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Abstract

In this work, we present a novel Goodness-of-Fit Test driven by differential entropy for spectrum sensing
in cognitive radios, under three different noise models – Gaussian, Laplacian and mixture of Gaussians.
We analyze the proposed detector under Gaussian noise which models the worst-case. We then analyze by
considering the Laplacian noise process which has tails heavier than that of the Gaussian. We generalize
the analysis considering the noise to be a mixture of Gaussians, which is often the case with noise and
interference in communication systems. We analyze the performance under each of these cases for a large
class of practically relevant fading channel models and primary signal models, with emphasis on low
Signal-to-Noise ratio regimes. Towards this end, we derive closed form expressions for the distribution of the
test statistic under the null hypothesis and the detection threshold that satisfies a constraint on the probability
of false-alarm. Through Monte Carlo simulations, we demonstrate that our detection strategy outperforms an
existing spectrum sensing technique based on order statistics.
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1. Introduction
Goodness-of-Fit Tests (GoFT) for Spectrum Sensing
(SS) has received considerable attention in the recent
past [2–6]. This approach may be gainfully employed
in Cognitive Radio (CR) when a proper knowledge
of the primary signal and the fading models is far
from complete. In its general form, the GoFT for
SS compares a decision statistic to a threshold and
rejects the null-hypothesis when the statistic exceeds
the threshold. The detection threshold is chosen so as
to satisfy a constraint on the probability of false-alarm.
The authors in [2] present a GoFT based on the

Anderson-Darling statistic (which we term here as the
Anderson-Darling statistic based Detector (ADD)). This
is shown to outperform the well-known radiometer
or Energy Detector (ED) under low SNR regime with

∗Corresponding author. Email: muralishankar@cmrit.ac.in
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Rayleigh fading and constant primary signal. Later, it
is shown that a combination of the Student’s-t Test
and the ADD, called the Blind Detector (BD) [3],
is robust to noise variance uncertainty. The major
infirmities of these works are as follows: (i) The
underlying Anderson-Darling statistic is known to
perform well only against another Gaussian with a shift
in mean. ADD does not perform well in many other
relevant SS contexts as, for example, when the primary
signal follows other signal models [7]. (ii) The ADD
is useful only where the observations under H0 are
i.i.d. (iii) ADD is effective only with small number of
observations. Thus, the utility of ADD and BD in SS is
diminished.
In [4], the authors propose an Order Statistic based

Detector (OSD) and show that it improves upon ADD
under conditions discussed in the foregoing. Here, the
performance of OSD detector is studied only for a
constant primary model. Further, the threshold is set
empirically. AHigher Order statistics based Detector [6]
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is shown to provide good performance under low SNR.
Recently, a zero-crossings based GoFT [5] is shown to
be robust to uncertainties of the noise model and the
parameters; its computational complexity matches that
of the GoFT based on ED.
In this work, we propose a novel GoFT based on

an estimate of the differential entropy in the received
observations. We bring out the many advantages of this
technique: (i) relative ease in computing the detection
threshold; (ii) relaxation of the restriction of a constant
primary signal; and (iii) enhanced performance relative
to OSD in several situations which are practically
realistic. Additionally, we study the performance of the
detector for the Laplacian noise model and a bimodal,
two parameter mixed Gaussian noise model. In fact,
the mixed Gaussian noise is used, inter alia, to model
a combination of Gaussian and Middleton’s class A
noise components [5] and co-channel interference (CCI)
[8]. Further, we obtain a closed-form expression for
the optimal detection thresholds for spectrum sensing,
considering Gaussian and Laplacian noise models and
the near-optimal detection threshold for the mixed
Gaussian.
The system model is described in § 2. Differential

entropy estimate based detection is introduced and
analyzed in § 3. In particular, the cases where the noise
process is purely Gaussian, is Laplacian and follows a
bimodal Gaussian are studied in § 3.1-3.3 successively.
Simulation results are presented and discussed in § 4.
Concluding remarks comprise § 5.

2. System Model
Consider a CR node collecting M observations from a
primary transmitter operating in a particular frequency
band. Based thereon, it decides whether the band
is occupied or vacant. The GoFT based SS problem
is essentially a detection problem which rejects the
noise-only hypothesis given by

H0 : Yi ∼ fN, i ∈ M , {1, · · · ,M},

with the probability of false alarm given by

pf , P{reject H0|H0} ≤ αf ,

where αf ∈ (0, 1) is a fixed constant. The noise distribu-
tion fN for SS can be modeled by various distributions
[5]. In this paper, we consider the following: Gaussian,
Laplacian and mixture of Gaussians. First, for the sake
of simplicity and to study the baseline, we consider the
Gaussian, which is adopted in many spectrum sensing
approaches. Second, we look at the Laplacian noise
having tail heavier than Gaussian. Finally, we take up
the bimodal Gaussian distribution, known to be useful
in some applications in communication domains [8].
We develop a detector based on the following

assumptions:

(a) Noise variance is known perfectly;
(b) The statistics of the primary signal model and the
fading channel between the primary transmitter and
CR node can be arbitrary.

2.1. Effect of Noise Variance Uncertainty
In practice, the estimate of the noise variance can
deviate significantly from its true value, leading to a
poor performance of the detector, especially under low
SNR regime [3]. Note that our detector can be made
robust to the noise variance uncertainty by considering
the technique followed in [3]. The detector proposed
in this work can be combined with the Student’s t-test,
similar to the combination of the Anderson-Darling
statistic based test with the Student’s t-test, discussed
in [3]. A detailed study of the performance of the
combined detector is currently work in progress.
We present the Order Statistic-based Detector (OSD)

[4], known to be the best GoFT detector for testing fN
against a mean-change model, and its implementation
in the following subsection.

2.2. The Order Statistic-Based Detector (OSD) [4]
We outline the key steps involved in the construction of
the OSD.

1. Let FN be the Cumulative Distribution Function
(CDF) of the noise process. Obtain a transforma-
tion on the received observations, Yi , as

zi = FN(Yi), i ∈ M.

2. Sort the variables zi as

z(1) ≤ z(2) ≤ · · · ≤ z(M).

3. Obtain the beta transformation on z(i) as

ρi ,
M∑
j=i

M!
(M − j)!j!

z
j
(i)[1 − z(i)]

M−j , i ∈ M

and then, sort as

ρ(1) ≤ ρ(2) ≤ · · · ≤ ρ(M).

4. The OSD is devised thus:
M∑
i=1

∣∣∣∣∣ρ(i) − i

(M + 1)2

∣∣∣∣∣ �H0
≷
∼H0

τOS.

Here, for some fixed false-alarm αf ∈ (0, 1), the
optimal threshold, τOS, is given by [4]

τOS = 2.599 + 0.8228M − 30.79αf + 73.75α2
f

− 49.08α3
f − 0.6466αf M.

The proposed differential entropy estimate based
GoFT is discussed in the following section.
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3. Differential Entropy Estimate-based GoFT
The differential entropy, denoted by h(X), for a
continuous random variable X is defined as [9]

h(X) , −
∫ ∞
−∞
fX(x) log(fX(x))dx

where fX(·) is the probability density function of X.
In this technique, we estimate the differential entropy

in the observations and use it as a test statistic to
carry out spectrum sensing. We derive the distribution
of the statistic and the value of the optimal detection
threshold next, which depend on the noise statistics.

3.1. Detection Under Gaussian Noise
Let fN ∼ N (0, σ2

n ), where N (µ, σ2) represents the
Gaussian distribution with mean µ and variance σ2.
The detection strategy proposed in this work exploits
the fact that among all continuous distributions with
finite mean and variance, and with support (−∞,∞),
the Gaussian yields maximum differential entropy. For
this detector, the entropy when Yi ∼ fN, i ∈ M (i.e., for
observations under H0), is less than the entropy if the
primary is present, i.e., Yi � fN. It is known that under
H0, i.e., when Yi ∼ N (0, σ2

n ) [9],

h(Y |H0) =
1
2
log(2πeσ2

n ).

Now, the Differential Entropy estimate-based Detec-
tor (DED) is constructed for a given set of observations
with sample mean and variance

Ŷ ,
1
M

M∑
i=1

Yi and
1

M − 1

M∑
i=1

(Yi − Ŷ )2

respectively. Then,

ĥ(Y ) ,
1
2
log

 2πe
M − 1

M∑
i=1

(Yi − Ŷ )2


represents the maximum likelihood estimate of differ-
ential entropy in the observations. The test is of the
form

ĥ(Y )
�H0
≷
∼H0

τG,

where τG is set such that a constraint on the probability
of false-alarm, αf , is satisfied. See Appendix A for a
procedure to find the optimal τG given αf .

3.2. Detection Under Laplacian Noise
It is known that for the Laplacian distribution, L(λ),
with parameter λ, the differential entropy is given by

h(Y |H0) = log2(2eλ),

where λ ,
√
σ2
n /2. An unbiased estimate of λ is given by

λ̂ =
1
M

M∑
i=1

|Yi − ̂̄Y |,
where ̂̄Y denotes the estimate of the 1

2 -median.
Therefore, an estimate of h(·) is obtained as

ĥ(Y ) , log2

2eM
M∑
i=1

|Yi − ̂̄Y | ,
and hence, the test is

ĥ(Y )
�H0
≷
∼H0

τL.

Here, τL is set such that a constraint on the probability
of false-alarm, αf , is satisfied. See Appendix B for
computing τL given αf .

3.3. Detection Under Mixed Gaussian Model
The mixed Gaussian noise model is considered
in a variety of signal processing applications for
communications. For instance, it is used to model a
combination of thermal noise and man-made clutter
noise [5], and the Co-Channel Interference (CCI)
[8]. Some non-Gaussian noise processes can also be
modeled as mixtures of Gaussians [10]. The PDF of the
mixture Gaussian noise is [11]

fN(x) =
1√

2πσ2
n

e−(x
2+µ2)/(2σ2

n ) cosh
(
µx

σ2
n

)
. (1)

In general, the differential entropy of this two-
component mixture-Gaussian model is expressed
implicitly as

h(Y |H0) =
1
2
log(2πeσ2

n ) +
(
µ

σn

)2
− I .

I for different µ and σn are tabulated [11]. Also,
expressions for tight upper and lower bounds on the
entropy are reported [11]. Thus, under H0,

hUB(Y |H0) ≤
1
2
log(2πeσn)+

(
µ

σn

)21−erf
 µ√

(2σ2
n )




−

√
2µ2

πσ2
n
e−µ

2/(2σ2
n ) + log 2,

hLB(Y |H0) ≥
1
2
log(2πeσn)+

(
µ

σn

)21−erf
 µ√

2σ2
n




−

√
2µ2

πσ2
n
e−µ

2/(2σ2
n ).
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Figure 1. Probability of detection: DED and OSD for different
M and SNRs | Gaussian primary signal | Nakagami-m fading:
Shape parameter = 1, Scale parameter = 0.5.

We choose the upper bound as a test statistic for SS
against the PDF of (1). Based on the estimates, the test
is

ĥUB(Y )
�H0
≷
∼H0

τMG.

Note that the above test is pessimistic, i.e., it follows the
worst-case design. Obtaining the exact PDF of the test
statistic in this case is difficult. Therefore, we estimate
the PDF of the test statistic and set the threshold
through Monte Carlo simulations. Further, we provide
the asymptotically optimal threshold for this setting
(vide Appendix C).

4. Simulation Results
We evaluate the SS performance of DED and OSD
through extensive simulations under various primary
signal models, noise models and fading. The primary
signal models chosen are constant and Gaussian, while
the noise models are Gaussian, Laplacian and mixture
of Gaussians. We employ fading models such as
Nakagami-m, Weibull and Rayleigh. Nakagami-m (and
as its special case, Rayleigh) fading is favored for several
indoor wireless communication without line of sight
[12]. For some applications in communication with
frequency in excess of 900MHz,Weibull fading is found
to be a good fit [12]. We set the false-alarm, αf , to 0.05
and vary the SNR from −10dB to 0dB.
The performance of DED and OSD under the

Gaussian noise (vide Fig. 1) shows the probability of
detection (pd) using DED and OSD for M observations
and for different values of SNR under Nakagami-m
fading with shape and scale parameters 1 and 0.5
respectively. These fading parameters are chosen
arbitrarily. The primary signal is taken to be Gaussian
[5]. Such an assumption is practically relevant in CR
context owing to the errors due to synchronization
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Figure 2. Probability of detection: DED and OSD vs. M for
different SNRs | Constant primary signal | Nakagami-m fading:
Shape parameter = 1, Scale parameter = 0.5.

and timing offsets. As can be seen, DED outperforms
OSD. The performance of OSD is non-trivial, i.e., it
operates on the chance line in the receiver operating
characteristics.
Fig. 2 presents pd when the primary signal is

constant. We observe that the OSD fares better than
DED. Under a constant primary, such performance
benefits of the OSD have been observed earlier [4]. A
point to note is that the constant primary assumption is
largely of theoretical interest as it is highly constrained
[13]. Further, the deteriorated performance of DED is
due to invariance of entropy to scaling [9].
Fig. 3 presents pd under Weibull fading, with shape

and scale parameters 1 and 2 respectively. The fading
parameters are set arbitrarily. The primary signal is
Gaussian. Evidently, DED is better than OSD across
all M and SNRs. For a constant primary signal with
the Weibull fading and with the same parameters as
before, OSD is seen to outperform DED (vide Fig. 4).
When the primary signal is not constant, the pattern
shows DED better than OSD. Similar conclusions can be
drawn from Fig. 5 which presents pd for varying SNRs
under Rayleigh fading with parameter 1 and Gaussian
primary signal.
Next, we evaluate DED and OSD under Laplacian

noise model with the primary being Gaussian and
Rayleigh fading. Fig. 6 and Fig. 7 show pd vs. M
and pd vs. average primary SNR respectively. The
noise variance is assumed to be unity. Yet again, OSD
proves to perform only trivially in both cases due to
primary variation. However, the performance of DED
improves significantly with an increase in M and SNR.
Additionally, comparing Fig. 5 and Fig. 6, we can see
that the pd with Gaussian noise is higher than pd with
Laplacian noise. This effect is due to the heavy-tailed
nature of the Laplacian distribution, i.e., owing to
elevated tail probabilities, the detection threshold that
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Figure 3. Probability of detection: DED and OSD vs. M for
different SNRs | Gaussian primary signal | Weibull fading: Shape
parameter = 1, Scale parameter = 2.
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Figure 4. Probability of detection: DED and OSD vs. M for
different SNRs | Constant primary signal | Weibull fading: Shape
parameter = 1, Scale parameter = 2.
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Figure 5. Probability of detection: DED and OSD vs. M for
different SNRs | Gaussian primary signal | Rayleigh fading:
Parameter = 1.
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Figure 6. Probability of detection: DED and OSD vs. M for
different primary SNRs | Rayleigh fading | Laplacian noise |
Gaussian primary signal.
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Figure 7. Probability of detection: DED and OSD vs. M for
different SNRs | Rayleigh fading | Laplacian noise | Gaussian
primary signal.

satisfies the given false-alarm increases, which in turn
pulls down pd .

We now move from a unimodal probability density
assumption for the noise to a bimodal Gaussian
(mixture of two Gaussians) [8] to evaluate DED and
OSD. We present pd with DED and OSD taking the
primary signal as Gaussian and the fading as Rayleigh.
Fig. 8 and Fig. 9 show pd vs. average primary SNR
and pd vs. M respectively. We set µ = 2 and the mixing
parameter as 0.5. We note that the the performance
of OSD is trivial, whereas DED outperforms OSD.
As expected, the performance of DED improves with
increase in SNR and M. The shortcomings of OSD
lends credence to the proposition that its usefulness is
restricted to the case of Gaussian noise and constant
primary signal.

We present the utility of Gaussian mixture assump-
tion for noise, by comparing the performance of DED
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Figure 9. Probability of detection: DED and OSD vs. M for
different average primary SNRs | Rayleigh fading | Mixture
Gaussian noises | Gaussian primary signal.

under both Gaussian and bimodal mixture Gaus-
sians, with Gaussian distributed primary and with the
Rayleigh fading (vide Fig. 10) for different SNRs. We
can see that DED under the bimodal Gaussian noise
performs better than unimodal Gaussian counterpart.
In particular, the performance of DED under bimodal
Gaussian noise for −10dB SNR close to that under the
unimodal Gaussian for −6dB SNR. Therefore, for a
given pd , the bimodal Gaussian model accommodates
an additional 4dB decrease in SNR.
We present the behaviour of optimal detection

threshold under different noise conditions, such as,
Gaussian, Laplacian and mixture of Gaussians. Fig. 11
shows the optimal detection threshold of (A.3) vs. M,
varying over σ2

n . Clearly, the simulation results are
in excellent agreement with the analytically derived
results. Further, the detection threshold is independent
of the average primary SNR, as we employ a GoFT
approach.
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Figure 10. Probability of detection: DED and OSD vs. M for
different primary SNRs | Rayleigh fading | Gaussian and mixture
Gaussian noises | Gaussian primary signal.
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Figure 11. Optimal threshold τG using (A.3) and from
simulations vs. M for different σ2

n .

Next, Fig. 12 shows the agreement between the
expressions derived in Appendix B and the corre-
sponding Monte Carlo simulations. The closeness of
the curves validates our claim. On the other hand, not
surprisingly, comparing Fig. 11 and Fig. 12 for the same
vales of M and σ2

n clearly indicates that the detection
threshold for the Laplacian case is higher for the same
false alarm constraint, which is due to the fact that the
Laplace distribution is heavy-tailed. This also explains
the deterioration in performance for the same set of
parameters under Laplacian noise which was observed
earlier.

Finally, the results shown in Fig. 13 validate our
analysis of Appendix C. That the analysis holds for
large M and µ(≥ 3) is borne out by the fact that the
disparity between the simulations and theory reduces
progressively.
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Figure 12. Optimal threshold τL using (B.4) and from
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5. Concluding Remarks
We proposed a novel spectrum sensing technique based
on differential entropy estimate with the goodness-of-fit
formulation. The distribution of the test statistic under
the null hypothesis and the detection threshold that
satisfies a constraint on the probability of false-alarm
were obtained in closed form. Through Monte Carlo
simulations, it was shown that the proposed detector
significantly outperforms the order statistics based
detector in the low SNR regime, under various
fading and primary signal models. The results with
unimodal Gaussian vis-à-vis bimodal Gaussian noise
process were compared. For a given probability of
detection, this mixture model was shown to provide an
additional leeway to the tune of 4dB in SNR over the
corresponding unimodal Gaussian.

Appendix A. Calculation of τG

We adopt one of the many ways to arrive at the result
here. Under H0, since Yi ∼ N (0, σ2

n ), it follows from

Cochran’s Theorem that the unbiased estimate, V , of the
variance of Yi follows a scaled, central χ2 distribution
with M − 1 degrees-of-freedom. Thus,

V ,
1

M − 1

M∑
i=1

(Yi − Ŷ )2 ∼
σ2
n

M − 1
χ2
M−1,

which implies that the statistic ĥ(Y ) can be written as

ĥ(Y |H0) =
1
2
log(2πe) +

1
2
logV . (A.1)

Under H0, the statistic logV follows a log-scaled,
central χ2 distribution with M − 1 degrees-of-freedom,
represented by logχ2

M−1. It is easy to show that the CDF,
FX(·), of the random variable X ∼ logχ2

n, is given by

FX(a) ,
∫ a

−∞
fX(x)dx =

γinc

(
n
2 , e

(a−log 2)
)

Γ
(
n
2

) ,

where γinc(·, ·), and Γ (·) are the lower incomplete gamma
function and the standard gamma function, respec-
tively [14]. The proof of this result is straightforward
and is omitted for brevity. Therefore, the probability of
false-alarm, pf , is given by

pf = P {̂h(Y |H0) ≥ τG}

= 1 −
γinc

(
M−1
2 , exp

{
2τG − log

(
4πeσ2

n
M−1

)})
Γ
(
M−1
2

) . (A.2)

Now, by simple transformations on (A.1), using (A.2),
it is straightforward to show that, for αf ∈ (0, 1), the
threshold, τG, should be chosen to satisfy

1 −
γinc

(
M−1
2 , exp

{
2τG − log

(
4πeσ2

n
M−1

)})
Γ
(
M−1
2

) = αf . (A.3)

Appendix B. Calculation of τL

On lines similar to those in Appendix A, for a Laplacian,
it can be shown that

2
λ

M∑
i=1

|Yi − ̂̄Y | ∼ χ2
2M .

Therefore, it is easily seen that

ĥ(Y |H0) = log2

2eM
M∑
i=1

|Yi − ̂̄Y |
follows a log−χ2 distribution. Again, following an
approach similar to that in Appendix A, it can be shown
that for a given αf ∈ (0, 1), the optimal threshold, τL, is
required to satisfy

1−
γinc

(
M, exp

[
log(2)

{
τL − log2

(
λe
M

)
− 1

}])
Γ (M)

= αf . (B.4)
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Appendix C. Computing the Near-Optimal τMG
G

It is known that if {Yi , i ∈ M} represent a set of i.i.d.
random variables from any distribution, not necessarily
unimodal, and with finite variance σ2, then the random
variable defined by

Y 2
s ,

1
M − 1

M∑
i=1

(
Yi − Ŷ

)2
,

has mean and variance in an asymptotic sense (as M →
∞) respectively given by [15]

EY 2
s = σ2 and var(Y 2

s ) = σ4
[ 2
M − 1

+
κ
M

]
, (C.5)

where κ is the excess kurtosis and µ4 is the fourth
central moment, i.e., about the mean of the parent
distribution. Therefore, for the bimodal Gaussian,

EY 2
s = σ2

n + µ2 and

var(Y 2
s ) = (σ2

n + µ2)2
[ 2
M − 1

+
κ
M

]
. (C.6)

A closed form expression for the distribution of Y 2
s for

the bimodal Gaussian distribution is hard to obtain.
However, it can be well approximated in the asymptotic
sense by a Gaussian distribution with moments in (C.5)
and (C.6).
For large values of µ (≥ 3), h(Y |H0) can be

approximated as [11]

h(Y |H0) ≈
1
2
log(2πeσ2

n ) + log 2.

Hence, an estimate of the above entropy is given by

ĥ(Y |H0) =
1
2
log

 2πe
M − 1

M∑
i=1

(Yi − Ŷi)2
 + log 2

=
1
2
log(4πeY 2

s ).

Therefore, the probability of false-alarm, pf , becomes

pf = P
{̂
h(Y ) ≥ τMG

G |H0

}
(a)
= P

{
Y 2
s ≥

exp(2τMG
G − 1)

4π

}

= Q


exp

(
2τMG

G −1
)

4π − EY 2
s√

var(Y 2
s )

 ,
where

(a)
= denotes that the equality holds due to the fact

that log(·) is monotone, andQ(·) denotes the Q-function.
Now, it is straightforward to show that, given αf ∈ (0, 1),

the near-optimal threshold, τMG
G , is

τMG
G =0.5 log

4πe
(σ2

n+µ
2)

Q−1(αf )

√( 2
M − 1

+
κ
M

)
+1



.

(C.7)
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