
EAI Endorsed Transactions on
Context-aware Systems and Applications

10 - 11 2015 | Volume 2 | Issue 6 | e3

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

Design guidelines for rapid and simple context-aware

mobile application development – an android case study

Hossein Shams1,* and Kamran Zamanifar1

1
Faculty of computer engineering, University of Isfahan, Isfahan, Iran

Abstract

Presenting a context-aware service and information is a key aspect of ubiquitous computing, but development of such

applications is quite complicated. Context-aware applications should be able to obtain raw data from sensors, create high-

level context information, detect the user’s situation, and adapt the behavior of the application to the recognized situation .
These complexities caused to reduce the impact of context-awareness in mobile computing while sensors of smartphones

have made huge potential for developing context-aware mobile applications. In this paper, we explain some guidelines to

overcome the existing obstacles by separating the context-aware application layers and make a loosely coupled connection

between them. These guidelines will bring easy and rapid development, reusability of the code and flexibility for

developers. Finally, we provide a case study example in the Android platform to demonstrate how the guidelines can be

used in a real application.

Keywords: Context-aware computing, Context-awareness, Context-aware Application, Context-aware design guidelines, Context-aware

development

Received on 19 June 2015, accepted on 25 July 2015, published on 05 November 2015

Copyright © 2015 H. Shams and K. Zamanifar, licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/_______________

*Corresponding author. Email: hos.shams@eng.ui.ac.ir

1. Introduction

Mark Weiser [1] introduced the term of ubiquitous

computing at the beginning of the 90s, and envisioned a

world that processing devices becomes an integrated part

of human life and computing recedes into the background

of our lives. During the recent years , a lot of our

peripheral devices equipped with the computational

capabilities to act more intelligently. Smartphones are an

obvious sample of such devices and will be performing

the key role in the ubiquitous computing era.

Advancement in processing units , memory capacity and

sensors of smartphones in recent years, alongside that

they are always accompanied their owners almost in

everywhere and know a lot of information about the user,

has made them an appropriate platform for hosting

adaptable applications. These context-aware applications

can perform some tasks in place of the user without

interrupting him/her.

In the last two decades, context-aware computing has

gained a lot of research attention and is regarded as an

enabling technology for ubiquitous computing systems.

An application is context-aware if it could be able to

recognize the current situation, and adapts its behavior

accordingly. The situation can be constructed from

context clues that inferred from physical contexts like

sensors that are embedded in the smartphone, or from

logical contexts such as information that is available in

the smartphone’s operating system. Adding the context -

aware capability to applications is not convenient task and

it is inherently complex.

In order to simplify the development of context-aware

systems, several programming frameworks and

middleware infrastructures are introduced by researchers

[2]. Nevertheless, context-aware management systems

(CMS) are not widely used by developers, because they

http://creativecommons.org/licenses/by/3.0/

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 - 11 2015 | Volume 2 | Issue 6 | e3

H. Shams and K. Zamanifar

2

are mainly focused on system level architecture and

context management, while developers need simplicity

and coding support in programming language level too.

So developers need a design guideline or a programming

style to use available APIs and bring context-awareness in

their applications.

The aim of this paper is to introduce some guidelines for

context-aware application developers to facilitate

developing such applications and reduce the complexities.

The proposed guidelines are going to separate situation

definitions and context acquisition from the main business

logic. This separation allows the developer to use a

specific third-party CMS for acquiring context data or

implement a simple CMS inside the application. Also, a

separation of the situation definitions from the business

logic brings a discipline to the process of development by

allowing to utilize the situation definition domain experts

[3] and increase code reusability.

The rest of this paper is structured as follows. In the next

section, we will introduce some of related work in this

area, and explain their drawbacks. In section 3 we will

express some of the programmer problems in the

application layer and introduce our guidelines to

overcome these problems, then go on by describing our

case study implementation based on the guidelines in

section 4. Finally, conclusion and future work comes in

section 5.

2. Related work

A considerable amount of research has been published

on circumstance of providing context data through

context-aware middleware. One of the first attempt in this

area has been the Dey’s Context Toolkit [4] and followed

by several frameworks and middleware such as Java

Context Awareness Framework (JCAF) [5], SOCAM [6],

Hydra [7], etc. and several overviews have been published

[2]. These approaches focused on implementation of the

middleware and representation of context data and

neglected to support developers to reduce complexity of

using the contexts and adapt their applications to a

specific situation.

Du and Wang [8] provided a programming model for

facilitating the development of context-aware applications

for mobile devices. Their programming model is a three-

layered software architecture to support developers at

programming level, which define contexts, behaviors and

context-behavior binding rules in the XML-based

specification. One of the weaknesses with this model is

that it limits the programmer to use context-awareness

only by the use of callback functions, and does not allow

the programmer to utilize the situations in the conditional

statements of the program.

Schuster et al. [9] introduced an approach to context-

oriented programming for Android mobile devices. They

explain how to use JCop language [10] in the

development of Android applications. They introduced a

declarative approach at the programming language level

that uses context-oriented programming and pointcut-

based activation of adaptation to reduce complexity of

developing such applications. The main drawback of this

approach is that both language definition and the

compiler’s bytecode generation of Android’s architecture

required to modification.

In this research, unlike the former studies that their

main attention were on middleware layer or providing

support for the programmer with some drawback in the

development tools, we are going to concentrate on the

application layer and the existence development tools and

guide developers on how to use context middleware and

defining the situations at the programming language level.

3. Design guidelines

In this section, we present the proposed design

guidelines for developing mobile context-aware

applications. The guidelines are based on our

development experience and research on mobile

application development and MVCC architectural pattern

[11]. The guidelines can reduce development complexities

and increase developing process speed by allowing to

give this part to other developers and also brings code

reusability by allowing to use the situation classes that

previously created.

Determining and associating appropriate reactions to

occurrence of situations, is the first step in developing

context-aware applications. For example, suppose an

application for handling incoming calls with the intent of

rejecting unnecessary calls in some situations. Hence,

determining the situations like driving, in a meeting,

sleeping, resting, reading, and etc. are important to this

application, because the application should decide to auto

reject the incoming call or ringing the phone based on the

caller person and the situation. To detect a situation, an

application must determine which contextual properties

are necessary for the situation and what value they should

have. Contextual information is clues for the programmer

to defines and recognizes the occurrence of a situation and

this contextual clues can come from phone’s sensors. For

example, recognition of sleeping situation can be a

combination of not moving for a period of time (using an

accelerometer), a calm environment (using a

microphone), a dim environment (using light sensor), and

be at a reasonable time like between 11 PM until 6 AM.

So feeding an application with enough context

information can help developers to detect a situation more

precisely.

Context-aware application needs a layer to collect

contextual information from different sources and will be

known as Context Data Adapter (CDP). This information

can come from a separate part of the application that has

the duty of preparing context data from different sensors

like a CMS, or from a third-party CMS. Each CMS can

have different communication protocol and diverse

context modeling methods like key-value pair model,

XML-based modeling, Ontology-based modeling (OWL),

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 - 11 2015 | Volume 2 | Issue 6 | e3

Design guidelines for rapid and simple context-aware mobile application development – an android case study

3

Object-oriented models, etc [12]. The CDP should bridge

the gap between the application and the CMS, and prepare

context data to the application in uniform style. Changing

the CMS can be done by just modifying the CDP code to

adapt to new CMS.

In context-aware applications, recognition of a

situation and associate it to a proper response, is a

significant part of the source code. Using conditional

statements for recognizing a situation is an unavoidable

part of context-aware programming. These If-Then

statements generally have long condition and contain

several clauses and logical operator. The presence of these

conditional statements in the several business logic files

will cause hard-to-read programming style and brings

several problems in the development process, code

readability, code reusability, and software maintenance.

Developers should separate the situation recognition

codes from the business logic part to handle this chaos.

We suggest using situation classes to declare situations

in a separate part of the project. Developers should create

a class for each collection of related situations, and each

situation should be defined by a Boolean method. These

classes should subscribe to required contexts and update

situations when the context get change. For instance,

human’s physical activities like driving, walking,

sleeping, resting, and -reading can consider as a situation

class, because they are related activities and will utilize a

common set of contextual properties. The body of the

situation methods contains several conditional statements

that are a composition of context information for

detecting if a situation is stable or not. By this separation

of situation recognition from main application codes, we

can reduce the complexity of the code maintenance and

promote code reusability of the project.

Utilizing the situation methods should be as simple as

possible. The developers would like to check for the

establishment of a situation in their If-Then-Else

conditions for handling the personalized behavior of the

application based on the user situation. This could

perform just by calling to the Boolean situation methods

which defined in the situation classes. Also, developers

need to perform an action right when a situation is

occurring. So there still need a method that allows

developers to run a callback function when a situation get

change. By this method, developers are able to use the

defined situations by just calling a method in a conditional

statement or set a callback function on their occurrence.

The guideline has a high degree of loose coupling

between the components. This loose coupling feature

brings great code reusability and high flexibility in

utilizing third-party CMSs that will cause to acceleration

and convenience of the development process. Figure 1

shows the horizontal view of the components and their

connections.

4. Implementation

For demonstration purpose, we implemented a context-

aware application on Android. ContextPlayer is a context-

aware music player that uses sensor data to play a

customized playlist for a specific situation and adapt the

application behavior to the user situation. For example,

the application can play classical music for a period of

time just before when the user gets asleep, or play Hip-

Hop music when the user is doing exercises such as

running. Even the ContextPlayer can adapt its behavior to

the user situation, like stop playing music when the user

has an incoming call or making an outgoing call. The

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 - 11 2015 | Volume 2 | Issue 6 | e3

H. Shams and K. Zamanifar

4

hypothesis behind the development of the ContextPlayer

is that the user’s environment affects what kind of music

should be played and what reaction should be performed.

The ContextPlayer has a simple internal CMS to

collect required contextual information. The CMS

contains a set of classes to access physical and logical

context sensors, including TimeContext, CallContext,

LightContext, MovementContext, etc. Each context class

is an android service that contains a separate thread to

monitor changes of the sensors in a specific period of

time. If a context value got changed, the new value will

broadcast to the CDP in a key-value pair model. The CDP

will notify all of the classes that subscribed to receive the

changes of that certain context and execute a callback

function.

The ContextPlayer contains two situation class:

UserActivitySituation and CallStateSituation. These

classes inherited from a BaseSituation class that

implemented the common methods of the situation classes

and provided an observer and a singleton design pattern

for them. Each situation class contains several properties

for keeping context values, and Boolean methods that

produce the situations from the context properties. Every

situation class has a constructor that contains several calls

to an attach method. The attach method will subscribe a

callback function to the change of a context property, and

get a list of situations that need to update after the

modification of the context property. The code in List 1

shows that we are subscribed to DayTime property of

TimeContext class, and the onContextChange method will

execute when it get changed, and a notification will send

to every callback function that listened to change of the

“isSleeping” situation.

Using the situations in the main business logic is as

simple as starting the CDP service, get an instance of a

situation class, and listen to change of the situation by

calling to the onChange method. The example in List 2

shows how we play some classical music for 30 minutes,

when the user is going to sleep.

To conclude this section, we present a UML sequence

diagram to show the task of each component and where

each listener and situations get notified. Figure 2

illustrated this workflow.

5. Conclusion

This paper has explained some developers’ problems in

the development of context-aware applications. Then we

have described several approaches to overcome these

problems, and accelerate the development process. We

proposed a guideline for separating the situation

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 - 11 2015 | Volume 2 | Issue 6 | e3

Design guidelines for rapid and simple context-aware mobile application development – an android case study

5

recognition codes from the main business logic codes.

Minimizing of writing codes, acceleration and

convenience of the development, reusability of situation

classes, and high flexibility in utilizing third-party CMS

are the results of this separation. For the future work, we

can develop a context-aware framework based on these

guidelines. This framework can implement common parts

of the situation classes and services, and causing to reduce

the size of the code that the programmers should write.

References

[1] M. Weiser, "The computer for the 21st century," Scientific

american, vol. 265, pp. 94-104, 1991.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on
context-aware systems," International Journal of Ad Hoc

and Ubiquitous Computing, vol. 2, pp. 263-277, 2007.

[3] D. Martín, D. L. de Ipiña, C. Lamsfus, and A. Alzua,

"Situation-Driven development: a methodology for the

development of context-aware systems," in Ubiquitous
Computing and Ambient Intelligence, ed: Springer, 2012,

pp. 241-248.

[4] A. K. Dey, G. D. Abowd, and D. Salber, "A conceptual

framework and a toolkit for supporting the rapid

prototyping of context-aware applications," Human-
computer interaction, vol. 16, pp. 97-166, 2001.

[5] J. E. Bardram, "The java context awareness framework

(JCAF)–a service infrastructure and programming

framework for context-aware applications," in Pervasive

Computing, ed: Springer, 2005, pp. 98-115.

[6] T. Gu, H. K. Pung, and D. Q. Zhang, "A service‐oriented

middleware for building context‐aware services," Journal

of Network and computer applications, vol. 28, pp. 1-18,
2005.

[7] T. Caus, S. Christmann, and S. Hagenhoff, "Hydra–an

application framework for the development of context-

aware mobile services," in Business Information Systems,
2008, pp. 471-481.

[8] W. Du and L. Wang, "Context-aware application

programming for mobile devices," in Proceedings of the

2008 C 3 S 2 E conference, 2008, pp. 215-227.

[9] C. Schuster, M. Appeltauer, and R. Hirschfeld, "Context-
oriented programming for mobile devices: JCop on

Android," in Proceedings of the 3rd International

Workshop on Context-Oriented Programming, 2011, p. 5.

[10] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and

K. Kawauchi, "Event-specific software composition in
context-oriented programming," in Software Composition,

2010, pp. 50-65.

[11] H. Shams and K. Zamanifar, "MVCC: An Architectural

Pattern for Developing Context-aware Frameworks,"

Procedia Computer Science, vol. 34, pp. 344-351, 2014.
[12] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D.

Nicklas, A. Ranganathan, et al., "A survey of context

modelling and reasoning techniques," Pervasive and

Mobile Computing, vol. 6, pp. 161-180, 2010.

