
Editorial

Preface to special issue on miscellaneous emerging
security problems

Kai Chen1,*, 2

1Institute of Information Engineering, Chinese Academy of Sciences
2Zhejiang Gongshang University

Abstract

An introduction to the key topics and challenges in Botnet, buffer overflow vulnerability, privacy-preserving 
and others.

Keywords: security and s afety, botnet, buffer overflow, privacy-preserving
Received on 01 June 2015;  published on 05 October 2015
Copyright © 2015 K. Chen and J. Shao, licensed to EAI. This is an open access article distributed under the terms of the 
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited 
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.5-10-2015.150475

1. Introduction
Security and safety become more and more important
in cyber network. They impact not only the national
critical departments (e.g., a state council) but also
individuals’ daily life. In the area of security and
safety, botnet, buffer overflow vulnerability, privacy-
preserving, and authentication are four hot topics
impacting both those departments and individuals.
With the billions users of smartphones, the threats
become even severe.
In these areas, the threats from botnets are reaching

an alarming level. A botnet is a collection of
programs that communicate through Internet and
perform specific tasks such as sending spam emails
and performing DDoS attacks. The tasks are given
by commands from an attacker via C&C (Command
and Control) channels on Internet, which makes the
programs as bot instances. The hosts containing the
programs could be personal computers, workstations
in enterprise networks or even sensitive servers
in governments. In addition to those victims (e.g.,
websites in a DDoS attack performed by a botnet)
directly attacked by bots, these hosts also become
victims in an attack. Nowadays, with the rapid
growth of smartphones, more and more botnets use
smartphones as bots. Considering that there are billions

of smartphones, botnets have much more targets than
those in PC era.

A botnet is usually very good at concealing itself.
The bots in hosts may not do anything harmful directly
to the hosts. Sometimes, the only goal for these bots
may be waiting for a command from a remote server
to connect to some websites (e.g., for DDoS attacks).
This connection can also be normally performed by an
ordinary user, which is therefore difficult to detect. The
bots could also reside in the host for a very long time
waiting for a command. In this waiting period, nothing
happens. In other words, no malicious behaviors can
let users or anti-virus detectors aware the existence of
the bots. Also, the waiting time can be too long to
get noticed. Anti-virus software may also try to detect
bots using their signatures. However, bots can also be
highly customized (e.g., through obfuscation) to evade
the detection. Moreover, before the awareness by those
anti-virus software, enough time is given to the bots
for their updates. Thus, to detect the malicious bots is
generally very difficult from host sides.

Another direction for botnet detection is to detect
botnet traffic. A basic idea is to use misuse detection.
For example, some approaches generate signatures of
known malicious traffic (e.g., using malicious hosts).
But they cannot detect new C&C traffics. Some
approaches classify traffic flows by protocols, length
sequences of packages, and the encoding of URLs.
However, bots’ traffic can be disguised as normal
ones especially when popular network protocols such
as HTTP are used. Noises can also be injected to

1

EAI Endorsed Transactions  
on Security and Safety

*Corresponding author. Email: chenkai@iie.ac.cn 

EAI Endorsed Transactions on 

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e1

EAI for Innovation
European Alliance



K. Chen and J. Shao

evade detection. Some approaches assume that C&C
traffic connects to the same location within varying
time windows. So they detect botnet through finding
repeated combinations of traffic destinations. These
approaches work when botnets like to use centralized
architectures. Using these architectures, all the bots
contact with one (or a few) C&C server(s) which
distributes commands. This is easy for a botnet to
implement, and is also easy to be detected. When the
server is compromised, the botnet is destroyed.
However, botnets are becoming more resilient to

detectors nowadays. They can structure their C&C
channels in different ways. Recently, attackers start to
build botnets on a pear-to-pear (P2P) architecture. Any
node in the botnet could be a server to send commands,
which makes them even more difficult to detect and
take down. Anomaly detection can address the problem
by observing deviations from normal traffic. However,
this kind of detection usually needs a learning period.
The malicious C&C traffics in this time period cannot
be identified. Moreover, the "normal" traffic can be
contaminated which makes future C&C traffics not easy
to detect.
To solve this problem, in this special issue,

Burghouwt, Spruit and Sips present a network-based
anomaly detection approach. This approach estimates
the trustworthiness of the traffic destinations. The flows
from human input, prior traffic from a trusted desti-
nation, or a defined set of legitimate applications are
considered as normal traffic. In this way, the approach
can detect zero day malicious traffic destinations in real
time. Even if the traffic is encrypted or uses normal
popular protocols such as HTTP, the approach can still
detect it without being noticed.
Vulnerabilities in software are highly related to

botnet. To stealthily plant a bot into a system, lots
of attackers will choose to exploit a vulnerability.
In this process, nothing special happens when a bot
is planted. Among different kinds of vulnerabilities,
buffer overflow is one of the most dangerous. By
overrunning the buffer’s boundary and overwriting
adjacent memory, attackers can leverage a carefully
constructed input to overwrite important memory units
(e.g., return address to a function). In this way, attackers
can let a program run code in arbitrary memory
addresses given by input data (constructed by attackers)
to include arbitrary commands (e.g., downloading and
executing the bot). When the bot spreads in the
network, it can also exploit the vulnerabilities to infect
more systems. In this process, those target systems look
normal, which makes the detection quite difficult.
Buffer overflow vulnerabilities not only allow attack-

ers to implant bots, but also give attackers opportuni-
ties to execute arbitrary commands. When the software
with the vulnerabilities has root privileges, it becomes
even more dangerous. All the data in the systemmay be

exposed to attackers. With the rapid growth of smart-
phones, a vulnerability in system will impact billions
of users. Even for a single popular app with such
vulnerabilities, it may impact millions of users.
To deal with such attacks, researchers can either

identify and fix all buffer overflow vulnerabilities in
software or do a defense against such attacks. Identi-
fying all buffer overflow vulnerabilities (especially in
commercial software without source code) is extremely
difficult. In most cases, the vulnerabilities can only be
triggered by specific inputs. To find such inputs, a tester
may use white-box testing to identify those vulnerabil-
ities. In this process, he can check whether each path
contains an instruction which overflows a buffer. How-
ever, for an instruction in different execution paths, the
instruction may or may not trigger a vulnerability. To
traverse all the execution paths in software is very time-
consuming and almost impossible. He can also leverage
black-box testing, which feeds programs with different
inputs and observes the abnormal running states of
programs (e.g., crashes). The black-box testing avoids
checking the running states of the program, which
seems more efficient than white-box testing. However,
whether a vulnerability can be triggered highly depends
on the inputs. It is impossible to enumerate all the
inputs for the software. Current approaches combine
white-box testing with black-box testing for efficient
detection. But they still cannot find all vulnerabilities.
Once there is one vulnerability missing, it could be
exploited by attackers.
Another direction is to do a defense against

the attacks. Some approaches dynamically check
operations on buffers to see whether the operations
exceed the boundaries of those buffers. But the checking
process will impose high overhead against normal
execution. A random value, or canary, is added to
the memory unit right adjacent to important memory
units in stack such as return address or saved frame
pointer. Based on the design, once the buffer is
overflowed to overwrite the important memory units,
the canary will also be overflowed, which will warn the
program (usually through exceptions) that an attack is
happening.
Data Execution Prevention (DEP) marks important

memory regions (e.g., stack) as unexecutable. Once
a program tries to execute instruction inside these
regions (usually caused by injecting code through buffer
overflow), an exception (e.g., on hardware level) will be
triggered. However, attacks based on Return-Oriented
Programming link and execute a sequence of small
code snippets (called gadgets) which are not in stack.
In other words, attackers can let the return address
point to an instruction in code area (e.g., the program
itself or dynamic linked libraries). The instruction is
chosen by attackers in advance, which is followed by a
return instruction. After the instruction is executed, the

2
EAI Endorsed Transactions on 

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e1

EAI for Innovation
European Alliance



Preface to special issue on miscellaneous emerging security problems

return instruction will divert the program to another
instruction according to the return address in stack
which is given by attackers (still through injection).
In this way, attackers can inject the program with a
sequence of addresses to let the program run any code
without the detection by DEP.
Address Space Layout Randomization (ASLR) is

another approach to prevent shellcode from being
successful. It randomizes the location of executables
and libraries in memory or even in-memory structures.
When attackers try to chain the gadgets that they find
before attacks, the gadgets may not be in the original
places in memory as those in attackers’ computers. In
this way, attacks can be prevented. However, ASLR
must maintain page alignment (4KB on x86) within
limited memory address space (typically less than 2GB
on 32-bit x86), which also limits the spaces for target
code. The correct address could be guessed by attackers
depending on how often they can try. Combining two
or more defenses (e.g., DEP and ASLR) will make the
attacks even harder. But new attacks such as Just-in
Time (JIT) Spraying can still bypass them.
To make a better defense, in this special issue,

Krugel and Müller propose a compiler-level protection.
This protection separates a stack to two stacks (i.e.,
control and data stacks). It protects sensitive data
(e.g., return addresses and saved frame pointers) on
a separated stack (i.e., control stack). In this way,
when a buffer is overflowed, only the data in data
stacks will be overwritten. The sensitive data will
still keep the original values (in data stack) in this
overflow. The authors implemented this idea on LLVM
compiler infrastructure and made detailed evaluations
on it. While protecting the sensitive data, this approach
imposes little overhead on the running performance.
Privacy is always a major issue nowadays. It does not

mean that the information related to individuals cannot
be revealed to others, but it does mean that people has
the right (ability) to decide who could collect, store,
or use the information. However, many of existing web
applications are against users’ privacy, i.e., to complete
their functionalities’, they have to record user’s identity
information, action histories, or behavior patterns. One
representative is web metering.
The web metering is a web application where

interested enquirers can obtain the evidence of the
number of visits done by users to the website. This
evidence is the crucial factor to decide the price of
advertisements on the websites. As we know, most
websites nowadays earn their money not from the users
who visit them but from the advertisements on the
websites. The data used as the evidence is required to
be non-repudiated, and can be linked to user’s identity
information or other actions.
The existing web metering schemes can be classified

into the following three categories: user centric, web

server centric and third party centric. In the first
category, several cryptographic primitives, including
digital signature, hash chain, and secret sharing, are
applied. Although the applied cryptographic primitives
make the evidence non-repudiated, the user’s identity
will be revealed to verify the validity of the evidence.
In the second category, the web server makes use

of several techniques to obtain the non-repudiated
evidence, including e-coupon, solving computational
complexity problems, and audited hardware box.
However, the resultant schemes cannot guarantee that
the obtained data are always non-repudiated if the web
server is not always honest, let alone the user’s privacy.
In the third category, the data from the user side

always go through the third party; hence, the user’s
privacy is not protected from the third party.
It seems that designing a privacy-preserving web

metering scheme is a quite difficult task. Inspired by
the hardware-based security systems, a new hardware-
based web metering scheme is proposed in this special
issue. There are three entities in the proposed web
metering scheme: user, web server, and audit agency.
To complete the web metering, the web server should
obtain the non-repudiated data from a new key of the
user. The certificate of the new key is generated by the
audit agency after validating the hardware on the user
side. To protect the user’s privacy, the certificate is based
on some anonymous authentication methods. More
details of the new web metering scheme can be found
in the third paper named "Towards Privacy-Preserving
Web Metering Via User-Centric Hardware" by Alarifi
and Fernĺćndez. In the paper, they also analyze and
compare the existing web metering schemes and show
the gained privacy benefits of the proposed scheme.
Furthermore, the proposed scheme supports different
security countermeasures and users’ privacy settings,
such as security w/o privacy.
One of the basic techniques used in the paper by

Alarifi and Fernĺćndez is the anonymous authentica-
tion. Till now, there existing many cryptographic prim-
itives providing anonymous authentication, including
blind signature, group signature, ring signature, direct
anonymous attestation, anonymous credential, and so
on.
In a blind signature scheme, the signer will generate a

signature without knowing the corresponding message,
while the signature requester can obtain the pair
(signature, message). With this pair, the requester can
be authenticated by others in an anonymous way. In
the real execution, the signer should make sure that the
one knowing the corresponding signed message is an
authenticated user.
Group signature can provide the limited anonymity

on the authentication. In particular, every group
member can sign messages on behalf of the group, and
nobody outside of the group can reveal the identity of

3
EAI Endorsed Transactions on 

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e1

EAI for Innovation
European Alliance



K. Chen and J. Shao

the signer, while the group manager can trace back to
the signer. In other words, the signature is anonymous
except the group manager.
Ring signature is quite similar to group signature, but

without the group manager. Everyone can build up a
group without agreements from others, and can also
sign message on behalf of the built group. Unlike group
signature, the resultant signature in the ring signature
scheme is fully anonymous.
Direct anonymous attestation has been adopted by

the Trusted Computing Group to protect the privacy
of the Trusted Platform Module (TPM) platform. The
key of direct anonymous attestation is to use a zero-
knowledge proof to show the validity of the credential
provided by the TPM platform without violating the
TPM platform’s privacy.
Anonymous credential is an anonymous system

where the user can obtain credentials from an
organization, and then at some later pint, s/he can be
authenticated by others using the credentials without
revealing her/his identity.
The careful reader may find that all the above crypto-

graphic techniques for anonymous authentication can
be used in the privacy-preserving web metering, or
other applications where privacy and non-repudiation
are both desired.

References
[1] Kopka H. andDaly P.W. (2003)AGuide to LATEX (Addison-

Wesley), 4th ed.

[2] Lamport L. (1994) LATEX: a Document Preparation System
(Addison-Wesley), 2nd ed.

[3] Mittelbach F. and Goossens M (2004) The LATEX
Companion (Addison-Wesley), 2nd ed.

KAI CHEN (chenkai@iie.ac.cn)
obtained his Ph.D. degree from
Graduate University of Chinese
Academy of Sciences in 2010. He
was a postdoctoral researcher at
Pennsylvania State University from
2012 to 2014, and Indiana University
from 2014 to 2015. Now, he is an
associate professor in Institute of
Information Engineering, Chinese
Academy of Sciences. His research
interests include system security,
program analysis and network
security.

JUN SHAO (chn.junshao@gmail.com)
obtained his Ph.D. degree from Shang-
hai Jiao Tong University in 2008. Soon
after, he was a postdoctoral researcher
at Pennsylvania State University until
2010. Now, he is an associate profes-
sor in Zhejiang Gongshang University.
His research interests include applied
cryptography and network security.

4
EAI Endorsed Transactions on 

Security and Safety
01-10 2015 | Volume 2 | Issue 4 | e1

EAI for Innovation
European Alliance




