
Efficient Public Blockchain Client for Lightweight
Users
Lei Xu1, Lin Chen1, Zhimin Gao1, Shouhuai Xu2, Weidong Shi1

1Department of Computer Science, University of Houston
2Department of Computer Science, University of Texas at San Antonio

Abstract

Public blockchains provide a decentralized method for storing transaction data and have many applications
in different sectors. In order for users to track transactions, a simple method is to let them keep a local copy
of the entire public ledger. Since the size of the ledger keeps growing, this method becomes increasingly
less practical, especially for lightweight users such as IoT devices and smartphones. In order to cope with
the problem, several solutions have been proposed to reduce the storage burden. However, existing solutions
either achieve a limited storage reduction (e.g., simple payment verification), or rely on some strong security
assumption (e.g., the use of trusted server). In this paper, we propose a new approach to solving the problem.
Specifically, we propose an efficient verification protocol for public blockchains, or EPBC for short. EPBC is
particularly suitable for lightweight users, who only need to store a small amount of data that is independent
of the size of the blockchain. We analyze EPBC’s performance and security, and discuss its integration with
existing public ledger systems. Experimental results confirm that EPBC is practical for lightweight users.

Received on 23 December 2017; accepted on 24 December 2017; published on 4 January 2018
Keywords: blockchain, lightweight client, security

Copyright © 2018 Lei Xu et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.4-1-2018.153528

1. Introduction
A public blockchain or ledger consists of a set of
blocks that are linked together, where each block
contains a set of transactions. A public blockchain is
maintained by a group of users, who run a consensus
protocol (e.g., proof-of-work with longest-chain) to
resolve disagreements regarding the blockchain. In a
simple realization of public blockchain, each user keeps
a local copy of the entire blockchain, meaning that each
user has access to all historic activities and can easily
test whether a new transaction is consistent with the
existing transactions. This explains why a public ledger
does not have to rely on any centralized party. This
technique is central to many popular applications, such
as Bitcoin [1].

Although keeping a local copy of the blockchain in
question simplifies many operations (e.g., transaction
searching and balance calculation), this imposes a
substantial storage overhead because the blockchain
keeps growing. For example, the Bitcoin blockchain
includes 472,483 blocks in June 2017, or 120 GB

in volume. This overhead may not be a problem
for modern servers and PCs, but are prohibitive for
lightweight users such as mobile devices and IoT
devices. In general, this would hinder the development
of applications that aim are meant to be built on top
of blockchains (e.g., smart contract system [2]). At the
same time, smart phones are the major way to get online
in some areas, especially in underdeveloped countries,
and there is a big need for mobile and lightweight users
to use blockchains [3]. Therefore, it is urgent to reduce
the storage overhead, especially for those lightweight
users.

Indeed, Nakamoto proposes the simplified payment
verification (SPV) protocol in the very first Bitcoin
paper [1], which requires a client to store some,
instead of all, blocks while being able to check the
validity of transactions recorded in the blockchain. This
technique is also widely used in many blockchain-
based applications, such as smart contract system [2].
The basic idea underlying the SPV protocol is that
each user only needs to keep the headers of blocks,

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

L. Xu, L. Chen, Z. Gao, S. Xu, W. Shi

rather than the blocks themselves. This means that
the local storage overhead still increases linearly with
the number of blocks, which grows over time and can
quickly become prohibitive for lightweight users. An
alternate approach is that a lightweight user chooses
to trust some nodes in a blockchain system. However,
this practice sacrifice the most appealing feature of the
blockchains, namely the absence of any trusted third
party. Moreover, this approach can be vulnerable to, for
example, Sybil attacks [4].

In this paper, we propose an efficient verification
protocol for public blockchain, dubbed EPBC. The core
of EPBC is a succinct blockchain verification protocol
that “compresses” the whole chain to a constant-size
summary, using a cryptography accumulator [5]. A
lightweight user only needs to store the most recent
summary, which is sufficient for the user to verify the
validity of transactions. EPBC can be incorporated into
existing blockchains as a middle layer service, or can be
seamlessly incorporated into new blockchain systems.

In summary, our contributions in this work include:

• We design a novel scheme for lightweight users
to use public blockchains using cryptographic
accumulator.

• We analyze the security and asymptotic perfor-
mance of the scheme, including its storage cost.

• We report a prototype implementation of the core
protocol of EPBC and measure its performance.
Experimental results show that the scheme is
practical for lightweight users.

The rest of the paper is organized as follows. In
Section 2 we briefly review the background of public
blockchains and the simplified payment verification
protocol. In Section 3 we describe the design of the core
component of EPBC, i.e., efficient block verification,
and analyze its security. Section 4 describes two
common operations for blockchain based applications
using the core component of EPBC, and we provide the
architecture to integrate EPBC with existing blockchain
systems in Section 5. Experimental results are given in
Section 6 to demonstrate the practicability of EPBC, and
Section 7 discusses the related prior work. We conclude
the paper in Section 8.

2. Background of Public Blockchain
A blockchain is a distributed ledger that has been
used by Bitcoin and other applications to store
their transaction data, where a transaction can be
a payment operation, smart contract submission, or
smart contract execution result submission. There are
different approaches to construct blockchains. In this
work, we focus on the class of blockchains that are
built on the principle of proof-of-work (PoW) [6].

This class of blockchains have a low throughput and
a high latency, but have the desirable properties of
fairness and expensive-to-attack. Furthermore, there
are many efforts at improving their performance [7, 8]
and characterizing their security properties [9].

Block Header

Block Contents

Block Header

Block Contents

Block Header

Block Contents

Figure 1. In the SVP scheme, a user stores the headers of the
blocks, rather than the blocks themselves. A header contains the
relevant meta data (e.g., the root of the Merkle tree whose leaves
are the transactions contained in a block). This allows a user to
verify whether a given block is valid or not.

Since a blockchain is immutable and append-only,
its size keeps growing. There are proposals for coping
with this issue. A straightforward approach is to trust
some user, who can check the validity of transactions
on the user’s behalf. This approach assumes that the
lightweight user always knows who can be trusted.
Another approach is to use the SPV protocol mentioned
above [1]. In this scheme, as highlighted in Figure 1,
a user only needs to store the block headers, which
contain the root of the Merkle tree of the transactions
in the corresponding block. When a user needs to verify
a transaction, it sends a request to the system asking for
the corresponding block, whose validity can be verified
by using the root of the Merkle tree.

3. Design and Analysis of EPBC
3.1. Design Objective and Assumption
The objective of EPBC is to allow lightweight users to
participate in applications that use public blockchains.
By “lightweight users” we mean the users who
use devices that have limited computation/storage
capacities, such as IoT devices and smartphones.
Specifically, EPBC aims to allow lightweight users to
achieve the following:

• Efficient storage: A user does not have to store or
download the entire blockchain. Instead, a user
only needs to consume a storage that is ideally
independent of the size of the blockchain.

• Verifiability of transactions: A user can verify
whether a transaction has been accepted by the
blockchain or not.

Like any public blockchain constructed according to
proof-of-work, we assume that the majority of the users
are honest.

2
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

Efficient Public Blockchain Client for Lightweight Users

Listen to the blockchain network to

learn the latest summary.

Generate a proof of the block.

Verify the proof and take action.

Lightweight

User

Blockchain

System

Send a request of proof of a block.

Figure 2. Illustration of the blockchain verification protocol. The
nodes in the blockchain system with bigger storage capacities
can keep a full copy of the blockchain. These nodes will interact
with the lightweight users to help the latter to verify the validity
of blocks.

In what follows, we first describe the block
verification protocol, which is the core component of
EPBC. Then, we describe how to use this protocol to
construct the EPBC scheme.

3.2. The Block Verification Protocol
Figure 2 gives an overview of the verification protocol.
Basically, a lightweight user can verify the validity of
transactions by interacting with the blockchain system.

The blockchain verification protocol of EPBC consists
of the following four algorithms:

• Setup: This algorithm is executed once by the
creator of the blockchain. The algorithm generates
the public parameters that are needed by the other
algorithms.

• Block and summary construction: This algorithm
generates blocks and a summary of the current
blockchain. Anyone participating in the mining
competition to build new blocks is responsible
for calculating the summary of the current block-
chain. The summary depends on the content of
the current blockchain and the public parameters.

• Proof generation: This algorithm generates a proof
for a given block. The proof may depend on,
among other things, the entire blockchain.

• Proof verification: Given the summary of a
blockchain and a proof for a single block, this
algorithm verifies whether the proof is valid or
not.

With this protocol, a lightweight user keeps the
updated summary of the blockchain. When the user
wants to verify a specific block, it can ask the parties
that are involved in a transaction for a proof for
the block, which is generated by running the proof
generation algorithm. The user then executes the proof
verification algorithm to determine whether to accept
the block or not. In what follows we describe the details
of these algorithms.

Setup. The creator of the blockchain selects two large
prime numbers p, q, and calculatesN = pq as in the RSA
accumulator system. N is embedded into the first block
and disclosed to the public; and then p, q are discarded.
The creator also selects a random value g ∈ Z∗N . Each
block will be labelled with an integer, with the “genesis”
block (i.e., the first block on the blockchain) has the
label “1”.

Block and summary construction. Each block con-
tains, in addition to the standard attributes (e.g., tran-
saction information and proof-of-work nonce), a new
attribute S, which is the summary of the current block-
chain. For the i-th block, which is denoted by blki , the
attribute Si is calculated and stored with blki as follows:

Si =

ghash(blki ||i) mod N, if i = 1,

S
hash(blki ||i)
i−1 mod N, if i > 1.

If the current blockchain contains n blocks, Sn is
the summary of the current blockchain. The block
position information i is used in the computation for the
purpose of preventing the attacker from manipulating
the position of a block. After the newly generated block
is broadcast to the blockchain system, the following two
algorithms can be executed.

Proof generation. To generate a proof that shows
block blki is the i-th block on the blockchain with
summary Sn, where i ≤ n, the prover calculates pi =

(p(1)
i , p

(2)
i) as follows:

pi =

p(1)
i = hash(blki ||i),
p

(2)
i = g(

∏n
k=1 hash(blkk ||k))/hash(blki ||i) mod N.

Note that the proof is generated by a user who keeps

the entire blockchain and therefore can compute p(2)
i

without knowing φ(N), where φ is the Euler function.

Proof verification. Given a block blk, a claimed proof
p = (p(1), p(2)), and a blockchain summary Sn, a user
can verify that block blki is indeed the i-th block on
blockchain with summary Sn, where i ≤ n, as follows:p(1) ?= hash(blki ||i),

Sn
?= (p(2))p

(1)
mod N.

If both equations hold, the user accepts that p is a valid
proof for blk; otherwise, the verifier rejects the block.

3.3. Parameter Initialization
One of the key steps in the blockchain verification
protocol is the parameter initialization, i.e., selecting
p and q to generate the modulus N . If p or q is

3
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

L. Xu, L. Chen, Z. Gao, S. Xu, W. Shi

exposed, the protocol is clearly not secure. This issue
can be addressed by generating N using a multi-party
protocol. There have been many protocols for this
purpose. For example, the protocol proposed by Cocks
[10] works as follows. Suppose at the beginning there
are ` users who work together to generate the first block.

1. Each user i, 1 ≤ i ≤ `, selects his/her own prime
numbers pi , qi .

2. Each user i, 1 ≤ i ≤ `, calculates N = (p1 + p2 +
· · · + p`)(q1 + q2 + · · · + q`). By leveraging the pro-
tocol given in [10], user i can calculate N without
knowing the two factors of N .

3. Each user tests whether N is a product of
two prime numbers or not. Specifically, the
system randomly selects a random number
x and each user calculates xpi+qi mod N . If∏
xpi+qi mod N ≡ xN+1 mod N , N passes the

test. Carmichael numbers that can pass this test
can be further eliminated by methods given
in [11].

4. If the current N passes all tests, users work
together to embedded it in the genesis block.
Otherwise they repeat the process again, until an
appropriate N is found.

Since N only needs to be generated once, the cost of the
parameter initialization is not a big concern.

3.4. Security and Performance of the Block
Verification Protocol
It is straightforward to verify that the protocol is
correct, meaning that any legitimate proof will be
accepted as valid. The following theorem shows that for
a given summary S of blockchain BC, no attacker can
generate a valid proof for a forged block blk′ that is not
contained in BC under strong RSA assumption.

Theorem 1. Given a summary Sn of blockchain BC, there
is no probabilistic polynomial-time attacker A that can
forge a block blk′ and an accompanying proof P ′ that
blk′ is a valid block on blockchain BC in the random
oracle model; otherwise, the Strong RSA assumption is
broken.

Proof. Suppose hash() behaves like a random oracle.
Let ri = hash(blki ||i) where blki is the i-th block on BC,
and Sn = g

∏n
k=1 rk mod N . We consider two scenarios of

attacks:

• The attacker knows the summary Sn but not the
blockchain. Suppose the attacker chooses blk′ and
position i′ for the block. Then, the attacker needs
to compute y ∈ Z∗n such that

yhash(blk′ ||i′) mod N = Sn.

This immediately breaks the Strong RSA assump-
tion.

• The attacker knows both blockchain and the sum-
mary Sn. In this case, the attacker knows all valid

proofs for blocks in BC, i.e., (ri , S
1
ri
n mod N), i =

1, . . . , n. Suppose the attacker can generate a valid
proof for a forged block blk′ for some position i′ .
Let r ′ = hash(blk′ ||i′). If r ′ |

∏n
i=1 ri , the attacker can

successfully make a valid proof for blk′ at position

i′ because the attacker can compute (r ′ , S
∏n
i=1 ri /r

′

n).
Because the attacker cannot control the output
of hash(), the probability that the attacker can
succeed is equivalent to the probability that a
random number r ′ is a factor of another random
number R =

∏n
i=1 ri . According to Erdös-Kac the-

orem [12] and its extension counting multiplici-
ties [13], the number of prime factors of R coun-
ting multiplicity is O(log logR). With Binomial
theorem, the total number of divisors of R is
O(2log logR) = O(logR), and limR→∞

logR
R = 0. The-

refore, the probability that an attacker can find
r ′ is negligible when R is large enough. As long
as the attacker cannot find such r ′ , a successful
attack implies that the the Strong RSA assumption
is broken.

In summary, there is no practical attack against the
protocol in the random oracle model unless the Strong
RSA assumption is broken.

Performance of the major algorithms is analyzed as
follows.

• Block construction. When compared with the
straightforward method by which each user
keeps the entire blockchain, our method incurs
some extra work in the block construction
algorithm. The extra work consists of two parts:
evaluating the hash value of the new block and
calculating the new summary. The computation
overhead is constant (i.e., one hash calculation
and one modular exponentiation) and the storage
overhead is also constant (i.e., an element in ZN
for the summary). The summary also incurs extra
communication cost, which is however small (e.g.,
2048 bits for a 2048-bit N).

• Proof generation. The proof generation algorithm
does not incur extra storage. The computational
cost is proportional to the length of the current
blockchain (i.e., the number of blocks in the
chain) and the position of the block. Suppose
the length of the blockchain is n, and the
proof of i-th block needs to be generated, where
i ≤ n. The prover needs to conduct one hash
evaluation of the ith block, and calculates the

4
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

Efficient Public Blockchain Client for Lightweight Users

product of hash values of blocks 1, . . . , i − 1, i +
1, . . . , n. In summary, the prover calculates n + 1 −
i hashes, n − 1 multiplications, and one modular
exponentiation. Since the nodes with sufficient
storage capacity (rather than the lightweight
users) are supposed to generate proofs, the
protocol is practical.

• Proof verification. The computational cost to
verify the proof of a block includes one hash
evaluation and one modular exponentiation,
which is constant. This explains why the protocol
is suitable for lightweight users who only keep the
summary of the blockchain.

3.5. Reducing Cost of Proof Generation
Although both the cost of updating the summary of
a blockchain and the cost of verifying a block are
constant, the computational complexity for the prover
to generate a proof is O(n), where n is the number
of current blocks on the blockchain (i.e., n keeps
increasing). In the worst-case scenario, the prover needs
to traverse all of the blocks on the blockchain to
calculate the second part of the proof, namely

g(
∏n
k=1 hash(blkk))/hash(blki) mod N.

In order to reduce the computational complexity
incurred by this, we design a scheme that improves the
computational efficiency at the price of a slight increase
in storage.

Proof generation with a smaller computational
complexty. The basic idea underlying the scheme is to
let the prover maintain a binary tree T . As illustrated
in Figure 3, the binary tree is used to store intermediate
results that can be used to generate a proof for a given
block. Specifically, each leaf stores the hash value of a
corresponding block, and each internal node stores the
product of its two direct children nodes. This way, the
root node stores the product of the hash values of all
of the blocks on the blockchain. The height of T is pre-
determined. If a leaf is empty (i.e., currently there is no
corresponding block on the blockchain), its value is set
to 1 so that it does not contribute to the value stored at
the root node.

Suppose the height of tree T is h and the number
of currrent blocks on blockchain is n, where n < 2h−1.
To calculate a proof for block blki , where 1 ≤ i ≤ n, the
prover leverages the information stored in T as follows:

• Find the product of all of the values on the right-
hand of blki (the blockchain grows from left to
right)

r ←
n∏

k=i+1

hash(blkk). (1)

blk1 blk2 blk3 blk4 blki

h1 h2 h3 h4 hi

h1h2 h3h4

h1h2h3h4

h1h2…hi

…………

…………

…………

…………

…………

Figure 3. The storage structure that can be used by a prover
to reduce its computational complexity when generating proofs.
Each leaf hi stores the hash value of a block, and each internal
node stores the product of the values stored at its two children.

Instead of conducting the multiplication opera-
tion one-by-one, the prover utilizes different pro-
ducts information stored in T to accelerate the
computation.

• Calculate LR← (Si)r/hash(blki) mod N .

• Set the proof as P ← (hash(blki), LR).

Note that the height of T determines the number
of blocks it can accommodate, and is therefore a pre-
determined public parameter. If the height of T is h,
the total number of blocks it can accommodate is 2h−1.
This is no significant constraint because a relatively
small h can accommodate a large number of blocks. For
example, when h = 32, the structure can accommodate
4,294,967,296 blocks, which are about 9,000 times
larger than the number of blocks on the Bitcoin network
as of April 2017.

Analysis of the improved scheme. The improved
scheme involves a binary tree T to store some
information that can be used for generating proofs. Let
height(T) = h, meaning that n = 2h−1 is the number of
leaves. Let |hash()| = `. At the leaf level (i.e., the first
level), the size of each node is `. Each node at i-th level
incurs i · ` bits of storage, and the size of the root node
is h · ` bits. Therefore, the size of T is

n · `︸︷︷︸
first level

+ · · · + (n/2i) · (2i`)︸ ︷︷ ︸
i-th level

+ · · · + (n/2h−1) · (2h−1`)︸ ︷︷ ︸
h-th level, root

=
h−1∑
i=0

n · ` = h · n · ` = (log2 n + 1) · n · ` = O(n logn).

5
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

L. Xu, L. Chen, Z. Gao, S. Xu, W. Shi

With intermediate results stored in T , the computation
complexity for generating a proof is reduced to h (or
O(logn)) modular exponentiations.

More generally, if each internal node in Figure 3 has
m children, the height of T is reduced to logm n + 1.
A similar analysis shows that the total size of T is
(logm n + 1) · n · `, which is the size of storage a prover
keeps locally. In order to calculate r, which is defined in
Equation (1), it requires about logm n +mmultiplication
operations in the worst-case scenario, where m is the
number of multiplications incurred at an internal node
at the second level of T . In order to select the value ofm
so as to minimize the overall computational complexity,
we calculate the derivative as follows:

(logm n +m)′ = (
lnn
lnm

+m)′ = 1 − lnn

m ln2m
,

which monotonically increases with respect to m.
Therefore, we get the minimum value when

1 =
lnn

m ln2m
,

and m ≈ lnn. In practice, we can set the number of
branches to a small constant integer so as to reduce the
computational complexity of the prover.

4. Using the Block Verification Protocol to
Construct EPBC
In this section, we discuss construction of high-
layer operations based on the verification protocol
described in Section 3. Specifically, we focus on two
basic protocols: blockchain identification and transaction
verification.

Blockchain identification. When a lightweight user
needs to join a blockchain based application, it needs
to obtain the current summary of the blockchain.
Protocol 1 is for this purpose.

Note that as long as the attacker does not control
majority of the ` users, the protocol is secure. The
lightweight user can also adopt other strategies to
determine the summary, e.g., giving different weights
to selected users and include this information when
making the decision.

Transaction verification. A transaction is valid if and
only if the block it belongs to is accepted by the
majority of users, i.e., on the longest branch of the
blockchain. Therefore, verification of a transaction is
reduced to checking the validity of a block and its
position (i.e., block number). A lightweight user can use
the block verification protocol to verify that the block
in question indeed contains the transaction in question.
Then, the lightweight user can check the number of

Protocol 1 Blockchain identification.
1: The lightweight user randomly selects a group of `

users, denoted by Gu , from the blockchain network;

2: for all u ∈ Gu do
3: The lightweight user queries u to get the

summary value S(u);
4: The lightweight user interacts with u to verify the

validity of S(u) with respect to a random set of
blocks chosen by the lightweight user;

5: end for
6: The lightweight user calculates

S ← SummaryDetermination(S(1), . . . S(`)),

which returns the summary that is provided by
majority of the users, where S is the final summary
of the blockchain;

blocks that have been added after the block that is
verified. Similar to the Bitcoin system [1], if more than
6 blocks have been added to the blockchain after the
block under consideration, the transaction in question
can be accepted with high confidentiality.

If the transaction is a smart contract submission or
one-time smart contract execution result submission,
the above method is also sufficient. However, if the
transaction is a payment operation or submission
of multiple-time smart contract execution result,
freshness becomes a concern. For example, the attacker
can provide proof of an old block that contains previous
payment of the same value. To prevent such attacks,
the lightweight user can maintain a local counter and
include the counter in its transactions.

5. Integration with Existing Blockchain Systems
Because a lot of public blockchain applications have
been developed, it is useful to enable EPBC for these
systems without modifying existing data structures and
client. To achieve this goal, EPBC can work as a separate
service layer on top of existing blockchain systems.
Figure 4 demonstrates the relationship between the
existing blockchain system and the newly added EPBC
service.

Specifically, a separate EPBC client with embedded
parameters can be distributed to users who maintain
the blockchain and play the role of a prover.
Here parameters are values that used for blockchain
summary construction. Summaries of the blockchain
are not involved in mining, and users can use existing
client to produce new blocks and achieve consensus on
the blockchain. After the user decides to accept a new
block, the EPBC client produces a new summary based
on previous summary value and the new block, and

6
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

Efficient Public Blockchain Client for Lightweight Users

stores the new summary locally. Note that summaries
are determined by the blockchain itself so EPBC client
does not need to run any consensus mechanism. If the
user wants to reduce the time complexity of generating
a proof, EPBC client can maintain the tree structure
described in Section 3.5.

Original
Block 1

Original
Block 2

……
Original
Block i

Summary 1 Summary 2 Summary i

Original blockchain operations:
mining, transaction submitting, transaction verification

EPBC operations:
block monitoring, summary construction, proof generation,

block selection

Figure 4. Overview of the integration of EPBC with an existing
blockchain systems. A dedicated client is used to support EPBC
related operations.

6. Experiments and Evaluation
In this section, we describe the implementation and
provide preliminary experimental results of EPBC. We
focus on the block verification protocol because it is the
core of EPBC.

Implementation and parameters. We implemented a
prototype of the block verification protocol based on
the MIRACL crypto library [14]. Since security of the
protocol depends on the Strong RSA assumption, we
chose a 1,024 bits N in the implementation. SHA256
was used for hash(). We also set the height of T as 32.
When a leaf is empty, its value is set to 1 and there is no
need to store it.

Experimental results. We conducted the experiments
on a desktop with a low-end Intel Celeron 1017U
processor, which has a similar Geekbench 4 score
of Snapdragon 805 processor [15]. The experimental
results are summarized in Figure 5, which shows that
although the cost of proof generation depends on the
size of the blockchain, the cost of proof verification is
independent of the blockchain size.

As discussed in Section 4, some high-level operations
like balance checking require the lightweight client to
verify more than one blocks. This is not a problem in
practice for the user using lightweight client because it
only takes about 0.02 second to verify one block.

0

0.05

0.1

0.15

0.2

0.25

0.3

2^10 2^20 2^30

Ti
m

e
(S

ec
o

n
d

)

Number of Blocks

Proof Generation Proof Verification

Figure 5. Preliminary experimental results of the block
verification protocol using a low end Celeron CPU.

7. Related Works
EPBC only provides the mechanism for checking the
validity of a given block and the transactions contained
in the block. It does not consider how to determine
which block(s) should be checked. It is proposed in BIP
37 to use a bloom filter to select potentially related
blocks for verification [16]. The Bitcoin community
proposes the UTXO (unspent transaction outputs)
technology, which requires the user to store unspent
transaction output information instead of transaction
information. This reduces the storage cost but does not
change the order of storage complexity [17].

Cryptographic accumulator was first developed by
Benaloh and De Mare to achieve decentralized digi-
tal signature [5]. Barić and Pfitzmann developed a
collision-free accumulator and used it for fail-stop sig-
natures without using any tree structure [18]. Cryp-
tographic accumulators are useful (e.g., constructing
group signatures [19]). Dynamic cryptographic accu-
mulator can further support adding/removing mem-
bers [20]. These schemes do not consider features of
blockchains, namely that every user has the privilege
to construct blocks and generate proofs and light-
weight users have very limited computational capa-
bility. Recently, e-cash systems such as ZeroCoin also
utilizes cryptographic accumulators, but for a different
purpose of information hiding [21].

Another line of related research is storage verification
in the cloud environment, and several related concepts
were proposed, e.g., provable data possession [22] and
proof of retrievability [23]. These schemes cannot be
applied in our scenario because the lightweight users do
not know the blockchain in advance and the blockchain
keeps growing as new blocks are created and appended
to it.

Both EPBC and SPV assume the records that are
embedded into blocks are correct if the corresponding
blocks are valid. Some techniques that are applicable
to SPV, such as bloom filter [24], are also applicable
to EPBC. Nevertheless, EPBC incurs only a constant
amount of storage for the lightweight client, assuming

7
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

L. Xu, L. Chen, Z. Gao, S. Xu, W. Shi

the client cares about most recent transactions. This is
significant because storing several block headers might
be cheaper than storing the summary value.

8. Conclusion
We have presented EPBC, a scheme for lightweight
users to use blockchain-based applications without
storing the entire blockchain while still able to verify
the validity of blocks and transaction. The basic
idea is to “compress” a blockchain to a constant-size
summary, which is the only data item a lightweight
client needs to keep. We analyzed the security of
EPBC and preliminary experiments showed that it is
practical. EPBC can be adopted for blockchain-based
applications, such as e-cash and smart contract systems.

Acknowledgement. This material is based upon work sup-
ported by the U.S. Department of Homeland Security under
Grant Award Number 2015-ST-061-BSH001. This grant is
awarded to the Borders, Trade, and Immigration (BTI) Insti-
tute: A DHS Center of Excellence led by the University of
Houston, and includes support for the project “Secure and
Transparent Cargo Supply Chain: Enabling Chain-of-custody
with Economical and Privacy Respecting Biometrics, and
Blockchain Technology” awarded to University of Houston.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of the U.S. Department of Homeland Security.

References
[1] Nakamoto, S. (2008), Bitcoin: A peer-to-peer electronic

cash system.
[2] Wood, G. (2014) Ethereum: A secure decentralised

generalised transaction ledger. Ethereum Project Yellow
Paper 151.

[3] Christidis, K. and Devetsikiotis, M. (2016) Blockchains
and smart contracts for the internet of things. IEEE
Access .

[4] Douceur, J. (2002) The sybil attack. Peer-to-peer Systems
: 251–260.

[5] Benaloh, J. and De Mare, M. (1993) One-way
accumulators: A decentralized alternative to digital
signatures. In Workshop on the Theory and Application of
of Cryptographic Techniques (Springer): 274–285.

[6] Vukolić, M. (2015) The quest for scalable blockchain
fabric: Proof-of-work vs. bft replication. In International
Workshop on Open Problems in Network Security (Sprin-
ger): 112–125.

[7] Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels,
A., Kosba, A., Miller, A. et al. (2016) On scaling
decentralized blockchains. In International Conference on
Financial Cryptography and Data Security (Springer): 106–
125.

[8] Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert,

S. and Saxena, P. (2015) SCP: a computationally-scalable
Byzantine consensus protocol for blockchains. Tech. rep.,
Cryptology ePrint Archive, Report 2015/1168.

[9] Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V.,
Ritzdorf, H. and Capkun, S. (2016) On the security and
performance of proof of work blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (ACM): 3–16.

[10] Cocks, C. (1997) Split knowledge generation of rsa para-
meters. In IMA International Conference on Cryptography
and Coding (Springer): 89–95.

[11] Boneh, D. and Franklin, M. (1997) Efficient genera-
tion of shared rsa keys. In Advances in Cryptology-
CRYPTO’97: 17th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 1997. Pro-
ceedings (Springer): 425.

[12] Erdös, P. and Kac, M. (1940) The gaussian law of errors
in the theory of additive number theoretic functions.
American Journal of Mathematics 62(1): 738–742.

[13] Billingsley, P. (1969) On the central limit theorem
for the prime divisor function. American Mathematical
Monthly : 132–139.

[14] Certivox Ltd, MIRACL cryptographic library.
URL https://libraries.docs.miracl.com/

miracl-user-manual/about.
[15] Primate labs, Geekbenchmark 4. URL http://www.

geekbench.com/.
[16] Hearn, M. and Corallo, M. (2012), BIP 37: Connection

bloom filtering. URL https://github.com/bitcoin/

bips/blob/master/bip-0037.mediawiki.
[17] Bishop, B. (2015) Review of bitcoin scaling proposals. In

Scaling Bitcoin Workshop Phase, 1.
[18] Barić, N. and Pfitzmann, B. (1997) Collision-free

accumulators and fail-stop signature schemes without
trees. In International Conference on the Theory and
Applications of Cryptographic Techniques (Springer): 480–
494.

[19] Tsudik, G. and Xu, S. (2003) Accumulating composites
and improved group signing. In Asiacrypt (Springer),
2894: 269–286.

[20] Goodrich, M.T., Tamassia, R. and Hasić, J. (2002)
An efficient dynamic and distributed cryptographic
accumulator. In International Conference on Information
Security (Springer): 372–388.

[21] Miers, I., Garman, C., Green, M. and Rubin, A.D. (2013)
Zerocoin: Anonymous distributed e-cash from bitcoin.
In Security and Privacy (SP), 2013 IEEE Symposium on
(IEEE): 397–411.

[22] Ateniese, G., Burns, R., Curtmola, R., Herring,

J., Kissner, L., Peterson, Z. and Song, D. (2007)
Provable data possession at untrusted stores. In Ning,

P., di Vimercati, S.D.C. and Syverson, P.F. [eds.]
Proceedings of the 2007 ACM Conference on Computer and
Communications Security -CCS 2007 (ACM): 598–609.

[23] Zheng, Q. and Xu, S. (2011) Fair and dynamic proofs of
retrievability. In Proceedings of the first ACM conference
on Data and application security and privacy (ACM): 237–
248.

[24] Gervais, A., Capkun, S., Karame, G.O. and Gruber, D.

(2014) On the privacy provisions of bloom filters in
lightweight bitcoin clients. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACM):
326–335.

8
EAI Endorsed Transactions on

Security and Safety
12 2017 - 12 2017 | Volume 4 | Issue 13 | e5

https://libraries.docs.miracl.com/miracl-user-manual/about
https://libraries.docs.miracl.com/miracl-user-manual/about
http://www.geekbench.com/
http://www.geekbench.com/
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki

	1 Introduction
	2 Background of Public Blockchain
	3 Design and Analysis of EPBC
	3.1 Design Objective and Assumption
	3.2 The Block Verification Protocol
	3.3 Parameter Initialization
	3.4 Security and Performance of the Block Verification Protocol
	3.5 Reducing Cost of Proof Generation

	4 Using the Block Verification Protocol to Construct EPBC
	5 Integration with Existing Blockchain Systems
	6 Experiments and Evaluation
	7 Related Works
	8 Conclusion

