
1

A Variable Neighborhood Search Algorithm for
Solving the Steiner Minimal Tree Problem in Sparse
Graphs
C.V. Tran1,*, N. H. Ha2

1The Center for Information Technology and Communication, 284 Tran Hung Dao Street,
 Ca Mau City, Vietnam

2 Research Institute of Posts and Telecommunications (RIPT), 122 Hoang Quoc Viet Street,
Ha Noi City, Vietnam

Abstract

Steiner Minimal Tree (SMT) is a complex optimization problem that has many important applications in science and

technology; This is a NP-hard problem. Much research has been carried out to solve the SMT problem using approximate

algorithms. This paper presents A Variable Neighborhood Search (VNS) algorithm for solving the SMT problem in sparse

graphs; The proposed algorithm has been tested on sparse graphs in a standardized experimental data system, and it yields

better results than some other heuristic algorithms.

Keywords: Minimal tree, sparse graph, variable neighborhood search algorithm, metaheuristic algorithm, Steiner minimal tree.

Received on 01 December 2018, accepted on 07 December 2018, published on 10 December 2018

Copyright © 2018 C.V. Tran and N. H. Ha, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution

and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.6-2-2019.156534

A preliminary version of this work under the title “A Variable Neighborhood Search Algorithm for Solving the Steiner Minimal Tree

Problem” has appeared in the proceedings of the 7th EAI International Conference, ICCASA 2018 and 4th EAI

International Conference, ICTCC 2018 in Viet Tri City, Vietnam, November 22–23, 2018.

1.

1.1. Definitions

This section presents several definitions and properties

associated with the Steiner minimal tree problem.

Definition 1. Steiner tree [2]

Let’s assume that G = (V(G), E(G)) is a simple undirected

connected graph with non-negative weight on the edge; V(G)

is the set of n vertices, E(G) is a set of m edges, w(e) is the

weight of edge e, e ∈ E(G). Assume that L is a subset of

vertices of V(G); Tree T passing through all vertices in L is

called Steiner tree's L.

The set L is called the terminal set, the vertices in the set L

are called the terminal vertices; the vertices in the T trees that

*Corresponding author. Email: chuongtv@camau.gov.vn; namhh@ptit.edu.vn

are not in the set L are called the Steiner vertices. Unlike most
common spanning tree problems, the Steiner tree just passes

 Introduction through all the vertices in the terminal set L and some other

vertices in the set V(G).

Definition 2. Cost of Steiner tree [2]

Let T = (V(T), E(T)) is a Steiner tree of graph G, cost of the

tree T, denoted by C(T), is the total weight of the edges of the

tree T, i.e. 𝐶(𝑇) = ∑ 𝑤(𝑒)𝑒∈𝐸(𝑇)

Definition 3. Steiner Minimal Tree [2]

Given the graph G, the problem of finding Steiner Trees with

Minimal Cost is defined as the Steiner Minimal Tree problem

– SMT or more concisely as Steiner Tree Problem.

In this paper, the word graph is used to describe a connected

undirected graph with the non-negative weights.

1.2. Application of SMT problem

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

http://creativecommons.org/licenses/by/3.0/
mailto:chuongtv@camau.gov.vn

C. V. Tran, N. H. Ha

2

The SMT problem has important applications in different

fields of science and technology. For example, it has been

applied in network design, circuit layout…SMT problem is

NP-hard [6,7], and hence its applications are fallen into two

different perspectives: design and execution. Design

problems favor the quality of the solution while running time

is more prioritized for execution problems [1,3,8,11].

1.3. Related work

The SMT problem has attracted the academic attention of

many scientists in the world over the past decades; There have

been different algorithms for solving SMT problem that can

be divided into the following approaches:

The first approach is the algorithms for finding the correct

solution. Algorithms of this class are dynamic programming,

augmented Lagrangian-based algorithms, Branch and Bound

Algorithm, etc.. One of the advantages of this approach is that

correct solutions can be found. However, this class of

algorithms is only suitable for the small-sized problems. The

algorithms with correct solutions can be used for

benchmarking the accuracy of approximation algorithms.

Finding a correct solution to the SMT problem is a big

challenge in combinatorial optimization theory [4,6].

The second approach is the class of heuristic algorithms.

Heuristic algorithms make use of individual experiences for

finding solutions to a particular optimization problem.

Heuristic algorithms yield acceptable solutions, which might

not be the best solution, in the permissible time. Optimal

running time can be achieved with this class of algorithms

[9,10,11].

The third approach is metaheuristic algorithms. The

metaheuristic algorithms use a variety of heuristic algorithms

in combination with auxiliary techniques to exploit the search

space; The metaheuristic algorithm belongs to the class of

optimal search algorithms. There have been already a number

of different projects employed the metaheuristic algorithms

for solving the SMT problem such as local search algorithms,

Tabu search algorithms, genetic algorithms, parallel genetic

algorithms, etc. Up to the present, the metaheuristic approach

provides high quality solutions among approximation

algorithms [13,14]; However, the execution time of the

metaheuristic algorithms is much slower than that of the

heuristic algorithms.

This paper presents a metaheuristic approximation

algorithm that is a VNS algorithm for solving the SMT

problem in sparse graphs, a preliminary version of this work

under the title “A Variable Neighborhood Search Algorithm

for Solving the Steiner Minimal Tree Problem” [16].

2. VNS algorithm for solving SMT problem

2.1. Using the variable neighborhood search
Node-Base (Node-Based) [12]

Input: Let G=(V(G), E(G)) be an undirected graph with V - a

set of vertices, E - a set of edges; L ⊆ V - a set of terminal

vertices.

Output: A minimum Steiner tree T

Use Like Prim’s algorithm to search a spanning tree in the

graph, T is a tree;

Remove redundant edges of T, then T is a Steiner tree,

proceed as follows: With each Steiner tree T, browse all

pendant vertices u ∈ T, if u ∉ L, delete edge containing vertex

u from E(T), delete vertex u in V(T) and update the vertex’s

degree which is adjacent to vertex u in T. Repeat this

procedure until T is unchanged.

while (stop condition is not satisfied)

{

Let T1=T;

Select random vertex u ∈ T1; the vertex u which doesn’t

belong to a set of terminal vertices L; then, remove the edges

related to the vertex u in T1; when T1 is divided into more

connected parts; that graph is T2.

Arrange the edges of the G – graph by ascendant weights,

add the edges in the order sorted in G to the graph T2 until T2

is a tree;

Remove redundant edges in T2;

If the tree T2 is lighter weight than T, replace T by T2; vice

versa, if the tree T2 is not created, let T be T1;

}

2.2. Using the variable neighborhood search
Path Based (Path-Based) [13]

A key-node is a Steiner node with degree of 3 at the lowest. A

key-path is one with all intermediate vertices (not be terminal

vertex) with degree 2, the first and the last vertex of that path

or belong to a set of terminal vertices or become a key-node.

Searching a random key-path proceeds as follows: Select a

random edge in T; if the first and the last vertex are ones with

degree 2 and they and Steiner vertices, add the next adjacent

edge of that vertex until the first and the last vertex have

degree not equal to 2 and they are not Steiner vertices, check

if the path is a key-path or not. Stop if stop condition is met.

Using Like Prim’s algorithm to search the Steiner of tree, T

is a tree;

Remove redundant edges of T, then T is a Steiner tree;

while (stop condition is not satisfied)

{

Let T1=T;

Suppose that p is a random key-path; proceed removing

p; then T is divided into two components Ta and Tb;

Select the minimum-weight edge which connects two

components Ta and Tb; suppose we have a new tree T2.

If the tree T2 is lighter weight than T, replace T by T2; vice

versa, if T2 doesn’t exist, let T be T1;

}

2.3. Using VNS algorithm to solve SMT
problem

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

A Variable Neighborhood Search Algorithm for Solving the Steiner Minimal Tree Problem in Sparse Graphs

3

Stop condition: Stop condition is considered to be met if the

best solution cannot be improved by after a predefined

number of iterations t.

Initial condition: Each spanning tree is created by using

Prim's algorithm described as: initialize a tree with a single

vertex chosen arbitrarily from the graph. the algorithm will

be iterated for n-1 times. In each iteration, grow the tree by

adding a vertex that is adjacent to at least one vertex of the

spanning tree without consideration of its weight and its

connected edges to the spanning tree. This algorithm is named

as Like Prim’s algorithm.

Like Prim (V, E)

Input: Graph G = (V(G), E(G))

Output: Return a random spanning tree T = (V(T), E(T))

1. Choose a vertex u ∈ V(G);

2. V(T) = {u};

3. E(T) = ∅;

4. while (|V(T)| < n) {

5. Choose a vertex v ∈ V(G) – V(T) v is an adjacent vertex

of a vertex z ∈ V(T);

6. V(T) = V(T) ∪ {v};

7. E(T) = E(T) ∪ {(v, z)};

8.}

9. return spanning tree T;

Run the Like Prim's algorithm separately for each

connected component and/or connected components of the

graph or to find the minimum spanning forest in heuristic and

metaheuristic algorithm to solve SMT problem. The

advantage of Like Prim's algorithm in comparison with

heuristic algorithms in providing an initial solution is the

variety of edges of the spanning tree. The quality of the initial

population created by Like Prim's algorithm is not so good as

that of the initial population created by heuristic algorithms.

However, after the evolutionary process, spanning trees

created by Like Prim's algorithm usually provide better

quality solutions.

Step – form of VNS algorithm to solve SMT problem:

T is a spanning tree which is formed by Like Prim

algorithm.

Remove redundant edges.

Get the Steiner tree by removing redundant edges in T;

While (The stop condition is not true)

{

- Execute 2 variable neighborhood search Node-based and

Path-based one by one;

- Record the better solution;

- While executing VNS algorithm, if a better solution is

found, execute VNS algorithm from the beginning (after

while loop) and vice versa, continue to the next VNS

algorithm;

- VNS algorithm stops when stop condition is met. The

stop condition in this particularly algorithm is the number of

iterations, which is 10*n in this case, n is the number of

vertices in the graph.

}

Return to the best solution.

3. Experiments

3.1. Experimental data

Experiment has been conducted to evaluate related

algorithms. 78 sets of data have been selected from the

standard experimental database for benchmarking algorithms

for solving the Steiner tree problem. The data set can be found

at URL:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

[5]. 18 graphs are from group steinb, 20 graphs are from

group steinc, 20 graphs are from group steind and the other

20 graphs come from steine.

3.2. Experimental environment

The MST-Steiner, SPT-Steiner, PD-Steiner, Node-based,

Path-based algorithm and VNS algorithm are implemented in

C++, DEV C++ 5.9.2; experimented on a Virtual Server

Windows server 2008 R2 Enterprise, 64bit, Intel(R) Xeon (R)

CPU E5-2660 @ 2.20 GHz, RAM 4GB.

3.3. Experimental results and evaluation

Experimental results of algorithms are given in Tables 1, 2,

3, 4. The tables are structured as follows: The first column

(Test) is the name of the data sets in the experimental data

system; number of vertices (n), number of edges (m) and

number of vertices in the terminal vertices (|L|) of each graph;

The next column records the Steiner tree’s cost value

corresponding to the MST-Steiner, SPT-Steiner, PD-Steiner

or Node-based, Path-based and Variable Neighborhood

Search algorithm (VNS).

Table 1. Experimental algorithm results on the steinb
graph group

Test n m |L|
MST-
Steiner

SPT-
Steiner

PD-
Steiner

VNS

steinb1.txt 50 63 9 82 82 82 82

steinb2.txt 50 63 13 90 84 84 83

steinb3.txt 50 63 25 140 147 138 138

steinb4.txt 50 100 9 64 59 62 59

steinb5.txt 50 100 13 64 62 61 61

steinb6.txt 50 100 25 128 134 126 122

steinb7.txt 75 94 13 111 111 111 111

steinb8.txt 75 94 19 104 113 104 104

steinb9.txt 75 94 38 222 222 220 220

steinb10.txt 75 150 13 98 90 90 86

steinb11.txt 75 150 19 91 93 90 88

steinb12.txt 75 150 38 174 192 174 174

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

C. V. Tran, N. H. Ha

4

steinb13.txt 100 125 17 175 172 175 165

steinb14.txt 100 125 25 237 253 235 236

steinb15.txt 100 125 50 323 335 318 318

steinb16.txt 100 200 17 137 138 133 127

steinb17.txt 100 200 25 134 139 132 131

steinb18.txt 100 200 50 222 250 222 218

Table 2. Experimental algorithm results on the steinc graph group

Test n m |L|
MST-

Steiner
SPT-

Steiner
PD-

Steiner

Node-

based

Path-

based
VNS

steinc1.txt 500 625 5 88 86 85 85 85 85

steinc2.txt 500 625 10 144 158 144 144 144 144

steinc3.txt 500 625 83 779 843 762 754 754 754

steinc4.txt 500 625 125 1114 1193 1085 1079 1079 1079

steinc5.txt 500 625 250 1599 1706 1583 1579 1579 1579

steinc6.txt 500 1000 5 60 56 55 55 55 55

steinc7.txt 500 1000 10 115 103 102 102 103 102

steinc8.txt 500 1000 83 531 597 516 509 509 509

steinc9.txt 500 1000 125 728 865 718 707 707 707

steinc10.txt 500 1000 250 1117 1327 1107 1093 1093 1093

steinc11.txt 500 2500 5 37 32 34 32 33 33

steinc12.txt 500 2500 10 49 46 48 46 46 46

steinc13.txt 500 2500 83 274 322 268 258 258 258

steinc14.txt 500 2500 125 337 417 332 323 323 323

steinc15.txt 500 2500 250 571 703 562 556 556 556

steinc16.txt 500 12500 5 13 12 12 11 11 11

steinc17.txt 500 12500 10 19 19 20 18 18 18

steinc18.txt 500 12500 83 125 146 123 116 116 115

steinc19.txt 500 12500 125 158 195 159 147 147 148

steinc20.txt 500 12500 250 269 339 268 267 268 268

Table 3. Experimental algorithm results on the steind graph group

Test n m |L|
MST-

Steiner
SPT-

Steiner
PD-

Steiner

Node-

based

Path-

based
VNS

steind1.txt 1000 1250 5 107 107 107 106 106 106

steind2.txt 1000 1250 10 237 228 232 220 220 220

steind3.txt 1000 1250 167 1636 1771 1593 1565 1565 1565

steind4.txt 1000 1250 250 2012 2174 1957 1935 1935 1935

steind5.txt 1000 1250 500 3310 3511 3270 3250 3254 3250

steind6.txt 1000 2000 5 74 70 75 68 70 67

steind7.txt 1000 2000 10 105 111 103 103 103 103

steind8.txt 1000 2000 167 1138 1287 1104 1072 1077 1073

steind9.txt 1000 2000 250 1540 1773 1500 1448 1449 1448

steind10.txt 1000 2000 500 2163 2550 2141 2110 2111 2111

steind11.txt 1000 5000 5 31 29 31 29 29 29

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

5

steind12.txt 1000 5000 10 43 44 42 42 42 42

steind13.txt 1000 5000 167 531 643 518 501 502 502

steind14.txt 1000 5000 250 702 851 691 669 667 671

steind15.txt 1000 5000 500 1151 1437 1134 1117 1120 1116

steind16.txt 1000 25000 5 15 13 14 13 13 13

steind17.txt 1000 25000 10 25 25 23 23 23 23

steind18.txt 1000 25000 167 251 301 246 228 228 228

steind19.txt 1000 25000 250 344 424 334 313 317 318

steind20.txt 1000 25000 500 544 691 542 537 539 538

Table 4. Experimental algorithm results on the steine graph group

Test n m |L|
MST-

Steiner
SPT-

Steiner
PD-

Steiner
VNS

steine1.txt 2500 3125 5 125 111 115 111

steine2.txt 2500 3125 10 244 214 227 214

steine3.txt 2500 3125 417 4232 4570 4118 4015

steine4.txt 2500 3125 625 5316 5675 5201 5101

steine5.txt 2500 3125 1250 8313 8976 8226 8128

steine6.txt 2500 5000 5 86 73 78 73

steine7.txt 2500 5000 10 165 150 159 145

steine8.txt 2500 5000 417 2809 3254 2726 2648

steine9.txt 2500 5000 625 3809 4474 3727 3608

steine10.txt 2500 5000 1250 5745 6847 5673 5600

steine11.txt 2500 12500 5 39 34 38 34

steine12.txt 2500 12500 10 73 68 69 67

steine13.txt 2500 12500 417 1370 1704 1332 1292

steine14.txt 2500 12500 625 1814 2304 1778 1735

steine15.txt 2500 12500 1250 2856 3626 2819 2784

steine16.txt 2500 62500 5 17 15 15 15

steine17.txt 2500 62500 10 27 27 26 25

steine18.txt 2500 62500 417 646 804 639 583

steine19.txt 2500 62500 625 809 1059 806 768

steine20.txt 2500 62500 1250 1358 1753 1357 1342

This section aims to compare the solution quality of VNS

algorithm with the group of MST-Steiner, SPT-Steiner,

PD-Steiner algorithm [15] and group of Node-based, Path-

based algorithm [12].

With 20 sets of data in steinb group, the VNS algorithm

offers a better solution quality at 72.2%, equivalent quality

at 22.2% and worse quality at 5.6% in comparison with

MST-Steiner algorithm. The VNS algorithm offers a better

solution quality at 77.8%, equivalent quality at 16.7% and

worse quality at 5.6% in comparison with SPT-Steiner

algorithm. The VNS algorithm offers a better solution

quality at 50.0%, equivalent quality at 44.4% and worse

quality at 5.6% in comparison to PD-Steiner algorithm.

With 20 sets of data in steinc group, the VNS algorithm

offers a better solution quality at 5%, equivalent quality at

80% and worse quality at 15% in comparison with Node-

based algorithm. The VNS algorithm offers a better

solution quality at 10%, equivalent quality at 85% and

worse quality at 5% in comparison with Path-based

algorithm. The VNS algorithm offers a better solution

quality at 95%, equivalent quality at 5% and worse quality

at 0% in comparison with MST-Steiner algorithm. The

VNS algorithm offers a better solution quality at 90%,

equivalent quality at 5% and worse quality at 5% in

comparison with SPT-Steiner algorithm. The VNS

algorithm offers a better solution quality at 75%, equivalent

quality at 25% and worse quality at 0% in comparison to

PD-Steiner algorithm.

With 20 sets of data in steind group, the VNS algorithm

offers a better solution quality at 10%, equivalent quality at

60% and worse quality at 30% in comparison with Node-

based algorithm. The VNS algorithm offers a better

A Variable Neighborhood Search Algorithm for Solving the Steiner Minimal Tree Problem in Sparse Graphs

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

C. V. Tran, N. H. Ha

6

solution quality at 30%, equivalent quality at 60% and

worse quality at 10% in comparison with Path-based

algorithm. The VNS algorithm offers a better solution

quality at 100%, equivalent quality at 0% and worse quality

at 0% in comparison with MST-Steiner algorithm. The

VNS algorithm offers a better solution quality at 90%,

equivalent quality at 10% and worse quality at 0% in

comparison with SPT-Steiner algorithm. The VNS

algorithm offers a better solution quality at 85%, equivalent

quality at 15% and worse quality at 0% in comparison to

PD-Steiner algorithm.

With 20 sets of data in steine group, the VNS algorithm

offers a better solution quality at 100%, equivalent quality

at 0% and worse quality at 0% in comparison with MST-

Steiner algorithm. The VNS algorithm offers a better

solution quality at 75%, equivalent quality at 25% and

worse quality at 0% in comparison with SPT-Steiner

algorithm. The VNS algorithm offers a better solution

quality at 95%, equivalent quality at 5% and worse quality

at 0% in comparison to PD-Steiner algorithm.

4. Conclusions

In this paper, the VNS algorithm has been proposed to

solve SMT problem in sparse graphs; The proposed

algorithm has been experimentally implemented and

evaluated using 78 sets of data as sparse graphs in the

standard experimental datasets. The experiment outcomes

show promising results in which the solution quality

provided by the proposed algorithm is significantly

improved compared to MST-Steiner, SPT-Steiner, PD-

Steiner, Node-based and Path-based algorithm.

References

[1] Koster, A., Munoz, X. (2010) Graphs and Algorithms in

Communication Networks. Springer.

[2] Wu, B, Y., Chao, K. (2004) Spanning Trees and

Optimization Problems. Chapman&Hall/CRC: pp.158–165.

[3] Lu, C, L., Tang, C, Y. (2003) The full Steiner tree problem.

ELSEVIER: pp.55-67.

[4] Una, D, D., Gange, G., Schachte, p., Stuckey, P, J. (2016)

Steiner Tree Problems with Side Constraints Using

Constraint Programming. Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence.

[5] Beasley J. E., OR-Library: URL,

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html,

last accessed 2018.

[6] Laarhoven, J, W, V. (2010) Exact and heuristic algorithms

for the Euclidean Steiner tree problem. University of Iowa,

Doctoral thesis.

[7] Caleffi, M., Akyildiz, I, F., Paura, L. (2015) On the Solution

of the Steiner Tree NP-Hard Problem via Physarum

BioNetwork. IEEE: pp.1092-1106.

[8] Hauptmann, M., Karpinski, M. (2015) A Compendium on

Steiner Tree Problems: pp.1-36.

[9] Hougardy, S., Silvanus, J., Vygen, J. (2015) Dijkstra meets

Steiner: a fast exact goal-oriented Steiner tree algorithm.

University of Bonn.

[10] Bosman, T. (2015) A Solution Merging Heuristic for the

Steiner Problem in Graphs Using Tree Decompositions. VU

University Amsterdam, Netherlands: pp.1-12.

[11] Cheng, X., Du, D, Z. (2004) Steiner trees in industry.

Kluwer Academic Publishers, 5: pp.193-216.

[12] Martins, S, L., Resende, M.G.C., Ribeiro, C.C, Pardalos,

P.M. (1999) A parallel grasp for the steiner tree problem in

graphs using a hybrid local search strategy.

[13] Uchoa, E., Werneck, R, F. (2010) Fast Local Search for

Steiner Trees in Graphs.

[14] Ribeiro, C, C., Mauricio, C., Souza, D. (2000) Tabu Search

for the Steiner Problem in Graphs. Networks, 36: pp.138-

146.

[15] C. V. Tran, Q. T. Phan, N. H. Ha. (2017) Heuristic

Algorithms for solving Steiner Minimal Tree Problem.

Proceedings of the 10th National Coference on Fundamental

and Applied Information Technology Research (FAIR’10):

pp. 138-147.

[16] T. V. Chuong, H. H. Nam (2019) A Variable Neighborhood

Search Algorithm for Solving the Steiner Minimal Tree

Problem in Proceedings of the 7th EAI International

Conference, ICCASA 2018 and 4th EAI International

Conference, ICTCC 2018 in Viet Tri City, Vietnam,

November 22–23, 2018, LNICST 266, pp. 218-225.

EAI Endorsed Transactions on
Context-aware Systems and Applications

06 2018 - 12 2018 | Volume 5 | Issue 15 | e4

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

