low
speed means no mixing, neighbourhood proportion of
R and I may grea tly vary).

We compare this model with existing models and
presen t a method to determine the par ameters for
transitions betw een models. In particular , we establish
a link betw een the par ameters of the mathema tical
model, and the represen tation of contacts and travel
agents in a spa tial environmen t.

We are also interested in how to compensa te for the
loss of inf orma tion on spa tial structures when we mov e
an agent model to a mathema tical model. Curren tly,
we save the attributes, especiall y the location and the
sta tus, of all agents and re-assign to agents when they
need. We are also interested in how to compensa te
for the loss of inf orma tion on spa tial structures when
we mov e an agent model to a mathema tical model.
Curren tly we have implemen ted tw o foll owing method
of crea tion new distribution after the switch from EBM
to ABM.

5. Experiments
5.1. Objective, Data and tools used
In this part , we do experimen t to prov e the capabilities
of coupling framew ork tha t we have proposed to
compose the ABM and EBM. The experimen ts will have
three scenarios, each scenario The data used in the
"Switch " model is bring in the real da ta of SIR model.
The epidemiol ogy’ s par ameters are the spread of the f u
and measles.
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Figure 4. an ODE solver structure inside a modeling and
simulation platform

5.2. Tools used: An ODE-integrated environment
We tackle the problems of differences modeling
formalism with our proposition of coupling by
integr ating these tw o approaches in a modeling and
sim ula tion pla tform, GAMA [8], in which the equa tion-
based model is declared as an attribute of the agent. It
has tw o famous exam ples of equa tion-based modeling
which are the Lotka and Volterr a [24] modeling of prey -
preda tor dynamics or the Kermack and McKendrick [3]
SIR model to represen t epidemic dynamics.

We have introd uced in GAMA the possibility to
describe the dynamics of agents using a differen tial
equa tion system and to integr ate this system at each
sim ula tion step. With the enhancemen t of GAMA
modeling languag e (GAML), modelers have possibility
to write equa tions linking agentsâ ĂŹ attributes and
to integr ate equa tion-based system with agent-based
system. The GAML syn tax permit to write an system
of equa tions of most EBM based on the implemen tation
with Commons Mathema tics Libr ary.

To figur out the coupling problem of differen t tem-
por al scale, we introd uce the controller of integr ation
steps and sim ula tion steps beside the tw o curren t inte-
gration method Rung e-Kutta 4 and Dormand-Prince
8(5,3). This controller is main tain in the sol ve sta temen t
of GAML and woul d be call at each sim ula tion step.
In the figur 4, an equa tion-based model in form of
algebrics is represen ted into GAML syn tax tha t are
called Equa tion. Set of equa tions make a System of
equa tions. This type of entity will be integr ated by our
GAMA ODE (Ordinary Differen tial Equa tion) Sol ver
packag e.

5.3. Represent classical SIR model in EBM and
ABM formalism.
The firs experimen t show tha t we can easil y modeling
the classical SIR in form of equa tion-based and also
agent-based. As in the figur 5, an differen tial equa tion
can be declare with tw o expression. The firs one on the
left of “=“ is the keyw ord diff foll owed by the name of
integr ated variable and the time variable t:

d i f f ( < i n t e g r a t e d v a r i a b l e > , t )
= < c a l c u l a t i n g e x p r e s s i o n > ;

Figure 5. Representation of an equation-based model in an
simulation platform.

An EBM is then represen ted as a attributes of agent with
a block of equa tions:

e q u a t i o n < n a m e _ i d e n t i f i e r > {
d i f f ( . . . ) = . . . ;
d i f f ( . . . ) = . . . ;
. . .

}

6. Results
6.1. Discussion on the methodology
The EBM submodel describes the dynamics of the
epidemic at the gl obal scale: host popula tion is
considered at gl obal popula tion through density
measuremen ts. The ABM submodel describes the
dynamics of str ain evolution at the individ ual lev el: at
each momen t, one can describe which str ains are activ e
and which have been remov ed. One shoul d notice tha t
the gl obal lev el for EBM is indeed embedded in the
individ ual lev el for str ains: to each individ ual str ains
corresponds a density of inf ected popula tion.

6.2. Adjust the parameters to calibrate EBM and
ABM
The ABM sim ula tion resul t is a stochastic resul t, instead
of EBM’resul ts are deterministic. Our proposition
all ow modeler to calibr ate the SIR model in ABM fi
with EBM. We launch the sim ula tion with foll owing
par ameter: N = 500; I = 1.0; S = N - I; R = 0.0; beta
= 1/2.0; gamma = 1/3.0. After 100 sim ula tions, the SIR
model and agent model presen t significa t differences
from (figur 6):

- popula tion initial (N)
- effect of size grid (grid size)
- effect of topol ogies (neighborhood size)
The transition beta from EBM to ABM is then adjust

an amoun t alpha. We rela unch the sim ula tion 100 times
to expl ore the value of alpha. We found the fixes alpha
= 0,45 (figur 7). We have also found sev eral criterias
tha t woul d be effect the fitnes betw een SIR EBM
and ABM are: difference of synchronous/asynchronous
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Figure 6. Adjust the beta parameter of SIR model to calibrate
EBM with ABM result.

Figure 7. Adjust the beta parameter of SIR model to calibrate
EBM with ABM result.

(inf ect others vs is inf ected); random walk; effect of
beta; dispersion; effect of mov emen t speed.

6.3. Study of the dynamics of multi-strains
epidemiological model

with our proposed coupling methodol ogy, modeler can
easil y study the mul ti str ain epidemiol ogical model by
the implemen tation like in the figur 8. agent str ain
can be crea ted an remov ed dynamicall y in time of
sim ula tion.

As in the case of a constan t number of str ains,
competitiv e excl usion prev ails: the str ains with lowest
fitnes eventuall y disappear , while the one with the
highest remains. As muta tions all ow the appear ance of
new str ains, str ains with higher fitnes appear (higher
R0 = β/γ ratio), and it is possible to exhibit a genetic
drift. In figur 9, it is shown tha t evolution favours
an increase of β (better contamina tion ability) and a
decrease of γ (longer inf ection duration).

Figure 8. Multi-strain SIR model declared in Gama platform

Figure 9. The result of

6.4. Regenerate spatial information from EBM to
ABM
In this experimen t (figur 10 ), we save the attributes,
especiall y the location and the contamina tion sta tus
of all agents when we do a switch from ABM to
EBM model. Then when re-assign to agents. The imag e
represen t the reg ener ation algorithm in figur 10 is tw o
exam ple resul ts. With the same manner , we have do 100
times of sim ula tion and compare the sta te of popula tion
with and without a switch in the table 11 to see the
efficien t of algorithm.

7. Conclusion
This paper has proposed a hybrid approach combining
modeling equa tions and agents, as well as its implemen-
tation on the modeling pla tform Gama. We are inter-
ested in the represen tation of this approach theoretical
epidemiol ogical models. We ill ustr ate the construction
of a class of models based on a SIR model in which
people are represen ted by agents when their density
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Figure 10. Regeneration of spatial information algorithm, the
example result: (a),(d) population before the switch, (b)(e)
population at threshold without a switch, (c)(f ) population
regenerated from (a)(d) after a switch

Figure 11. Average result by simulate 100 times the spatial
regeneration algorithm.

is low, and equa tions with higher density , a til t mech-
anism for moving from an approach to the other . We
compare this model with existing models and presen t a
method to determine the par ameters during transitions
betw een models. In particular , we seek to establish a
link betw een the par ameters of the mathema tical model
and represen tation of contacts and travel agents in a
spa tial environmen t. We are also interested in how to
compensa te the loss of inf orma tion on spa tial structures
when moving an agent model to a mathema tical model.
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