
Mobility and Fault Aware Adaptive Task Offloading
in Heterogeneous Mobile Cloud Environments

Abdullah Lakhan1, Xiaoping Li1,∗

1School of Computer Science and Engineering, Key Laboratory of Computer Network and Information
Integration, and Ministry of Education, Southeast University, Nanjing 211189, China
abdullah@seu.edu.cn,xpli@seu.edu.cn

Abstract

Nowadays, Mobile Cloud Computing (MCC) has become a predominant prototype for fetching the benefits of
cloud computing to mobile devices’ propinquity. Service availability in addition to performance enhancement
and mobility features is a preliminary goal in MCC. This paper proposes a mobility aware adaptive offloading
framework, known as Mob-Cloud, which includes a mobile device as a thick client, ad-hoc networking,
cloudlet DC, and remote cloud services, to augment the performance and availability of the MCC services.
However, the impact of dynamic changes in a mobile content (e.g., network status, bandwidth, latency, and
location) for the task offloading model observes through proposing a mobility aware adaptive task offloading
algorithm (MATOA), which makes a task offloading decision at runtime on selecting optimal wireless network
channels and suitable resources for offloading. In this paper, we are formulating the decision problem, and it is
well-known as an NP-hard problem. Nonetheless, MATOA has the following phases for the entire Mob-Cloud
model: (i) adaptive offloading decision based on real-time information, (ii) workflow task scheduling phase,
(iii) mobility model phase to motivate end-user invoke cloud services seamlessly while roaming, and (iv) fault-
tolerant phase to deal with failure (either network or node). We carry out actual real-life experiments at the
implemented instruments to evaluate the overall performance of the MATOA algorithm. Evaluation results
prove that MATOA adopts dynamic changes on offloading decision during run-time, and meet an enormous
reduction in the total response time with the improved service availability whilst in comparison with the
baseline task offloading strategies.

Keywords: Task Offloading, Software Defined Network (SDN), MATOA, Mobility, DHEFT, Edge server (cloudlet), DC (data
center), Workflow Task Scheduling.
Received on 09 January 2019, accepted on 28 January 2019, published on 31 January 2019
Copyright © 2019 Abdullah Lakhan et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution
and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.3-9-2019.159947

1. Introduction
Recently, mobile business workflow applications, such
as E-commerce, E-healthcare, Augmented Reality, 3D-
Games, and Augmented Reality are increasingly pro-
gressively [1]. However, the latest mobile technologies
are faced by resource-constrained issues (e.g., limited
storage, lower processing speed, bandwidth utilization,
and battery), and can not execute prior applications
locally inside the mobile device[2]. To alleviate the
resource limitation issue of mobile devices, a promis-
ing paradigm mobile cloud computing (MCC) is intro-
duced. MCC allows to transfer compute intensive tasks
of a mobile program to the cloud for processing [3].
Since, task offloading is a method in MCC, which
divides the into fine-grained small tasks and makes a
decision where to offload them for execution. In more
general terms, task offloading computationally divides

application execution between the mobile devices and
cloud computing networks [4]. In the conception of
task offloading, cloud computing networks is classified
into the following paradigms, such as ad-hoc cloud
network (WANET) paradigm, decentralized cloudlet
computing paradigm, and centralized cloud computing
paradigm[5]. Whereas big giants, particularly Amazon,
IBM, Google, and Microsoft provide pay-as-you-go pub-
lic cloud services via internet technology for the mobile
workflow applications[6]. A decentralized cloudlet is
a mobility-enhanced and latency optimal computing
paradigm that is placed at the edge of the mobile
networks. [7]. Nowadays, mobility is a commonly used
feature which allows the mobile-end user to invoke the
cloud services for running application during roaming
from any place within network range [8]. Since WANET
paradigm is supportive when offloading performing

1

EAI Endorsed Transactions
on Mobile Communications and Applications Research Article

∗Corresponding author. Email: xpli@seu.edu.cn

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

between different devices (i.e., mobile phones or vehicle
devices).

In this paper, we are formulating mobility and fault
aware adaptive task offloading problem in the hetero-
geneous MCC environments (i.e., local device, WANET,
cloudlet, public cloud). The is to minimize the appli-
cation response time as well as satisfies the deadline
requirements. The response time includes communi-
cation time and processing during processing in the
mobile cloud environment. Since each workflow appli-
cation has deadline constraint. We model the work-
flow application into the fine-grained tasks with dif-
ferent characteristics. All workflow applications have
stringent requirements and all tasks must be com-
pleted under deadline constraint. In the heterogeneous
MCC, the fundamental requirements of mobile-end
users are their mobility based cloud services, there-
fore there are numerous factors that can antagonis-
tically influence task offloading performance of an
application. Those are the network bandwidth imped-
iment between mobile phones and cloud servers during
offloading/downloading and exchange data. However,
it is most important to design task offloading strategy
that must be adaptive and adapt any environmental
changes while end-user roaming among different net-
works.

In the literature, many studies have already been
proposed task offloading techniques in the MCC
environment for mobile workflow applications. For
instance [5], [6], [7], [8], [9], [10], [11], [12], [13]
devised a task offloading techniques assuming the
wireless communication network and cloud services
are always remained stable. However, the earlier
supposition is rather impractical. As in daily practice
a wireless network context intermittently changes
due to traffic at different time. Whereas, fluctuation
in the cloud services often happens in different
time zones. Recently, with the advance in the
wireless technology a mobile device has access to
the many wireless channels, for example WiFi,
cellular network and Bluetooth. Every connection
performs in a different ways in terms of speed
and strength. For mobile workflow applications, we
have different communication channels and different
cloud paradigms, thus mobility and fault aware task
offloading in a dynamic environment is an important
problem to solve. The following questions that needed
to be addressed in an adaptive environment.

• Adaptive Task Offloading: Since many factors,
such as network bandwidth, connection type,
end to end latency, cloud services availability
after task offloading decision during time. How-
ever, static task offloading algorithms proposed
through preceding works with a set bandwidth
assumption are flawed for mobility feature in the

MCC environment [14]. The partitioning algo-
rithms ought to be adaptive to easily adopt net-
work changes and should have an awareness of
the mobility model. Since the network condition is
merely measurable at runtime, the task offloading
must be an adaptive and mobility aware of the
MCC domain [15].

• Connection Failure: To get access to the cloud
services is normally stimulated with the aid of
uncontrollable factors, such as the instability and
intermittent of wireless networks. Due to end-
user mobility and weaker bandwidth of wireless
connection can also be caused of connection
failure. When a network connection unexpectedly
breaks down, an offloaded computation will suffer
extremely, overall performance of an application.
Question how to deal with this obstacle?

• Node Failure: cloud services sometime may be
unreachable due to either due to node failure or
service out of communication of range. Question
how to fix this issue?

• Fault Recovery Mechanism: Due to either connec-
tion failure or node, how to fix them without com-
promising the entire application performance.

To answer the above-cited questions, this work differs
from the preceding work by means of focusing on
the MCC mission offloading hassle, wherein there
are four key issues to be addressed. We formulated
mobility aware task offloading problem as an NP-
hard optimization problem. We used a dynamic
programming technique to divide the considered
problem into sub problems. For instance mobility aware
adaptive task offloading problem involves following
steps to make the optimal offloading decision: (i)
task offloading process, (ii) task scheduling process,
(iii) mobility mechanism, and (iv) fault-recovery
management. To cope up with the issue of dynamic
change in the environment due to the mobility we
proposed a novel mobility aware task offloading
algorithm (MATOA), which adopt dynamic changes
at run-time due to the mobility features in order to
manage application performance.

• Adaptive Task Offloading: To deal with the first
question,we formulated adaptive task offloading
decision dilemma as a Multi-criteria decision
making (MCDM) problem. It refers to making
choice of the ideal alternative (e.g., 3G/4G, WiFi,
Cellular, mobile device, WANET, cloudlet DC, and
public cloud) from amongst a finite set of decision
alternatives in phrases of more than one with con-
flicting criteria. The offloading system examines
a few parameters along with network bandwidth,

2

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

execution time, connection type, service avail-
ability, latency, and round-trip time to make an
optimal offloading selection for application parti-
tioning between mobile and cloud. Although the
aforementioned parameters appear to be virtually
adequate to adopt any environmental changes. To
cope with circumstances we modified a Technique
for Order Preference by Similarity to an Ideal
Solution (MTOPSIS) method [16] to take offload-
ing action in the dynamic MCC environment.

• Connection Failure: to cope up with the question,
we propose a novel mob-cloud architecture,
which handles both failures (network and node)
with the assist of the fault-awareness algorithm.
This algorithm employs two primary techniques
such as, dynamic task re-clustering and failover
Mechanisms for Distributed SDN Controllers
(FMDSC) to deal with both failure.

• Task Scheduling: All considered applications are
directed acyclic graph (DAG) based and has
different size of fine-grained tasks. However,
cloud resources are organized in heterogeneous
approach. For task scheduling, we modified
traditional modified heterogeneous earliest finish
time (MHEFT) heuristic [17] to deal workflow task
scheduling problem in mob-cloud domain, where
workflow scheduler map application tasks on the
local mobile device resource, wireless network
resource and cloud resources.

• Mobility Model: We introduce a mobility algo-
rithm based on Markovian random waypoint
model [18] which allows us to create diverse
mobility location pattern inside the given move-
ment network domain. The mobility model allows
adjusting random pause times and the velocity
speed in a given network. The algorithm tries
to choose an optimal state (offloading values) in
order to quality of the application remain stable.

Summary, with the best knowledge, mobility aware
adaptive task offloading has not been studied yet in a
dynamic environment. We proposed a novel MCC mob-
cloud architecture with heterogeneous cloud services
availability in order to support any kind of application
from any place. Due to mobility feature, it is difficult
to maintain application performing when user roaming
among different base stations. Most importantly, mob-
cloud support any kind of application requirements
(i.e., security, compression-technique for huge data, big
data processing before offload in the remote cloud)
with some additional component. However, in this
paper mob-cloud has primary two components to deal
with the considered problem. It is noteworthy, local
device and WANET has a different mechanism for task

execution, local device is only a single client machine,
whereas WANET is made of different devices design
cloud-device in a temporary network.

The rest of the paper is organized as follows. Section
2 elaborates related work and 3 explains the problem
description and formalizes the problem under study.
The MATOA is proposed for the considered problem in
Section 4 that describes proposed methods. Section 5
evaluates the simulation part, section 6 is summarized
the paper conclusion.

2. Related work
In literature, a number of comprehensive studies have
already been investigated for task offloading in MCC
environment. However, latest technologies IoT (Internet
of Things) devices are different in computing power
point of view. Nonetheless, In this paper, proposed
mob-cloud is not specific to the mobile device, but this
work focuses only mobile device as a IoT device, that
offloaded their compute intensive tasks to the cloud
for processing. Whereas, mobility management and
fault tolerant based task offloading strategy would be
satisfied the service requirements for IoT devices. The
following studies have already been proposed different
strategies to task offloading in MCC environment

Chun and at. al proposed CloneCloud offloading
framework in [5]. The aim was to improve the mobile
battery life and augment the application operation.
Thread level granularity is used for the application par-
titioning for performing the computational offloading.
Energy efficient computational offloading framework
Think-Air is proposed in [6]. The primary objective was
to minimize the energy consumption of mobile device
and prolong the battery performance. The code level
(binaries) computational offloading is performed in the
proposed framework. In [7–9] Cuckoo, MAUI, and JADE
were proposed their energy efficient frameworks for
computational offloading that is whether offloads or
not during run time. The primary objective was to
augment the mobile battery life and reduce the burden
of the application developer via run time offloading
decision. Delay sensitive applications are required to
execute within shorten time, however, contemporary
cloud services are available on long distance WAN, it
could be incurred by longer end to end delay. To cope
with above problem a Cloudlet framework is proposed
by satyanarayanan et.al in [10]. The primary objective
is to bring cloud computing capabilities closer to the
mobile user in order to minimize the total delay for
delay sensitive application. However, many of above
works focused on task offloading strategies without con-
sidering mobility features in an adaptive environment.

Latency sensitive tasks of application can offload
near cloudlet, which is placed between mobile devices
and public cloud at the edge of network[11]. The

3 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

offloading strategy is proposed based on mixed fog and
cloud architecture in order to support delay sensitive
application [12]. Online Task offloading strategies
investigated in their respective papers [13–15], the
primary goal how to do application partitioning
in a dynamic environment in MCC architecture
to invoke cloud services. Latency aware optimal
workload assignment to cloud computing investigated
in these papers[16, 17, 19], however, [19] considered
heterogeneous mobile cloud environment (ad-hoc, edge
cloud and remote) to make offloading decision. [20,
21] proposed decentralized mobile cloud environment
in order to improve resource availability for task
offloading. These efforts focused on delay minimization
for real time application in MCC paradigm.

Nowadays, each IoT technology is moveable, how-
ever, mobility and fault aware adaptive task offloading
would be more appropriate in a dynamic environment.
With the best knowledge, mobility aware adaptive task
offloading with a fault tolerant mechanism has not
been studied yet. In order to extend the feature of
the task offloading strategy, we proposed the MATOA
algorithm framework, which deals mobile application
performance during roaming and invoking suitable ser-
vices in the shadow of fault-tolerant awareness.

3. Proposed Description
The mobility and fault aware adaptive task offloading
in heterogeneous cloud networks is a difficult problem.
Therefore, proper handling of application tasks in
the dynamic environment is a challenging task. We
proposed mob-cloud architecture similar to the existing
architectures in [22], there are two main components
in the mob-cloud architecture: client-side component
and the cloud side component as shown in Fig.
1. There are four major modules on client sides:
Content Agent module, Decision Engine module,
Workflow Scheduler module, and Failure Manager
module. Content Agent module collects real-time
data of multiple parameters, such as an application
program, current network bandwidth, latency, round-
trip time, and cloud resource estimation at runtime
[22]. Whereas, Content Agent module assists Decision
Engine module to make adaptive task offloading
decisions based on collecting real-time information of
multiple parameters. Then the decision engine module
divides the resilient workflow application in a local
cluster of tasks (e.g., lightweight tasks) and a remote
cluster of tasks (e.g., compute-intensive tasks). The
Workflow Scheduler module is the responsible for task
scheduling and has two primary jobs: first, it schedules
the local cluster of tasks on the heterogeneous mobile
cores second, schedule the remote cluster of tasks on
a fitting available efficient wireless network channel to
the cloud server. It is a noteworthy Workflow scheduler

only schedule one task at a time, and able to schedule
tasks either on the mobile device or a wireless channel
network, it cannot schedule the tasks on the cloud
server, but it can predict the task process time on
the cloud server. The Failure Manager module has a
more important role and identifies two preliminary sub
failure modules during runtime of an application: such
as a network failure module (NF) and a node or resource
failure module (RF). Due to the mobility feature of
network contents change due to many reasons, such as
weak signals, high communication latency, and lower
bandwidth could degrade overall performance. Thus,
because of dynamic network context the transmission
time for offloading and downloading data for running
application exceed the given deadline, in this case,
possibly many application tasks could be failed due to
either weak network or unavailability of the network.
NF module adaptively lets know to the failure manager
about failed tasks and show an alternative list of
wireless networks. Whereas RF module monitors the
remote set of task execution process on assigned
resources. Once it detects any failure due to node
capacity, or unavailability it would collect tuple of
information tuple information (e.g., task ID, location
ID, the point of failure, and the result obtained) and
sent back to the failure manager for rescheduling.
It is noteworthy; failure only can be detected after
scheduling.

3.1. Problem Formulation and System Model

Application Partitioning. Generally, the mobile workflow
application usually consists of composite dependent
components (e.g., tasks). However, some of them
compute intensive components of the application will
offload their data and operation to the cloud remote
via partitioning method. There are many methods
for application partitioning, such as programmer
define a method, linear programming, profile-based,
simulation based, graph based, and last but not least
inference algorithm, all partitioning methods detail
can be presented in [22]. In this paper, we only
focus on profile-based partitioning, because of the
considered problem mob-cloud has many parameters to
do application partitioning, namely task execution cost,
bandwidth, CPU speed, network type, cloud service
availability, and round-trip time as illustrated. The
propose MATOA algorithm make offloading decision
based on collecting real-time information that is
provided by different profilers, likewise, program,
network, resource profiler individually.

Task Characterization. After partitioning process, appli-
cation can be broken down into multiple types of
fine-grained objects, modules, classes, bundles, threads,
functions, and components [22]. Since, this paper only

4

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Table 1. Mathematical Notation

Notation Description

G A mobile application
GD Application G Deadline
V All tasks of a G
li Location of task vi
N Number of mobile cores C
Ck kth core in N
fk CPU frequency of the kth core in MIPS
εm Capacity of a mobile device
T wsi Offloading time of task vi
T wri Receiving data time of task vi
T li e Execution time of task vi locally
T ci e Execution time of task vi remotely
ST li Setup time of vi
ST ci Setup time of a vi
Fli Finish time of a vi
Fci Finish time of a vi
V A virtual machine
M Number of virtual machines V
Vj jth virtual machine in M
ζj Speed of jth virtual machine in M
P Number of virtual machines in cloudlet server
cp pth virtual machine in P
τp The speed of pth virtual machine in P
D Number of devices in Ad-hoc
dn The dth device in the D
µd The CPU speed of dth device
εc capacity of all cloud resources
xi,j Assignment of task vi on virtual machine j
yi,k Assignment of task vi on mobile kthcore

focuses on components based fine-grained for applica-
tion partition. Each component can be assumed as a
task, after partitioning there are two kinds tasks for
execution, named remote tasks and local tasks. The
Decision Engine makes a task offloading decision typ-
ically, which tasks are executed locally (a local cluster
of tasks), which are offloaded to be executed on a cloud
(a remote cluster of tasks). In general terms, based on
real-time information provided by different profiler,
Decision Engine divides application components into a
local cluster of tasks Vl and a remote cluster of task Vc
in order to manage application performance. Each task
has input/output data, i.e., data/data′ , that require the
CPU instruction to do execution, however, local cluster
of tasks can be retained inside mobile device, because
they required lower CPU instruction for execution and
the device has sufficient resources to execute all tasks.
However, remote clusters of tasks require huge CPU
cycle of instruction, thus they would be offloaded to
the rich resource cloud computing, but incur extra

network round-trip time RT T , such as communication
time. Generally, total application response time is the
combination of computation time and communication
for execution.

Different Topologies. There are many types topologies to
represent the application task structures, particularly
Linear topology, Loop topology, Tree topology, Mesh
topology, and call graph [18]. This paper only considers
call graph as a directed acyclic task graph (DAG)
topology, where a workflow application can be modeled
as a DAG e.g., G(V , E). Whereas, each node vi ∈
V represents a task and edge e(vi , vj) ∈ E represents
precedence constraint that a task vi should complete
its execution before a task vj starts execution. The
application G has a V number of tasks, whereas, in the
graph, a task v1 is the entry task and v10 is an exit task.
For each task vi we define datai and data′i input data
and output data, each of the application is restricted by
their deadlines GD . Vl ∪ Vc=V denotes the application

5 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

Cloudlet Controller

Mobile Device

User

Content Agent

Submit

Dynamic Content Aware Offloading System

1

62 4 53

7 8 9

10

1

62 4 53

7 8 9

10

6 7 8 9

RF

Public Cloud
Controller

Ad hoc Controller

Local Cluster
Client Side

Cloud side

VMs
VMs

Devices
5

Content

Profile
Program

Profiler

Network

Monitor
Device Profiler

Decision Engine

Online Offloading Decision Algorithm

Clustering

Remote
Cluster

Clustering

RFNF

Failure Manager

NF

Failure Recovery

1 2 3 104

Cores

Workflow Scheduler

Local Cluster
Remote

Cluster

FM

FM
FM

Workflow Application

Wireless Network Channel

Figure 1. Modified mob-cloud Architecture

has two clusters of tasks such as the local cluster of tasks
and the remote cluster of tasks.

MCC Resources. The modified MCC system model
leverages with four types of computing resources for
application execution, such as mobile device, local
cloud servers, WANET cloud devices, and public cloud
servers as shown in Fig. 1. Since, WANET has a
set of heterogeneous devices, i.e. D={d1, d2, d3,, N }.
Each device dk has a different frequency speed,
i.e., fk={k = 1, k = 2,, N }. Whereas, cloudlet DC
has a set of heterogeneous virtual machines, i.e.
K={k1, k2, k3,, N }. Each kth virtual machine has a
different frequency speed, i.e., ζk={k = 1, k = 2,, N }.
Whereas, public cloud has a set of heterogeneous virtual
machines, i.e. V={V1,V2,V3,,M}. Each Vj virtual
machine has a different frequency speed, i.e., ζj={j =
1, j = 2,,M}.

WAN

Cloudlet Dc

Edge

Ad Hoc Network

Cellular BTS

WiFi AP

Bluetooth-Wifi-Direct

One Hop

Wireless
Interface

Scheduler
Remote
clusterLocal

cluster

Decision Engine

Public Cloud

Local device

Failure Manager
RFNF

Figure 2. Fault Tolerant Offloading Mechanism

6

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Edge Cloud

 Cellular 3G 4G 5G

(s1, a1) (s2, a2) (s3, a3) (sn, an)

End-user End-user

Roaming in networks

Start Goal

Edge Cloud
Cloud Controller

SDN Controller

Node1 Node2 Node3
Noden

Figure 3. Mobility Model Waypoint States Scenario

Mobility Model. In the MCC, mobile users definitely
roaming among multiple places while invoking dif-
ferent services for task execution. Furthermore, dur-
ing user’s roaming, network values (e.g., bandwidth,
latency, upload, and download transmission rates)
could be varied along with location. To find this phe-
nomenon study proposes a modified random waypoint
mobility model (MRWMM), and formulates it as a
Markov decision process model (MDPM). The MDPM
is defined as the navigating between numerous sets of
states {s1, s2, s3,, S}, and set of actions {a1, a2, a3,, A}
as illustrated in Fig. 3, where at each state (s, a) has a
task offloading action and it estimate either new values
are aversive stimulus (e.g., penalty) or positive stim-
ulus (e.g., reward). Pa(s, s′) = Pr (st+1 = s′ | st = s, at = a)
as compared to previous one, thus the probability of
the transition when end-user move from one state to
another under the initial task offloading action a. Where
Ra(s, s′) is the immediate stimulus reward if next state
offloading decision gain some positive value rather than
aversive stimulus. The system estimates pause time and
pre-defined velocity speed ({tmin, tmax}, ({vmin, vmax}
during mobility whenever an end-user chooses a ran-
dom selection at each waypoint. The mechanism can
be assumed mobility as a service, where each state
assume end-user offload and invoke services via base-
stations (BSs) and cloudlets DC (data center). Mobility
gets optimal performance due to efficient path provided
via BS to BS.

Fault Tolerant. Fig. 2 elucidates that failure manager
component traces and monitor the failure either due to
the communication failure or node failure, it annotates
these reports to the decision to recover failure tasks
from effecting point not from scratch based fault
recovery algorithm. Since, the Failure Manager (NT) has
NF module and RF module to detect failure. The tracing
information by a NT module is shown in the following

expression:

NT =
{
NF Cellular,W iFi, Bluetooth
, RF local,WANET , cloudlet, cloud

Task Scheduling. The binary variable y, represents the
assignment of a task i to a kth mobile core yik = {0, 1}
namely:

yi,k =
{

1, Assigned task to core
0, otherwise, (1)

if a task vi is scheduled locally, then the average
execution time of a task vi is calculated by:

T ei =
N∑
k=1

yi,k .
datai
fk

, (2)

T ei is the task execution time at locally, the average
execution time of local cluster describes in the
following:

T lei =
N∑
k=1

Vl∑
i=1

T ei , (3)

if a task vi is scheduled for the cloud, the execution time
of the vi it depends on the location:

T ci =

∑M
j=1 xi,j

datai
ζj

if li = 1

,
∑P
p=1 xi,p

datai
ζk

if li = 2

,
∑D
d=1 xi,d

datai
fk

if li = 3,

since T ci is the average execution time, if a task Vi
immediate predecessor of a task vj then communication
time depends upon the service location, i.e., (either
local mobile cores or offloaded to the cloud servers).
Whenever, a task vi offloads to the cloud server, the
communication time can express in the following way:

T si =

datai
SB

if li = 3

, datai
SB

if li = 2

, datai
SB

if li = 1.

T si is communication time for offloaded task vi and it
depends upon the site that determines by a variable li .
The average execution time the remote cluster express
in the following way:

T cei =
Vc∑
i=1

T ci , (4)

The communication time of task vi when it returns
results back to the mobile device and it is similar to the
equation (3).

T ri =
data′i
RB

, (5)

7 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

All its immediate predecessors must schedule before a
task vi . However, if a task vi schedule on a mobile core,
the setup-time can calculate in the following way:

ST li = max
vj∈pred(vi)

max{FT lj , FT
wr
j }. (6)

FT lj , FT
wr
j denotes before schedule a task vi predecessor

vj finished its execution or FT wrj result received back
from cloud server after vj finish its execution. The setup
time of a remote cluster of tasks is scheduled on the
wireless network channel:

ST wsi = max
vj∈pred(vi)

max{FT lj , FT
ws
j }. (7)

The setup time of a task vi onto the cloud server:

ST ci = max{FT wsi , max
vj∈pred(vi)

FT cj }, (8)

setup time for the cloud to send back the results of a
task vi to the mobile device:

ST wri = FT ci . (9)

Where if a task schedule vi on the cloud server, the
round-trip time calculate in the following way:

RT T = T si + T cei + T ri . (10)

Since, the total average response time of the application
is expressed in the following way:

T total =
Vl∑
i=1

ST li + T lei +
Vc∑
i=1

RT T . (11)

The considered problem is mathematically modelled as
below, whereas, notations are explained in Table 1.

min T total (12)

subject to

Vl∑
i=1

yi,k .datai ≤ εm,∀k ∈ K,∀vi ∈ Vl , (13)

Vc∑
i=1

datai ≤ εc,∀εc ∈M ∪ P ∪D,∀vi ∈ Vc, (14)

V∑
i=1

yi,k = 1,∀k ∈ C, (15)

N∑
k=1

yi,k = 1,∀i ∈ V , (16)

T total ≤ GD , (17)

yi,k{0, 1}. (18)

However, equation (12) shows the average response
time of an application G. Where equation (13) and
equation (14) show that the size of the local cluster less
than the total capacity of the mobile device and similar
requested size of the remote cluster less than the total
capacity of all types of cloud resource. Since, equation
(15) and (16) that every resource is assigned to exactly
one task, every task is assigned exactly one resource.
Application average execution time less than a given
deadline is defined in equation (17). The binary variable
is defined in equation (18).

4. Proposed MATOA Algorithm

For the considered problem minimizes total response
is determined mobility aware adaptive task offloading
for a workflow application in a heterogeneous mobile
cloud environment can be solved via multiple steps.
The problem that we are investigating is the decision
problem, and it is a well-known NP-hard problem.
We apply dynamic programming approach to this
problem, to divide the main problem into subproblems.
The problem mobility aware adaptive task offloading
problem has the following phases: (i) task offloading
engine phase, (ii) task scheduling phase, (iii) mobility
model phase, and (iv) fault aware phase and calculated
via Algorithm 1. To deal with all phases of the
problem we have proposed mobility aware adaptive
task offloading algorithm (MATOA). For phase (i) to
make potential and optimal task offloading decision
we propose a modified MTOPSIS algorithm, because
there are multiple parameters and alternative involve in
the task offloading decision, it takes DAG as an input,
and generate the result as two clusters (i.e., blue local
cluster and red remote cluster). Whereas, phase (ii) to
map resource to the clusters we proposed a modified
MHEFT method because resources are heterogeneous
and clusters have task-precedence need while invoking
cloud services for running applications. Since phase (iii)
allows the benefit of mobility features while end-user
roaming on a given network (base-station to a base-
station efficient way to roam with edge cloud services
and for WANET network, not public cloud). To deal
with the mobility feature system proposed mobility
algorithm based on Markovian mobility model, where
each base-station assume as a state, performance can be
improved via reward value to reach at last destination.
The final phase (iv) is a fault awareness for running
application, that might be rise due to the mobility
feature when uploading and downloading speed for
task offloading could be changed, the fault aware
algorithm employs two strategies, such as network
failure strategy (NF) and node failure strategy (RF), to
detect either task fail due to wireless connection or node

8

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

capacity constraint. We will discuss all phases in detail
in the following sections.

4.1. Adaptive Task Offloading Phase
The latter offloading orchestrate policies only consid-
ered two core threshold values network speed and
energy consumption when they fabricate offloading
decision. However, in dynamic environment many fac-
tors can degrade application performance (i.e., band-
width, latency, signal strength, and delay), whereas the
previously mentioned threshold criteria is not suitable
in MCC environment when do application partitioning.
To deal with the above situation our study considers
to fabricate offloading decision, for suppose available
network type, bandwidth, latency, resource availability,
execution cost, and network congestion. mob-cloud fol-
low a modified multi-criteria decision making (MCDM)
method [23] in the MATOA framework to make a task
offloading decision as illustrated. For MCDM, system
employs modified Technique in order-of Preference
by Similar to Ideal Solution (TOPSIS) for appropriate
offloading decision. Traditional TOPSIS only considers
parameters, however, we need to modify and some
additional module which involves an application par-
titioning module because only light tasks are executed
locally, and compute intensive tasks offloaded to the
cloud server. A modified MTOPSIS has the following
steps (i) collect the device context information and
application scale down (i.e., task size), (ii) real time
information for selecting appropriate network connec-
tion (offloading round-trip time, congestion, latency,
and bandwidth), (iii) availability of cloud resources
(ad-hoc devices, cloudlet, and public cloud), system
partition the application into local cluster of tasks and
remote cluster of tasks based on above mentioned steps
by using a MTOPSIS method. We obtained some relative
weight for criteria ω = {0.1, 0.4, 0.3, 0.5, 0.7, 0.2} for task
size, latency, round-trip time, congestion, inference,
and execution time, respectively, by using the analytic
hierarchy process (AHP) [23]. It is a pair-wise approach,
and their results are shown in the matrix X.

X =

a11a12a13...a16
a21a22a23...a26
a31a32a33...a36
a41a42a43...a46
a51a52a53...a56
a61a62a63...a66

, ann = 1.amn =

1
ann

. (19)

The m × n(3 × 6) shows three alternative cloud
resources (e.g., local devices could be ad-hoc, local
cloudlet edge server, and public cloud) and six criteria
as mentioned above. The pairwise comparisons of
giving criteria are produced based on the normalized
comparison scale on nine levels as illustrated in
Table 2. MTOPSIS employs matrix X to compute

the weight of the criteria by getting a eigenvector ω
which associated with addition to the prime eigenvalue
λmax. As generally, the outcome of the AHP technique
is stringently associated with the reliability of the
pairwise comparison, so it is compulsory to estimate
the reliability index (RI) in the following way:

RI =
λmax − n
(n − 1)

,

RR =
RI

(n − 1) × Random − Index
,

(20)

RR is the reliability index ration of RI , and it should
be less than given threshold 0.1, then it has a suitable
relative weight output. Successive relative weights
are produced, the possibility of multi-criteria derive
via NM(xmn)k x, since m is a fascinating alternative
(local devices, cloudlet, and public cloud) with n
multi-criteria (available network, resource availability,
bandwidth, task size, latency, congestion) can be further
normalized in the following way:

NM(xmn)k =
M(xmn)k∑6
n=1M

2
mn

(21)

x is a any real number R to explore the choices may
be criteria and alternative can be varied, where k
be a kth decision maker. It is noteworthy, it could
be possible system has a set decision making choices
{k1, k2, k3, ..., K}.

Mw = ωn ×N, (22)

whereωn be a weight which is already initialized above.
Find out the affirmative best solution and the aversive
solutions for each decision maker k from weight matrix.

Ak+ = 〈min tmn | m = 1, 2, 3, .., 6 | n ∈ J+〉,
〈min tmn | m = 1, 2, 3, .., 6 | n ∈ J−〉

Ak− = 〈min tmn | m = 1, 2, 3, .., 6 | n ∈ J−〉,
〈min tmn | m = 1, 2, 3, .., 6 | n ∈ J+〉

(23)

where J+ is a positive solution of the decision maker
for application objective, where J− is aversive (negative)
solution to the objective. It is natural to consider the
real time information related to the available wireless
network via network profiler, system uses Euclidean
distance matrix among all possible alternatives and can
be calculated in this way:

D+
m =

√√√ 6∑
n=1

(tmn − t+mn)2,

D−m =

√√√ 6∑
n=1

(tmn − t−mn)2,

(24)

9 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

Table 2. Scale & Definition

Definition Strength of importance

Uniformly significant 1
Fairly supplementary important 3
Robustly supplementary important 5
Very robustly supplementary important 7
Extremely robustly supplementary important 9
Intermediary 2 4 6 8

since D+
m and D−m show best and worst solution,

respectively, for each alternative. The task offloading
algorithm chooses highest rank solution Hm solution
from all alternative as shows follow:

Hm =
D−m

D+
m +D−m

. (25)∑
vi = 1Vl +

∑
vi = 1Vc = Hm. (26)

Algorithm 2 optimally partition the application into

Algorithm 1: MATOA

Input : vi ∈ V ;
Output: min T total , s;

1 begin
2 T ←0;
3 NT []←0;
4 S[]←0;
5 Application Partitioning based on equation (22)

Scheduling vi ∈ Vl ,vi ∈ Vc ;
6 Mobility Model;
7 foreach (vi ∈ Vl) do
8 lsum =

∑Vl
i=1 ST

l
i + T lei NT []← vi ;

9 T=T +NT [] + lsum

10 foreach (vi ∈ Vc) do
11 csum =

∑Vc
i=1 +RT T . T=T +NT [] + csum

NT []← vi ;

12 foreach (s ∈ S) do
13 Apply Mobility Model;
14 s[]← T ;

15 return T , s;

local cluster and remote cluster. Whereas, local cluster
consists of tasks which have to be retained locally on
a mobile device, remote cluster of tasks offloaded to the
remote cloud via wireless network. In Algorithm 2, Line
2 shows a decision function which collects information
via real-time profile technologies. Line 4 illustrates
application partition clusters (local and remote cluster).
Lines 6-8 calculate the task execution time at local and
remote cloud. Lines 10-19 it checks where to offload
(WANET, cloudlet DC, and public) on what wireless

network (WiFi, Bluetooth, Cellular network). Line 20
return optimal T after entire task assignment.

Algorithm 2: Adaptive Task Offloading

Input : G(V , E) ;
Output: min T total ;

1 begin
2 f unc← getDecision(context, V);
3 context ← prof ile;
4 V ← Vl ∩ Vc;
5 T ←0;
6 foreach (vi ∈ Vl) do
7 T lei
8 foreach (vi ∈ Vc) do
9 T si

10 if NT = 1 then
11 if li=1 then
12 return T ←MinCost(

∑
T lei ,

∑
T ci) ;

13 else
14 return T ←MinCost(local, null) ;

15 if NT = 2 Or NT = 3 then
16 if li=1,2,3 then
17 return T ←MinCost(

∑
T lei ,

∑
T cli ,

∑
T ci)

;

18 else
19 return T ←MinCost(

∑
T lei ,

∑
T di) ;

20 return T ;

4.2. Task Scheduling Phase
The clustering based task scheduling is a promising
and efficient method when there are more than
one resource types (local device, WANET, cloudlet
DC, public cloud) [24]. However, for the considered
problem, we have different fine-grained size of tasks
and heterogeneous resource in different types, so that
HEFT is an appropriate heuristic to map application
tasks on heterogeneous resources [25]. In our case,
we modified MHEFT heuristic, because traditional

10

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

HEFT only schedule tasks on cloud resources, but
mob-cloud schedule tasks on the local mobile device,
wireless network, and cloud computing. We calculate
the execution time of local as well as a remote cluster
of tasks based on equation (3) and equation (4),
respectively. The task priority is identical to HEFT
algorithm, if a task vi remote cluster task the average
computation time is:

wi = T ci + T si + T ri , (27)

similar the average computation of a task vi when
schedule locally:

wi = AVG
1<k<K T

le
i , (28)

the priority shows the task precedence requirements:

P riority(vi) = wi + max
vj∈succ(vi)

P riority(vj) (29)

P riority(vi) = wi , vi ∈ exist − task, (30)

equation (29) and equation (30) show that the priority
level of all tasks recursively computed from the starting
point of the task graph until exist tasks [25].

4.3. Fault Aware Phase
Fault awareness phase is very important and an
essential component of mob-cloud, which significantly
embedded between client and server. Since, Fig. 4
demonstrates two scenarios, for instance stable scenario
and unstable scenario. Whereas in unstable scenario, it
starts from the task offloading phase, which transmits
computation and data of a task to the cloud server
via wireless network. Nonetheless, data transmission
and receiving their results from the cloud can be
interrupted by connection failure. In another case,
data transmission would be interrupted by cloud node
failure. However, in stable phase node failure occur
while data transmission, processing in the cloud, and
receiving their results to the mobile. To deal with
the above mentioned scenarios mob-cloud has an
efficient fault aware Algorithm, which employs two
preliminary strategies for node failure and connection
failure. For instance, the Dynamic Reclustering (DR)
strategy and Failover Mechanisms for Distributed
SDN Controllers (FMDSC) as shown in Algorithm
3. Which determines the failed tasks either from a
local cluster or a remote cluster along with tuple
information (e.g., TaskID, LocationID, Resource ID,
failure point, the result obtained), and failed task due
to the wireless connection. Algorithm 3 effectively
finds failure detection, and sends their information to
the failure manager, and then failure manager passes
this information to the failure recovery module which
implemented by a dynamic Reclustering method and

Task Offloading
Mobile Device Network Cloud

Offloading Decision

Wait

Local execution

Task completed

Connection Failure
X

X
Connection Failure

Transmit

Recieve

X Server Node Failure.

Transmit

Recieve
Cloud execution

GD

Figure 4. Failure Recovery Strategy

a FMDSC method to fix failure issue. Once, these
failures are fixed offloading decision would drive these
information to the task scheduler for re-scheduling if
still application deadline not missed.

Failure Detection Strategy. In Algorithm 3, Line 2 shows
a detection function, which involves (NF and RF
module). Lines 2-7 illustrate initializations. Lines 8-
13 evaluate that checkpointing technique for all entire
nodes that handles data transmit and receiving from
the cloud. Whereas, lines 14-19 if a failure detects on
a node and still would be recovered based dynamic re-
clustering technique within the application deadline,
then it fetch checkpointing information from a failure
manager other it re-schedule a failed task from scratch.
Line 20-23 will fix network failure task based on
FMDSC technique.

RT T =
Vc∑
i=1

T si + T cei + T ri , (31)

4.4. Mobility Model Phase
This study formulates a mobility model phase based
on Markov random waypoint paradigm, where the
each waypoint works as a state, and each state has a
set of parameters (e.g., offloading results and decision
action), transition function is used to select the next
waypoint which may be possibly depend on the recent
state location and result. After all waypoints (states)
of the entire network is shown via a visibility graph.
It is remarkable that the study only consider finite
states (sequence) for mobility model. There are some
factors like pause time and transitory velocity need to
adjust while end-user roaming in a given network range
environments.

π : P × A← [0, 1] (32)

π(a | s) = P (at = a | st = s), (33)

11 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

Algorithm 3: Fault Aware Algorithm

1 begin
2 Detection (node, network);
3 state[]← connected;
4 NF[]← initialized;
5 RT T []← intialized;
6 RF[]← initialized;
7 T availi,k ←0;
8 for (checkpointing i to n) do
9 if (NF[i]==true) then

10 for (node i in NF[]) do
11 RF ← true;

12 RT T [i] = NF[i] + 1;

13 return RT T [i];

14 for (node i in RF[]) do
15 if (RT T [i] > GD)& (Vc > εc) then
16 state[i]← Failure;
17 RT T []← 0;

18 updateRF[i];
19 Dynamic − reclustering(state[i], NF[i])

20 for (node i ∈ to state[]==connected) do
21 if (NF[i]==false) then
22 FMDSC(RF[i], NF[i])

23 T ermination;

24 End;

equation (19) and equation (20) show map policy
provides the probability of acquiring the action a
in specific state s. Since, the value function Vπ(s)
described as expected return and starting with s i.e., so
successively following policy π. It also estimates how
good it to be in the given state s, and explain in the
following way:

Vπ(s) = E[R] = E[
∞∑
t=0

γ trt | so = s], (34)

R is a random variable and return expected value and
described as a future of discount rewards. Where, R =∑∞
t=0 shows reward rt at step t and γ ∈ [0, 1] is discount

rate. The mobility Algorithm 4 typically works with the
entire offloading system in order to take the optimal
action in a dynamic environment. Algorithm 4 assists
Algorithm 1 to take optimal action in any given state
in order to maintain application performance during
mobility. In Algorithm 4 lines 4-8 initialize visibility
graph of entire network, and their variables. Line 9
surf all areas which involve in visibility graph. Line 9
traces user existing movement either it is in moving
state or stop for some reason. Lines 13-21, Algorithm
detect user location coordinates and movement state it

checks round-trip for data uploading/ downloading is
under given threshold and exceeds their limits. If until
it is under given threshold and transition to the next
state, the policy will be updated based on current state
results. Lines 22-26 illustrates that, if an end-user still
in same state and did not transit to next state will be
carry in addition to same policy. Whereas, lines 27-29
search another value based on update policy, once next
state has better offloading action results and round-
trip time as compared to existing state, the transition
probability will add reward in result as illustrated in
Lines 31-38. The update Q-learning based policy always
optimize entire states in a given waypoint visibility
graph. Whenever, Q-value is updated by the entire
waypoints it calculate optimal t value (e.g) minimum
delay between mobile clients and cloud service will be
returned as shown by lines 39-42.

4.5. Time Complexity
The complexity of the proposed algorithm MATOA
O(KNlogN), where K is the number of WANET devices,
whereas N is a number of workflow application tasks.
We modified the DHEFT algorithm for task scheduling
between mobile and cloud computing in terms of time
complexity. For task scheduling, all tasks are organized
with some sequences (e.g., apply sorted queue), it gets
O(KNlogN) to build task queue. For resource mapping,
each iteration uses O(KN) complexity of comparing
the head of the queue. Therefore the entire complexity
of for local devices is O(KNlogN). Since, mob-cloud
has cloudlet DC resources, and public cloud resources,
initially they used O(N) to estimate the task execution
at cloud servers, thus the total complexity of the cloud
is O(KNlogN +N) = O(KNlogN). The decision engine
uses O(1) time complexity of clustering the application
into local and remote cluster. Hence the entire time
complexity of the MATOA for offloading system is
O(KNlogN).

5. Performance Evaluation
5.1. Experiments settings
To the best we know, for the performance evaluation
existing MCC workflow simulator must be modified,
where both computational and network resources
should be measured simultaneously. Therefore, we
added some additional components such as mobility
model, network model and edge component to the
mob-cloud workflow simulator. Thus, to evaluate the
effectiveness and efficiency of MATOA as compared
to existing offloading schemes on different kinds of
mobile applications, we carry out 4 android workflow
applications as shown in Table 4. Furthermore, MCC
setup parameters are listed in Table 3. We designed the
simulator mob-cloud for the considered problem which

12

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Table 3. Simulation Parameters

Simulation Parameters Values

λi user arrival time 5 seconds
Languages JAVA, XML, Python
Application fine-grained Methods
Simulation Time 6 hours
Experiment Repetition 14
Location user Mobility Waypoint model
Standard task size 1500 to 2000 MI
Upload/download data size 2000/150 KB
Ad-hoc-devices HTC G17 and Samsung 1997
Cloudlet Intel 5 laptop, AndroidX86
Public Cloud AndroidX86 Amazon t2.medium

Table 4. Practical Application Scenarios

No Applications Scenario User Preference

I Healthcare, AG Stable Env. Time Sensitive
II Business, 3D-Gaming Stable Env. Time Sensitive
III Healthcare, AG Unstable Env. Time Sensitive
IV Business, 3D-Gaming Unstable Env. Time Sensitive

Table 5. Workload Analysis

Workload data size(byte) C.Ins. (MI) No. of tasks

Health, AG 825 5.8 200∼500
Business, Game 735 7.8 500∼1000

Table 6. Resource Availability Cases

Case Cloud VM Cloudlet Devices

I 4 2 2∼4
II 0 2 2∼4
III 2 0 2∼4
IV 0 0 2∼6

Table 7. Cases for Network Speed

Case Wifi(MB/s VM 3G(MB/s) Bluetooth(MB/s)

I 14.3 4 2∼3
II 0 3.5 2∼3.3
III 0 0 2∼2.2
IV 1.7 3.5 2.5∼3

consists of three offloading scenarios, such as a device
to device (e.g., No Offloading) scenario, and single-tier
mobile to cloudlet offloading (i.e., Partial Offloading)
scenario, and direct cloud offloading (Full Offloading).
We exploited all scenarios as baseline approaches
when compared them with the proposed architecture

mob-cloud. Based on the simulation parameters as
illustrated in Table 3, we divided the application
into distributed tasks among heterogeneous networks.
The GenyMotion android client is exploited as a user
interface for testing purpose in the mobile device, and
GenyMotion as the server-side for the cloud services

13 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

[26]. The existing simulators, for instances cloudsim
simulator [27] device to device offloading simulator[28],
and cloudlet simulator [29] devised different modeling
models. The mob-cloud composed of the heterogeneous
cloud environment and exploited GenyMotion with
different network models. However, mob-cloud is
integrated mobility, and fault aware features in order
to adapt any environment changes during application
execution.

5.2. Baseline Approaches
We will evaluate the efficiency and effectiveness of
MATOA algorithm by comparing it with existing task
offloading strategies from a different perspective, such
as task offloading, task scheduling, fault awareness,
and mobility scenarios for workflow applications. The
following existing approaches are under consideration
in comparison.

• Full offloading (FUL): It is a task offloading
strategy, adopted by many papers, such as [10–
12], the primary goal is to offload entire mobile
application to the cloud server.

• NO offloading (NOF): This strategy allows offload
the application tasks among a set of mobile
devices when there are lightweight and required
less network requirement.

• Partial Offloading (PAR): It is a widely employed
strategy, adopted by many papers, likewise Think-
Air [6], MAUI [8], and JADE [9]. The main goal
is to be partitioned the application between the
mobile device and cloud computing. However,
above-mentioned papers based on PAR strategy
proposed their efficient and unique framework
to optimize user preferences (e.g., mobile energy
consumption, application response time). The
paper and frameworks detailed you can find in
their respective references.

5.3. Parameter and Components Calibration
In the MATOA has four preliminary components,
namely task offloading, task scheduling, failure man-
ager, and mobility for each workflow application. At
the same time, in order to verify the performance of the
algorithm at different deadline, the performance of the
MATOA and the state-of-art algorithms (local offloading
techniques) are evaluated under the deadlines from
strict to lose. The RPD (Relative Percentage Deviation)
is employed to evaluate the performance of the algo-
rithm, the calculation of RPD is defined as follows:

RPD% =
local − T total

T total
× 100%, (35)

we compare RPD% based on existing local offloading
with our proposed partial offloading MATOA.

APP 100 tasks APP 200 tasks APP 400 tasks APP 700 tasks APP 1000 tasks

Application Partition Strategies

Single Threshold

Linear Regression

TOPSIS

MTOPSIS

0

12

24

36

48

60

72

84

96

Figure 5. Application Partitioning Accuracy

16

18

20

22

24

26

28

30 50 70 100

Adaptive TS
MAUI
ThinkAir
JADE

Healthcare Application Tasks

16

18

20

22

24

26

28

R
P

D
%

70 100

16

18

20

22

24

26

28

50 80 100 150

MAUI
ThinkAir
JADE

Face-recognition Application Tasks

R
P

D
%

16

18

20

22

24

26

28

100 200 300 500

MAUI
ThinkAir
JADE

3D Sudoku Application Tasks

16

18

20

22

24

26

28

R
P

D
%

16

18

20

22

24

26

28

200 400 600 800

MAUI
ThinkAir
JADE

Queen-Puzzle Application Tasks

R
P

D
%

Adaptive TS

Adaptive TS Adaptive TS

Figure 6. Application Response Time (ms)

5.4. Adaptive Task Offloading Phase
We analyze different application performance in two
real scenarios such as stable environment where both
network and cloud resource always remain stable.
Another scenario where both network and cloud
resources values change due to user mobility and
cannot remain stable. To evaluate the performance
of phase (i), adaptive task offloading strategy uses a
MTOPSIS method for application partitioning based on
multi-criteria decision engine. Whereas, Fig. 5 shows
that the partitioning accuracy during time is an efficient
and optimal as compared to the single threshold value
based method and others baseline methods. It is noticed
in Fig. 6 that the task offloading strategy (adaptive
TS) in a dynamic environment for all applications
partitioning performance better as compared existing
offloading strategies (they assume stable environment
remains ever) in terms of response time.

5.5. Algorithm Comparison
Based on the ANOVA technique, Fig. 7 demonstrates
that the mean plot of Ttotal by 95.0% Tukey HSD
intervals, reduces RPD% of Ttotal by using MATOA
algorithm.

14

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Business Application

0

20

40

60

80

100

R
P

D
%

100 200 300 400

MATOA
NOF

PAR
FULL

3D-Game

0

20

40

60

80

100

R
P

D
%

MATOA
NOF

PAR
FULL

600 800 1000900 100 200 300 400 600 800 1000900

Figure 7. The mean plot of ęÓ with 95.0% Tukey HSD intervals
and The mean plot of workflow Application rules with 95.0% Tukey
HSD intervals

Stable Env. Applications Deadlines

15

18

21

24

27

30

R
P

D
(%

)

D1 D2 D3 D4 D5

MATOA

NOF
FUL
PAR

Unstable Env. Applications Deadlines

15

18

21

24

27

30

R
P

D
(%

)

50 100 200 500 1000

MATOA

NOF
FUL
PAR

24
24

Figure 8. Workload Analysis and Deadlines

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

5

10

15

20

25

30

35

Fa
ile

d
T

as
k

du
e

to
 C

ap
ac

ity
fo

r
3D

-G
A

M
E

 A
pp

 (
%

)

Full-Offloading
Non-Offloading
MATOA

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

10

20

30

40

50

60

70

Fa
ile

d
T

as
ks

 d
ue

 to
 M

ob
ili

ty
 f

or
 3

D
 G

am
e

(%
) Full-Offloading

Non-Offloading
MATOA

Figure 9. 3D-Game Application performance without and with
mobility

5.6. Task Scheduling Phase & Fault Aware Phase

However, user defined deadline constraint for each
application, Fig. 8 confirms that in both stable and
unstable environment despite many parameters change
during application offloading and invoking services,
proposed algorithm MATOA outperform as compared
to baseline approaches. Whereas, the results are shown
in the Fig. 9, 10, 11, and 13 for both stable environment
without mobility and with unstable environment
with mobility, MATOA efficiently adopt dynamic
change, and maintain application performance without
any comprising as compared to existing approaches.
It is noticed that, baseline approaches did not
adopt any dynamic changes and degraded application
performance during mobility. Table 5 shows workload
analysis for different application for execution. To
support the mobility and interactivity of an end-user
application, we set the multiple cases for network
values and cloud resources as shown in Table 6 and
Table 7, it can be observed from Fig. 14 in all cases, the

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

10

20

30

40

50

60

70

Fa
ile

d
T

as
k

du
e

to
 C

ap
ac

ity
fo

r
H

ea
vy

 A
G

 A
pp

 (
%

)

Full-Offloading
Non-Offloading
MATOA

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

5

10

15

20

25

30

35

Fa
ile

d
T

as
ks

 d
ue

 to
 M

ob
ili

ty
 f

or
 A

G
 A

pp
 (

%
)

Full-Offloading
Non-Offloading
MATOA

Figure 10. Augmented Application performance without and with
mobility

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

5

10

15

20

25

30

35

Fa
ile

d
T

as
k

du
e

to
 C

ap
ac

ity
fo

r
H

ea
lth

 A
pp

 (
%

)

Full-Offloading
Non-Offloading
MATOA

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

5

10

15

20

25

30

35

Fa
ile

d
T

as
ks

 d
ue

 to
 M

ob
ili

ty
 f

or
 H

ea
lth

 A
pp

 (
%

) Full-Offloading
Non-Offloading
MATOA

Figure 11. Healthcare Application performance without and with
mobility

HEFT MHEFT MinMax FCFS

Offloading Tasks Without Fault Tolerant

17

19

21

23

25

27

P
ro

c
e
s
s
 T

im
e
 (

m
s

)

HEFT MHEFT MinMax FCFS

17

19

21

23

25

27

Offloading Task With Fault Tolerant

P
ro

c
e
s
s
 T

im
e
 (

m
s
)

Figure 12. Task Scheduling Heuristics Performance

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

10

20

30

40

50

60

Fa
ile

d
T

as
k

du
e

to
 C

ap
ac

ity
fo

r
B

us
in

es
s

A
pp

 (
%

)

Full-Offloading
Non-Offloading
MATOA

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

0

10

20

30

40

50

60

Fa
ile

d
T

as
ks

 d
ue

 to
 M

ob
ili

ty
 f

or
 B

us
in

es
s

A
pp

 (
%

) Full-Offloading
Non-Offloading
MATOA

Figure 13. Business Application Performance Without and With
Mobility

performance of the MATOA more fairly as compared
to literature task offloading approaches. Fig. 12 shows
that our modified heuristics are getting lower overhead
as compared to existing heuristics, this is because
mobile cloud application cannot directly accept the
traditional policies.

15 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

Table 8. Mobility Dataset

Parameter Value View

F (Area of simulated env.) 17 × 17Km VG (Googlemap)
VG (Map-resolution) 1000×1000 r 17m
v ← (Vmin, Vmax) (3,6,20 Km/h) speed on foot,car
p← (wmin, wmax) (1,10 minutes) Average wait

(a) Tasks Failed (RF)

15

18

21

24

27

30

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

CloneCloud MATOA MAUI ThinkAir

(b) Tasks Failed (NF)

9

12

15

18

21

24

CloneCloud MATOA MAUI ThinkAir

Case1
Case 2
Case3
Case4
Case5

Case1
Case 2
Case3
Case4
Case5

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Figure 14. Adaptive Environment with respect to resource and
network

5.7. Mobility Model Phase

For mobility scenario, we employ the end-user
movement trace mechanism offered by the Every-
Where-lab. Since, the trace method offers end-user
mobility movement in the given scenario (road network
of Milan). The entire road boundary is 17× 17
km. Dataset provides 100,000 end-users in the one
waypoint for invoking the cloud services based on
adaptive task offloading strategy, whereas, location
coordinates of each end-user are traced for every 25
seconds. We already mentioned that, during mobility
the whole network area coverage by base-stations
(BSs), whereas, each BS is linked with edge cloudlet
DC as shown in Figure 4. It is a notable public
cloud performance become very poor during mobility
due to longer delay. Typically, the mobility feature
performs well with edge cloudlet DC and WANET.
Each workflow application has different properties
and task characterization. We measure the application
execution performance without mobility and with
mobility features in context of task failure. Since, Figure
13, 14, and 16 illustrate that application tasks failed
during mobility and without mobility environment,
however, MATOA outperforms as compared to existing
approaches in context task failure. MATOA has less
failure ratio, while applications are offloading or
invoking services while roaming between networks.
The mobility movement dataset has many parameters
and values since, we have shown a few values in Table
8 for understanding the scenario, however you can find
the full detail in [30].

6. CONCLUSION and Future Work
This work studies the dynamic content aware task
offloading problem in heterogeneous mobile cloud
environments. To the best knowledge, failure aware
task offloading in an adaptive environment is useful
for real life application. We modified existing MCC
architecture with additional components that one may
support the user mobility, fault tolerant and task
scheduling mechanism for a workflow application.
We proposed a novel Mobility Aware Task Offloading
Algorithm (MATOA) that minimizes the average
response time of the workflow application and delay
sensitive application under task precedence constraint
and hard constraint deadline. MATOA has three phases:
first, it performs the task offloading mechanism based
on multi-criteria as mentioned above, second task
scheduling based on modified DHEFT heuristic in
order to schedule local and remote cluster tasks on
appropriate resources, third failure mechanism in order
to support mobility and interactivity features of the end
user in a dynamic environment.

For future work, we will develop a complex
task offloading algorithm and mob-cloud architecture,
because existing modified mob-cloud provides cloud
services as infrastructure as a service which are
wrapped in a virtual machine box. However, virtual
machine based services are heavyweight and need
pre-allocation of cloud resources (e.g., RAM, storage,
libraries, host OS) in advance, but might be requested
tasks of an application would use a small amount of
resources, thus remaining resources are wastage. Most
of the IoT devices invoking microservices to dealing
their tasks, however, single code virtual machine
services are difficult to recover or redeploy one they
failed due to the any reason. In future work, we will
design mob-cloud based on container microservices in
order to support IoT devices data in a more optimal
way and augment the resource utilization of the cloud
server. With the development of advance wireless
technology and cloud computing mobility as a service,
function as a service, and offloading as a service will
effective architecture for smart devices, it is difficult
to directly deploy complex workflow application into
smart devices, in the future we will extend mob-cloud
and add fog nodes for preprocessing the IoT on the
edge nodes before offloading to remote cloud. There

16

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

are many questions need to be addressed, such mobile
cloud architecture in the context of Big Services, Service
Composition, and Big Data.

References

[1] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing
of a computing access point for multi-user mobile cloud
offloading with delay constraints,” IEEE Transactions on
Mobile Computing, 2018.

[2] W. Chen, D. Wang, and K. Li, “Multi-user multi-task
computation offloading in green mobile edge cloud
computing,” IEEE Transactions on Services Computing,
2018.

[3] H.-S. Lee and J.-W. Lee, “Task offloading in heteroge-
neous mobile cloud computing: Modeling, analysis, and
cloudlet deployment,” IEEE Access, 2018.

[4] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang,
and D. H. Tsang, “Decentralized and optimal resource
cooperation in geo-distributed mobile cloud comput-
ing,” IEEE Transactions on Emerging Topics in Computing,
vol. 6, no. 1, pp. 72–84, 2018.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device
and cloud,” in Proceedings of the sixth conference on
Computer systems. ACM, 2011, pp. 301–314.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading,” in
Infocom, 2012 Proceedings IEEE. IEEE, 2012, pp. 945–
953.

[7] R. Kemp, N. Palmer, T. Kielmann, and H. Bal,
“Cuckoo: a computation offloading framework for
smartphones,” in International Conference on Mobile
Computing, Applications, and Services. Springer, 2010,
pp. 59–79.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smart-
phones last longer with code offload,” in Proceedings of
the 8th international conference on Mobile systems, applica-
tions, and services. ACM, 2010, pp. 49–62.

[9] H. Qian and D. Andresen, “Jade: An efficient energy-
aware computation offloading system with heteroge-
neous network interface bonding for ad-hoc networked
mobile devices,” in Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Computing
(SNPD), 2014 15th IEEE/ACIS International Conference
on. IEEE, 2014, pp. 1–8.

[10] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter,
and P. Pillai, “Cloudlets: at the leading edge of
mobile-cloud convergence,” in 2014 6th International
Conference on Mobile Computing, Applications and Services
(MobiCASE). IEEE, 2014, pp. 1–9.

[11] M. Chen, Y. Hao, C.-F. Lai, D. Wu, Y. Li, and K. Hwang,
“Opportunistic task scheduling over co-located clouds
in mobile environment,” IEEE Transactions on Services
Computing, vol. 11, no. 3, pp. 549–561, 2018.

[12] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation
offloading and resource allocation in mixed fog/cloud
computing systems with min-max fairness guarantee,”

IEEE Transactions on Communications, vol. 66, no. 4, pp.
1594–1608, 2018.

[13] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and
R. Buyya, “An online algorithm for task offloading
in heterogeneous mobile clouds,” ACM Transactions on
Internet Technology (TOIT), vol. 18, no. 2, p. 23, 2018.

[14] C.-K. Tham and B. Cao, “Stochastic programming
methods for workload assignment in an ad hoc mobile
cloud,” IEEE Transactions on Mobile Computing, vol. 17,
no. 7, pp. 1709–1722, 2018.

[15] Z. Kuang, S. Guo, J. Liu, and Y. Yang, “A quick-response
framework for multi-user computation offloading in
mobile cloud computing,” Future Generation Computer
Systems, vol. 81, pp. 166–176, 2018.

[16] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-
delay tradeoff for dynamic offloading in mobile-edge
computing system with energy harvesting devices,” IEEE
Transactions on Industrial Informatics, 2018.

[17] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai,
“Hermes: Latency optimal task assignment for resource-
constrained mobile computing,” IEEE Transactions on
Mobile Computing, vol. 16, no. 11, pp. 3056–3069, 2017.

[18] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An opti-
mal offloading partitioning algorithm in mobile cloud
computing,” in International Conference on Quantitative
Evaluation of Systems. Springer, 2016, pp. 311–328.

[19] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama,
and R. Buyya, “mcloud: A context-aware offloading
framework for heterogeneous mobile cloud,” IEEE
Transactions on Services Computing, vol. 10, no. 5, pp.
797–810, 2017.

[20] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato,
“Hybrid method for minimizing service delay in
edge cloud computing through vm migration and
transmission power control,” IEEE Transactions on
Computers, vol. 66, no. 5, pp. 810–819, 2017.

[21] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang,
and D. H. Tsang, “Decentralized and optimal resource
cooperation in geo-distributed mobile cloud comput-
ing,” IEEE Transactions on Emerging Topics in Computing,
vol. 6, no. 1, pp. 72–84, 2018.

[22] B. Zhou and R. Buyya, “Augmentation techniques for
mobile cloud computing: A taxonomy, survey, and future
directions,” ACM Computing Surveys (CSUR), vol. 51,
no. 1, p. 13, 2018.

[23] G. Baudry, C. Macharis, and T. Vallée, “Range-based
multi-actor multi-criteria analysis: A combined method
of multi-actor multi-criteria analysis and monte carlo
simulation to support participatory decision making
under uncertainty,” European Journal of Operational
Research, vol. 264, no. 1, pp. 257–269, 2018.

[24] Z. Zhou, Z. Cheng, L.-J. Zhang, W. Gaaloul, and K. Ning,
“Scientific workflow clustering and recommendation
leveraging layer hierarchical analysis,” IEEE Transactions
on Services Computing, vol. 11, no. 1, pp. 169–183, 2018.

[25] N. Chopra and S. Singh, “Heft based workflow schedul-
ing algorithm for cost optimization within deadline
in hybrid clouds,” in Computing, Communications and
Networking Technologies (ICCCNT), 2013 Fourth Interna-
tional Conference on. IEEE, 2013, pp. 1–6.

17 EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

Mobility and Fault Aware Adaptive Task Offloading in Heterogeneous Mobile Cloud Environments

[26] J. ECHESSA, “Improved android emulation with geny-
motion.”

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling
and simulation of cloud computing environments
and evaluation of resource provisioning algorithms,”
Software: Practice and experience, vol. 41, no. 1, pp. 23–
50, 2011.

[28] G. Nardini, A. Virdis, and G. Stea, “Simulating
device-to-device communications in omnet++ with
simulte: scenarios and configurations,” arXiv preprint
arXiv:1609.05173, 2016.

[29] K. Ha and M. Satyanarayanan, “Openstack++ for
cloudlet deployment,” School of Computer Science
Carnegie Mellon University Pittsburgh, 2015.

[30] “User movement simulations project,
accessed on apr. 6, 2017. [online]. available:
http://everywarelab.di.unimi.it/lbs-datasim.”

Algorithm 4: mobility model

Input : t=(D, F, RTT), duration d;
Output: min t with waypoint for each state;

1 begin
2 VG ←compute visibility graph with RT T and

area F;
3 t ← 0 minimum delay;
4 Sn[]← 0 initial state;
5 v ← 0 velocity;
6 p← 0 pause time;
7 R[]← 0 reward;
8 a[]← 0 action;
9 foreach (r ∈ F) do

10 while (r <| Nmove
r |+| N stop

r |) do
11 r[]← n;
12 if r[] <| Nmove

r | then
13 n←| Nmove

r |;
14 calculate v, p, and RT T based on

equation (33), (34);
15 v ← rand(Vmin, Vmax);
16 p← rand(Vmin, Vmax);
17 Wn[]← v + RT T + p;
18 if RT T<Wn[] then
19 R[]++;
20 π=

π(a[] | s[]) = P ([]at = a[] | st = s);
21 update π[]← RT T ;

22 else
23 n←| N stop

r |;
24 R[]–;
25 π= π(a[] | s[]) = P ([]at = a[] | st = s);
26 carry same policy π[]← RT T ;

27 while t < d do
28 if n ∈ N stop

r then
29 Wn ← path based on movement cycle

Zr and VE using Modified value
function;

30 else
31 Wn[]← get random position inside

Pr ;

32 if RT T<Wn[] then
33 R[]++;
34 π= π(a[] | s[]) = P ([]at = a[] | st = s);
35 update π[]← RT T ;
36 v ← rand(Vmin, Vmax);
37 p← rand(Vmin, Vmax);
38 add waypoint for Wn[] to the trace

based on V and P ;
39 Q∗(s[], a[])← t +Wn[]
40 employed generate modified-q-value;

41 t ← Q∗(s[], a[]);

42 return t;

18

Abdullah Lakhan, Xiaoping Li

EAI Endorsed Transactions on
Mobile Communications and Applications

01 2019 | Volume 5 | Issue 16 | e4

	1 Introduction
	2 Related work
	3 Proposed Description
	3.1 Problem Formulation and System Model
	Application Partitioning
	Task Characterization
	Different Topologies
	MCC Resources
	Mobility Model
	Fault Tolerant
	Task Scheduling

	4 Proposed MATOA Algorithm
	4.1 Adaptive Task Offloading Phase
	4.2 Task Scheduling Phase
	4.3 Fault Aware Phase
	Failure Detection Strategy

	4.4 Mobility Model Phase
	4.5 Time Complexity

	5 Performance Evaluation
	5.1 Experiments settings
	5.2 Baseline Approaches
	5.3 Parameter and Components Calibration
	5.4 Adaptive Task Offloading Phase
	5.5 Algorithm Comparison
	5.6 Task Scheduling Phase & Fault Aware Phase
	5.7 Mobility Model Phase

	6 CONCLUSION and Future Work

