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Abstract 

Steiner Minimal Tree (SMT) is a complex optimization problem that has many important applications in science and 

technology; This is a NP-hard problem. Much research has been carried out to solve the SMT problem using approximate 

algorithms. This paper presents A Variable Neighborhood Search (VNS) algorithm for solving the SMT problem in sparse 

graphs; The proposed algorithm has been tested on sparse graphs in a standardized experimental data system, and it yields 

better results than some other heuristic algorithms. 
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1.

1.1. Definitions 

This section presents several definitions and properties 

associated with the Steiner minimal tree problem. 

Definition 1. Steiner tree [2] 

Let’s assume that G = (V(G), E(G)) is a simple undirected 

connected graph with non-negative weight on the edge; V(G) 

is the set of n vertices, E(G) is a set of m edges, w(e) is the 

weight of edge e, e ∈ E(G). Assume that L is a subset of 

vertices of V(G); Tree T passing through all vertices in L is 

called Steiner tree's L. 

The set L is called the terminal set, the vertices in the set L 

are called the terminal vertices; the vertices in the T trees that 

*Corresponding author. Email: chuongtv@camau.gov.vn; namhh@ptit.edu.vn 

are not in the set L are called the Steiner vertices. Unlike most 
common spanning tree problems, the Steiner tree just passes 

 Introduction through all the vertices in the terminal set L and some other 

vertices in the set V(G). 

Definition 2. Cost of Steiner tree [2] 

Let T = (V(T), E(T)) is a Steiner tree of graph G, cost of the 

tree T, denoted by C(T), is the total weight of the edges of the 

tree T, i.e. 𝐶(𝑇) = ∑ 𝑤(𝑒)𝑒∈𝐸(𝑇)

Definition 3. Steiner Minimal Tree [2] 

Given the graph G, the problem of finding Steiner Trees with 

Minimal Cost is defined as the Steiner Minimal Tree problem 

– SMT or more concisely as Steiner Tree Problem.

In this paper, the word graph is used to describe a connected

undirected graph with the non-negative weights.

1.2.  Application of SMT problem 
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The SMT problem has important applications in different 

fields of science and technology. For example, it has been 

applied in network design, circuit layout…SMT problem is 

NP-hard [6,7], and hence its applications are fallen into two 

different perspectives: design and execution. Design 

problems favor the quality of the solution while running time 

is more prioritized for execution problems [1,3,8,11]. 

1.3. Related work 

The SMT problem has attracted the academic attention of 

many scientists in the world over the past decades; There have 

been different algorithms for solving SMT problem that can 

be divided into the following approaches: 

The first approach is the algorithms for finding the correct 

solution. Algorithms of this class are dynamic programming, 

augmented Lagrangian-based algorithms, Branch and Bound 

Algorithm, etc.. One of the advantages of this approach is that 

correct solutions can be found. However, this class of 

algorithms is only suitable for the small-sized problems. The 

algorithms with correct solutions can be used for 

benchmarking the accuracy of approximation algorithms. 

Finding a correct solution to the SMT problem is a big 

challenge in combinatorial optimization theory [4,6].  

The second approach is the class of heuristic algorithms. 

Heuristic algorithms make use of individual experiences for 

finding solutions to a particular optimization problem. 

Heuristic algorithms yield acceptable solutions, which might 

not be the best solution, in the permissible time. Optimal 

running time can be achieved with this class of algorithms 

[9,10,11]. 

The third approach is  metaheuristic algorithms. The 

metaheuristic algorithms use a variety of heuristic algorithms 

in combination with auxiliary techniques to exploit the search 

space; The metaheuristic algorithm belongs to the class of 

optimal search algorithms. There have been already a number 

of different projects employed the metaheuristic algorithms 

for solving the SMT problem such as local search algorithms, 

Tabu search algorithms, genetic algorithms, parallel genetic 

algorithms, etc. Up to the present, the metaheuristic approach 

provides high quality solutions among approximation 

algorithms [13,14]; However, the execution time of the 

metaheuristic algorithms is much slower than that of the 

heuristic algorithms. 

This paper presents a metaheuristic approximation 

algorithm that is a VNS algorithm for solving the SMT 

problem in sparse graphs, a preliminary version of this work 

under the title “A Variable Neighborhood Search Algorithm 

for Solving the Steiner Minimal Tree Problem” [16]. 

2. VNS algorithm for solving SMT problem

2.1. Using the variable neighborhood search 
Node-Base (Node-Based) [12] 

Input: Let G=(V(G), E(G)) be an undirected graph with V - a 

set of vertices, E - a set of edges; L ⊆ V - a set of terminal 

vertices. 

Output:  A minimum Steiner tree T  

Use Like Prim’s algorithm to search a spanning tree in the 

graph, T is a tree;  

Remove redundant edges of T, then T is a Steiner tree, 

proceed as follows: With each Steiner tree T, browse all 

pendant vertices u ∈ T, if u ∉ L, delete edge containing vertex 

u from E(T), delete vertex u in V(T) and update the vertex’s

degree which is adjacent to vertex u in T. Repeat this

procedure until T is unchanged.

while (stop condition is not satisfied) 

{ 

Let T1=T; 

Select random vertex u ∈ T1; the vertex u which doesn’t 

belong to a set of terminal vertices L; then, remove the edges 

related to the vertex u in T1; when T1 is divided into more 

connected parts; that graph is T2. 

Arrange the edges of the G – graph by ascendant weights, 

add the edges in the order sorted in G to the graph T2 until T2 

is a tree; 

Remove redundant edges in T2; 

If the tree T2 is lighter weight than T, replace T by T2; vice 

versa, if the tree T2 is not created, let T be T1; 

} 

2.2. Using the variable neighborhood search 
Path Based (Path-Based) [13] 

A key-node is a Steiner node with degree of 3 at the lowest. A 

key-path is one with all intermediate vertices (not be terminal 

vertex) with degree 2, the first and the last vertex of that path 

or belong to a set of terminal vertices or become a key-node.  

Searching a random key-path proceeds as follows: Select a 

random edge in T; if the first and the last vertex are ones with 

degree 2 and they and Steiner vertices, add the next adjacent 

edge of that vertex until the first and the last vertex have 

degree not equal to 2 and they are not Steiner vertices, check 

if the path is a key-path or not. Stop if stop condition is met.  

Using Like Prim’s algorithm to search the Steiner of tree, T 

is a tree; 

Remove redundant edges of T, then T is a Steiner tree; 

while (stop condition is not satisfied) 

{ 

Let T1=T; 

Suppose that p is a random key-path; proceed removing 

p; then T is divided into two components Ta and Tb; 

Select the minimum-weight edge which connects two 

components Ta and Tb; suppose we have a new tree T2. 

If the tree T2 is lighter weight than T, replace T by T2; vice 

versa, if T2 doesn’t exist, let T be T1;  

} 

2.3. Using VNS algorithm to solve SMT 
problem 
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Stop condition: Stop condition is considered to be met if the 

best solution cannot be improved by after a predefined 

number of iterations t.  

Initial condition: Each spanning tree is created by using 

Prim's algorithm described as: initialize a tree with a single 

vertex chosen arbitrarily from the graph. the algorithm will 

be iterated for n-1 times. In each iteration, grow the tree by 

adding a vertex that is adjacent to at least one vertex of the 

spanning tree without consideration of its weight and its 

connected edges to the spanning tree. This algorithm is named 

as Like Prim’s algorithm. 

Like Prim (V, E) 

Input: Graph G = (V(G), E(G)) 

Output: Return a random spanning tree T = (V(T), E(T)) 

1. Choose a vertex u ∈ V(G);

2. V(T) = {u};

3. E(T) = ∅;

4. while (|V(T)| < n) { 

5. Choose a vertex v ∈ V(G) – V(T) v is an adjacent vertex 

of a vertex z ∈ V(T); 

6. V(T) = V(T) ∪ {v};

7. E(T) = E(T) ∪ {(v, z)};

8.}

9. return spanning tree T;

Run the Like Prim's algorithm separately for each 

connected component and/or connected components of the 

graph or to find the minimum spanning forest in heuristic and 

metaheuristic algorithm to solve SMT problem. The 

advantage of Like Prim's algorithm in comparison with 

heuristic algorithms in providing an initial solution is the 

variety of edges of the spanning tree. The quality of the initial 

population created by Like Prim's algorithm is not so good as 

that of the initial population created by heuristic algorithms. 

However, after the evolutionary process, spanning trees 

created by Like Prim's algorithm usually provide better 

quality solutions. 

Step – form of VNS algorithm to solve SMT problem: 

T is a spanning tree which is formed by Like Prim 

algorithm. 

Remove redundant edges. 

Get the Steiner tree by removing redundant edges in T; 

While (The stop condition is not true) 

{

- Execute 2 variable neighborhood search Node-based and 

Path-based one by one; 

- Record the better solution;

- While executing VNS algorithm, if a better solution is

found, execute VNS algorithm from the beginning (after 

while loop) and vice versa, continue to the next VNS 

algorithm; 

- VNS algorithm stops when stop condition is met. The

stop condition in this particularly algorithm is the number of 

iterations, which is 10*n in this case, n is the number of 

vertices in the graph. 

} 

Return to the best solution. 

3. Experiments

3.1. Experimental data 

Experiment has been conducted to evaluate related 

algorithms. 78 sets of data have been selected from the 

standard experimental database for benchmarking algorithms 

for solving the Steiner tree problem. The data set can be found 

at URL: 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html 

[5]. 18 graphs are from group steinb, 20 graphs are from 

group steinc, 20 graphs are from group steind and the other 

20 graphs come from steine. 

3.2. Experimental environment 

The MST-Steiner, SPT-Steiner, PD-Steiner, Node-based, 

Path-based algorithm and VNS algorithm are implemented in 

C++, DEV C++ 5.9.2; experimented on a Virtual Server 

Windows server 2008 R2 Enterprise, 64bit, Intel(R) Xeon (R) 

CPU E5-2660 @ 2.20 GHz, RAM 4GB. 

3.3. Experimental results and evaluation 

Experimental results of algorithms are given in Tables 1, 2, 

3, 4. The tables are structured as follows: The first column 

(Test) is the name of the data sets in the experimental data 

system; number of vertices (n), number of edges (m) and 

number of vertices in the terminal vertices (|L|) of each graph; 

The next column records the Steiner tree’s cost value 

corresponding to the MST-Steiner, SPT-Steiner, PD-Steiner 

or Node-based, Path-based and Variable Neighborhood 

Search algorithm (VNS). 

Table 1. Experimental algorithm results on the steinb 
graph group 

Test n m |L| 
MST-
Steiner 

SPT-
Steiner 

PD-
Steiner 

VNS 

steinb1.txt 50 63 9 82 82 82 82 

steinb2.txt 50 63 13 90 84 84 83 

steinb3.txt 50 63 25 140 147 138 138 

steinb4.txt 50 100 9 64 59 62 59 

steinb5.txt 50 100 13 64 62 61 61 

steinb6.txt 50 100 25 128 134 126 122 

steinb7.txt 75 94 13 111 111 111 111 

steinb8.txt 75 94 19 104 113 104 104 

steinb9.txt 75 94 38 222 222 220 220 

steinb10.txt 75 150 13 98 90 90 86 

steinb11.txt 75 150 19 91 93 90 88 

steinb12.txt 75 150 38 174 192 174 174 
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steinb13.txt 100 125 17 175 172 175 165 

steinb14.txt 100 125 25 237 253 235 236 

steinb15.txt 100 125 50 323 335 318 318 

steinb16.txt 100 200 17 137 138 133 127 

steinb17.txt 100 200 25 134 139 132 131 

steinb18.txt 100 200 50 222 250 222 218 

Table 2. Experimental algorithm results on the steinc graph group 

Test n m |L| 
MST-

Steiner 
SPT-

Steiner 
PD-

Steiner 

Node-

based 

Path-

based 
VNS 

steinc1.txt 500 625 5 88 86 85 85 85 85 

steinc2.txt 500 625 10 144 158 144 144 144 144 

steinc3.txt 500 625 83 779 843 762 754 754 754 

steinc4.txt 500 625 125 1114 1193 1085 1079 1079 1079 

steinc5.txt 500 625 250 1599 1706 1583 1579 1579 1579 

steinc6.txt 500 1000 5 60 56 55 55 55 55 

steinc7.txt 500 1000 10 115 103 102 102 103 102 

steinc8.txt 500 1000 83 531 597 516 509 509 509 

steinc9.txt 500 1000 125 728 865 718 707 707 707 

steinc10.txt 500 1000 250 1117 1327 1107 1093 1093 1093 

steinc11.txt 500 2500 5 37 32 34 32 33 33 

steinc12.txt 500 2500 10 49 46 48 46 46 46 

steinc13.txt 500 2500 83 274 322 268 258 258 258 

steinc14.txt 500 2500 125 337 417 332 323 323 323 

steinc15.txt 500 2500 250 571 703 562 556 556 556 

steinc16.txt 500 12500 5 13 12 12 11 11 11 

steinc17.txt 500 12500 10 19 19 20 18 18 18 

steinc18.txt 500 12500 83 125 146 123 116 116 115 

steinc19.txt 500 12500 125 158 195 159 147 147 148 

steinc20.txt 500 12500 250 269 339 268 267 268 268 

Table 3. Experimental algorithm results on the steind graph group 

Test n m |L| 
MST-

Steiner 
SPT-

Steiner 
PD-

Steiner 

Node-

based 

Path-

based 
VNS 

steind1.txt 1000 1250 5 107 107 107 106 106 106 

steind2.txt 1000 1250 10 237 228 232 220 220 220 

steind3.txt 1000 1250 167 1636 1771 1593 1565 1565 1565 

steind4.txt 1000 1250 250 2012 2174 1957 1935 1935 1935 

steind5.txt 1000 1250 500 3310 3511 3270 3250 3254 3250 

steind6.txt 1000 2000 5 74 70 75 68 70 67 

steind7.txt 1000 2000 10 105 111 103 103 103 103 

steind8.txt 1000 2000 167 1138 1287 1104 1072 1077 1073 

steind9.txt 1000 2000 250 1540 1773 1500 1448 1449 1448 

steind10.txt 1000 2000 500 2163 2550 2141 2110 2111 2111 

steind11.txt 1000 5000 5 31 29 31 29 29 29 
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steind12.txt 1000 5000 10 43 44 42 42 42 42 

steind13.txt 1000 5000 167 531 643 518 501 502 502 

steind14.txt 1000 5000 250 702 851 691 669 667 671 

steind15.txt 1000 5000 500 1151 1437 1134 1117 1120 1116 

steind16.txt 1000 25000 5 15 13 14 13 13 13 

steind17.txt 1000 25000 10 25 25 23 23 23 23 

steind18.txt 1000 25000 167 251 301 246 228 228 228 

steind19.txt 1000 25000 250 344 424 334 313 317 318 

steind20.txt 1000 25000 500 544 691 542 537 539 538 

Table 4. Experimental algorithm results on the steine graph group 

Test n m |L| 
MST-

Steiner 
SPT-

Steiner 
PD-

Steiner 
VNS 

steine1.txt 2500 3125 5 125 111 115 111 

steine2.txt 2500 3125 10 244 214 227 214 

steine3.txt 2500 3125 417 4232 4570 4118 4015 

steine4.txt 2500 3125 625 5316 5675 5201 5101 

steine5.txt 2500 3125 1250 8313 8976 8226 8128 

steine6.txt 2500 5000 5 86 73 78 73 

steine7.txt 2500 5000 10 165 150 159 145 

steine8.txt 2500 5000 417 2809 3254 2726 2648 

steine9.txt 2500 5000 625 3809 4474 3727 3608 

steine10.txt 2500 5000 1250 5745 6847 5673 5600 

steine11.txt 2500 12500 5 39 34 38 34 

steine12.txt 2500 12500 10 73 68 69 67 

steine13.txt 2500 12500 417 1370 1704 1332 1292 

steine14.txt 2500 12500 625 1814 2304 1778 1735 

steine15.txt 2500 12500 1250 2856 3626 2819 2784 

steine16.txt 2500 62500 5 17 15 15 15 

steine17.txt 2500 62500 10 27 27 26 25 

steine18.txt 2500 62500 417 646 804 639 583 

steine19.txt 2500 62500 625 809 1059 806 768 

steine20.txt 2500 62500 1250 1358 1753 1357 1342 

This section aims to compare the solution quality of VNS 

algorithm with the group of MST-Steiner, SPT-Steiner, 

PD-Steiner algorithm [15] and group of Node-based, Path-

based algorithm [12]. 

With 20 sets of data in steinb group, the VNS algorithm 

offers a better solution quality at 72.2%, equivalent quality 

at 22.2% and worse quality at 5.6% in comparison with 

MST-Steiner algorithm. The VNS algorithm offers a better 

solution quality at 77.8%, equivalent quality at 16.7% and 

worse quality at 5.6% in comparison with SPT-Steiner 

algorithm. The VNS algorithm offers a better solution 

quality at 50.0%, equivalent quality at 44.4% and worse 

quality at 5.6% in comparison to PD-Steiner algorithm. 

With 20 sets of data in steinc group, the VNS algorithm 

offers a better solution quality at 5%, equivalent quality at 

80% and worse quality at 15% in comparison with Node-

based algorithm. The VNS algorithm offers a better 

solution quality at 10%, equivalent quality at 85% and 

worse quality at 5% in comparison with Path-based 

algorithm. The VNS algorithm offers a better solution 

quality at 95%, equivalent quality at 5% and worse quality 

at 0% in comparison with MST-Steiner algorithm. The 

VNS algorithm offers a better solution quality at 90%, 

equivalent quality at 5% and worse quality at 5% in 

comparison with SPT-Steiner algorithm. The VNS 

algorithm offers a better solution quality at 75%, equivalent 

quality at 25% and worse quality at 0% in comparison to 

PD-Steiner algorithm. 

With 20 sets of data in steind group, the VNS algorithm 

offers a better solution quality at 10%, equivalent quality at 

60% and worse quality at 30% in comparison with Node-

based algorithm. The VNS algorithm offers a better 
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solution quality at 30%, equivalent quality at 60% and 

worse quality at 10% in comparison with Path-based 

algorithm. The VNS algorithm offers a better solution 

quality at 100%, equivalent quality at 0% and worse quality 

at 0% in comparison with MST-Steiner algorithm. The 

VNS algorithm offers a better solution quality at 90%, 

equivalent quality at 10% and worse quality at 0% in 

comparison with SPT-Steiner algorithm. The VNS 

algorithm offers a better solution quality at 85%, equivalent 

quality at 15% and worse quality at 0% in comparison to 

PD-Steiner algorithm. 

With 20 sets of data in steine group, the VNS algorithm 

offers a better solution quality at 100%, equivalent quality 

at 0% and worse quality at 0% in comparison with MST-

Steiner algorithm. The VNS algorithm offers a better 

solution quality at 75%, equivalent quality at 25% and 

worse quality at 0% in comparison with SPT-Steiner 

algorithm. The VNS algorithm offers a better solution 

quality at 95%, equivalent quality at 5% and worse quality 

at 0% in comparison to PD-Steiner algorithm. 

4. Conclusions

In this paper, the VNS algorithm has been proposed to 

solve SMT problem in sparse graphs; The proposed 

algorithm has been experimentally implemented and 

evaluated using 78 sets of data as sparse graphs in the 

standard experimental datasets. The experiment outcomes 

show promising results in which the solution quality 

provided by the proposed algorithm is significantly 

improved compared to MST-Steiner, SPT-Steiner, PD-

Steiner, Node-based and Path-based algorithm. 
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