
Research Article

A Scalable Architecture for Secured Access to
Distributed Services
Telesphore Tiendrebeogo ,∗

Polytechnic University of Bobo, Department of Mathematics and Computer Science, 01 BP 822 Bobo-Dioulasso 01,
Bobo-Dioulasso, Burkina Faso

Abstract

Web services which are an implementation of Services Oriented Architecture (SOA), are emergent technologies
and promising the development, the deployment and the integration of Internet applications. They are
initially based on three main layers that are SOAP (Simple Object Access Protocol), WSDL (Web Service
Description Language) and UDDI(Universal Description, Discovery and Integration). The used language
which underlies these protocols is XML (eXtensible Markup Language), what returns Web Services
independent from platforms and from programming languages. Web service discovery is a procedure which
consists to obtain descriptions of Web services based on the requirements functional or not functional. In
this context, we propose, new architecture which replaces SOAP and UDDI to offer a secured discovery
and access to the Web services. The unified protocol allowing the secured discovery and access to the Web
services is called: Secured Access Protocol for Distributed Services (SAPDS). It is based on a Distributed Hash
Table (DHT) defined in the hyperbolic space from the Poincaré disk model. However, users keep obtaining
beforehand a WSDL file associated with a key of access to the service. This paper presents SAPDS as an
intermediary third to store and discover Web services by using a Service of Storage and Discovery Tree (SSDT).

Received on 28 March 2017; accepted on 23 April 2017; published on 29 June 2017
Keywords: Web service, UDDI, Hyperbolic Tree, Distributed Hashing, Storage, Lookup, Intermediary Third.

Copyright © 2017 Telesphore Tiendrebeogo, licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.28-6-2017.152751

1. Introduction

Nowadays, Web is not any more simply an enormous
warehouse of text and images, its evolution made
that it is also a service provider. The notion of ”Web
service“ indicates essentially an application put at
the disposal on the Internet by a service provider,
and accessible by the customers through standard
Internet protocols. Service Oriented Architecture is
an architectural concept which is used to build
infrastructures allowing to put in relation of the entities
with needs (Consumers) and those with capacities
of sharing (Suppliers). This interaction is made via
services through the varied technological domains.
Services act as the main facilitator of the digital
data exchanges, but require additional mechanisms in
order to function. The basic SOA architecture concerns
different processings , such as service request, service

∗Telesphore Tiendrebeogo. Email: tetiendreb@gmail.com

discovery service invocation and service organization
(storage and Orchestration). The service lookup success
depends largely on the effective analysis of the
query request and on the discovery of web service
interfaces that facilitates the discovery of Web service.
Web service discovery is the process of location, or
discovery of one or several bound documents which
describe an XML detail of the Web service using
the WSDL. At the beginning, the Web services are
implemented through three standard technologies:
WSDL, UDDI and SOAP. These technologies facilitate
the description, the discovery and the communication
between services. However, this basic infrastructure
does not still allow the Web services to keep their
promise of a widely automated management [1].
This automation is nevertheless essential to face the
requirements of passage in the scale and the will
to reduce costs of development, maintenance of the
services and secured access. Fundamentally, it has
to adapt of a way to describe the Web services in

1

EAI Endorsed Transactions
on Scalable Information Systems

EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<tetiendreb@gmail.com>

an understandable way by a machine and secured.
Many approaches and models have been proposed that
describes different methodologies for efficient discovery
of web services using Web Ontology Language for Web
Services (OWL-S) [2], language semantics [3]. Many
of them actually don’t talk about a framework for
the discovery mechanism [4][3][5][6]. Kabir et al. [7]
presents different results concerning a conditional
purpose-based access control model with dynamic
roles, but this system is not very automated and
scalable. Wang et al. [8] have proposed a flexible
payment system that is scalable and permits privacy,
however, their works are particularly adapted to the
specific domain of e-commerce, but not the general
service distribution. We propose in this paper a new
system based on Distributed Hash Table (DHT) which
permit to ensure a secured service access. This system
allows, not only the discovery of the services via a
directory based on a structure of hyperbolic tree (our
DHT) on one hand, but also guarantees a distributed
storage of the services. This approach, proposes an
intermediary third, who is a structure of hyperbolic
tree which participates in the decoupling between the
consumer and the provider. A DHT is used to improve
the safety of the accesses in service. In the following of
this paper: we shall present in Section 2, the related
works to the Web service discovery. Section 3, is an
overview of basic principle and functioning. Section
4, shows new architecture of secured management of
web service. In Section 5, we present the Poincaré disk
model. Next, Section 6, we show the mechanism of web
services routing using a specific algorithm. Then, in the
Section 7, we shall present the principle of naming and
binding of web services and services server. In Section 8,
we present some results of simulation which shows the
performances of our structure with regard of different
strategies. Finally, in Section 9, we shall conclude our
works and shall present our perspectives.

2. Related work

There is since a few years, a lot craze around the web
services considered as software which offers services to
clients. In [4] it is proposed that Dynamic web Service
invocations and hence selection are not independent
operations but rather composite in nature and impose
some form of ordering thus proposes that reliability
is an issue for a composite web service invocation. It
uses a FSM(Finite-State Machine) approach to draw the
order among the operations in a given WS. The work
mainly addresses the reliability issue of a composite
web service selection, given a set of available web
services.

In [9] three layers of services represents an
architecture for a transparent access to the underlying
Web service by a service client is presented.An

eXtended SOA architecture (XSOA) allows to support
capacities as the services orchestration, the ”intelligent“
routing, the provisioning and the services management.
It explores an easy description of the metadata
exchanges for the discovery of service description. An
extension of this architecture concerns the work which
we present here.

In [3] In [20] queries semantics analysis is based
on a technique of tree data structure exploration
and allows to discover the Web services by assigning
weighty values to every node of the tree. Based on
the assigned weights, the similarity of semantics is
calculated between the web service requested, and
web service registered. It presents a methodology to
identify the most similar web services, but not the most
appropriate services. Furthermore, web services quality
and the service level agreement remains an area of
concern for the requester.

In [5] a keyword based approach is implemented
triggered by the partitioning approach that is used in
database design. The idea is used to cluster relevant and
irrelevant services according to the user query which
in turn helps the user to relieve itself from the burden
of selecting web services from a huge set. The key
approach is in the group the services in a group of
learnt latent variables which is realized by calculating
the probability. But a simple keyword is associated in
semantics of the query.

In [2] a model of web service discovery, based
on descriptions of semantics abstracted from web
service and light, using the ontology of service profile
of OWL-S is focused. The Purpose is to determine
first group of web services, called candidate services
then a specific request will allow afterward a fine
grain discovery. Here, is proposed the matchmaking
algorithm who uses techniques of correspondence with
object allowing the recovery of web services based
on relations of sub-supposition and the structural
information of ontologies of OWL in whom, we proceed
by the exploitation of classification of web services
in taxonomies of profile, executing the discovery
dependent on domain. No structured executive of
discovery suited is defined.

In [6] a neural network based approach is used that
is best known for their ability for generalization. A
novel neural network model is proposed that is used for
classification of most suitable web services.

The UDDI specification [10] supplies the survey
bound to no QoS in the interface of discovery. The
applicants of service cannot filter the disqualified
service they cannot obtain either and compare between
different services without testing them at first. To solve
this problem, a little of work was made to improve
the interface of inquiry/publish some recording UDDI
to associate the information of QoS in the message.
For example, UDDIe project [11] is targeted mainly

2
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

towards the QoS-supported interface enhancement for
UDDI. UDDIe extends the UDDI registry to support
searching on attributes of a service and develops the
find method to enable queries for UDDI with numerical
and logical (AND/OR) ranges.

CSG model [12], the purpose of the model of
Cooperating Server Graph model (CSG) is to optimize
and dynamically to manage links between cooperative
servers over a wide area network. Based on the
model of CSG, we extend it in the arena of Web
services. A general federal service was conceived and
cooperated in our system of extension UDDI as the
layer of distribution of message. The approach CSG
uses a minimal weight spanning tree to optimize links
between ergonomics servers automatically. The shortest
trees of path are not chosen to avoid the generation
forest of trees. The weight is defined by a distance
function that represent the cost of communication enter
the couple of nodes (e.g., the inquiry latency , the hop
number, etc.).

Prim [13] algorithm is used to calculate the
minimum poid of the tree. In our general model
of federal service, every node in CSG is called a
Federated Server (FS). The model of CSG and the
tree of distribution have to adapt itself dynamically to
the change of cooperative servers and the underlying
topology of network. To be more effective for the
management of the graph and reduce the control
overhead, different control events are accordingly
handled.

In [14], we propose an algorithm corresponding
to structure based on the concept of distribution of
similarity. The strategy works on the plans which are
converted in labelled graphs.

The distribution in the graph is executed as the
flood makes for packages IP in the communication of
broadcast. This strategy was implemented and tested in
Rondo [15].

3. Basic principle and functioning

The interweaving of these three standards (WSDL,
SOAP, UDDI) in the discovery and use of services can
be schematize in the following sequence diagram.

In Figure 1, the directory UDDI stores the descrip-
tions of services interfaces and gives them to consumers
who make it the request. The directory is present as no
central access for every consumer, and it is thanks to
it that a consumer will discover not only the functions
structure exposed by the service, but also the physical
location of this one. It is, normally, also thanks to the
directory that a web service architecture can insure
the mechanisms of services dynamic discovery. The
first exchanges between the directory and the future
service consumer take place on the basis of a request of
document WSDL, herself packed in a document SOAP.

Standardinteraction

Services consumer UDDI Services server

Request
reception

Select one of servers
containing service requested

Request
sending Request

reception

Request
response

Request
sending

Response
sending

1 : Service request

2 : Service reception(WSDL File)

3 : Creation of consumer access service

4 : SOAP Request

5 : Service execution

6 : SOAP Response

Figure 1. Standard Web services access via SOAP,
UDDI, WSDL.

The directory puts back the document WSDL to the
consumer, who creates locally a function necessary for
the remote invocation from the service. This operation
was made, the service invocation is possible: any call
of one of the service functions activates the generation
of a SOAP message, a messenger directly to the service,
which sends back in return the result of its execution
to the consumer. The directory is used only to reach the
description and the service interface.

This classic architecture of the Web services has
a services directory (UDDI) which by default is not
scalable, the mechanism which directly in relation, the
service consumer and the service provider after service
discovery, creates a security’s failure. Besides, without
the security of the Web Services, the SOAP message is
sent to clear text and the personal information such
as ID user or the account number is not protected. In
this context, we propose a new architecture. We shall
see after how the use of the services directory based
on the hyperbolic tree manages the exchanges between
the services consumer and the service provider allowing
thus the construction of a real SOA, by by-passing
the limits of the direct access. The hyperbolic tree is
in this context an element associated to the SSDT. To
understand better the progress of our mechanism, we
are going to present at first the Poincaré disk model
which is the model on which bases our system of
secured access to the services.

4. Architecture of services' secured

management

In the architecture which we propose a structure of the
hyperbolic tree called intermediary third. our structure
of hyperbolic tree (build on hyperbolic space) based
on a Poincaré Disk model allows to store a pair (key,
value) concerning the referencing of the services as the
following Figure 2 shows it. This mechanism, allows to
guarantee a secured access to the Web service providers.

Our system must have following properties:

3
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

A Scalable Architecture for Secured Access to Distributed Services

S1 S1

S2

.....

Sp

Sn

S2

Sp

Sn

.....

Figure 2. Service access's architecture.

• A guarantee of answer and unique answer to
a request on behalf of a consumer of service.
It is going to be translated into particular by
the introduction of technology of asynchronous
transport, as it is custom to meet them in the
subjects bound of the integration EAI (Enterprise
Application Integration).

• A capacity of load increase and fault tolerance,
assured by a distribution of directory on all the
points of the network (Or nodes) where the system
is activated.

• A management of the safety of the data and
the exchanges (encryption, certification, non-
rejection), in particular in a context of exchange
with partners, the services, as well as we also saw
it, to be exposed to the outside world.

5. Poincaré disk model

5.1. Concept and Metrics properties of the

Poincaré disk model

In geometry, the Poincaré disk model, also called the
conformal disk model, is a model of 2-dimensional
hyperbolic geometry [16][17][18] in which the points
of the geometry are inside the unit disk, and the
straight lines consist of all segments of circles contained
within that disk that are orthogonal to the boundary
of the disk, plus all diameters of the disk. Along
with the Klein model [19] and the Poincaré half-space
model [20], it was proposed by Eugenio Beltrami, who
used these models to show that hyperbolic geometry
was equiconsistent with Euclidean geometry. It is
named after Henri Poincaré. The Poincaré ball model
is the similar model for 3 or n-dimensional hyperbolic
geometry in which the points of the geometry are in
the n-dimensional unit ball. Figure 3 is a Poincaré ball
model in 3-dimensional hyperbolic geometry.

Figure 3. Poincaré �ball� model view of the hyperbolic
regular icosahedral honeycomb {3,5,3} [21].

Hyperbolic Straight lines consist of all arcs of
Euclidean circles contained within the disk that are
orthogonal to the boundary of the disk, plus all
diameters of the disk.

Distances in this model are Cayley-Klein metrics [22].
In mathematics, a Cayley-Klein metric is a metric on the
complement of a fixed quadric in a projective space is
defined using a cross-ratio. Given two distinct points
p and q inside the disk, the unique hyperbolic line
connecting them intersects the boundary at two ideal
points, a and b, label them so that the points are,
in order, a, p, q, b and |aq| > |ap| and |pb| > |qb|. The
hyperbolic distance between p and q is then d(p, q) =
log |aq||pb||ap||qb| .

The vertical bars indicate the Euclidean length of the
line segment connecting the points between them in the
model (not along the circle arc), the log is the natural
logarithm. Metrics associated with Poincaré disk model
can be presented as follows. If u and v are two vectors
in real n-dimensional vector space Rn with the usual
Euclidean norm, both of which have norm less than 1,
then we may define an isometric invariant by:

delta(u, v) = 2 |u−v|2

(1−|u|2)(1−|v|2)
, where ||.|| denotes the

usual Euclidean norm. Then the distance function is:
d(u, v) = arcosh(1 + δ(u, v)). Such a distance function

is defined for any two vectors of norm less than one, and
makes the set of such vectors into a metric space which
is a model of hyperbolic space of constant curvature −1.
The model has the conformal property that the angle
between two intersecting curves in hyperbolic space is
the same as the angle in the model.

5.2. Poincaré 's disk tiling

In this sub-section, we very sketchily remember the
minimal data about the Poincaré disk model tiling
which constitutes the general frame of our construction.

4
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

Let us fix an open disk U of the Euclidean plane. Its
points constitute the points of the hyperbolic plane H2.
The border of U , ∂U, is called the set of points at
infinity. Lines are the trace in U of its diameters or
the trace in U of circles which are orthogonal to ∂U.
The model has a very remarkable property, which it
shares with the half-plane model: hyperbolic angle s
between the lines are the Euclidean angles between the
corresponding circles. The model is easily generalized
to higher dimension, see [24] for definitions and
properties of such generalizations as well as references
for further reading.
Tessellations are a particular case of tiling. They are

generated from a regular polygon by reflection in its
sides and, recursively, of the images on their sides. In
the Euclidean case, there are, up to isomorphism and up
to similarities, three tessellations, respectively, based on
the square, the equilateral triangle and on the regular
hexagon.

In the hyperbolic plane, there are infinitely many
tessellations. They are based on the regular polygons
with p sides and with 2π

q as vertex angle and they
are denoted by {p, q} . This is a consequence of a
famous theorem by Poincaré which characterizes the
triangles starting from which a tiling can be generated
by the recursive reflection process which we already
mentioned. Any triangle tiles the hyperbolic plane if
its vertex angles are of the form π

p , π
q and π

r with the

condition that 1
p + 1

q + 1
r < 1.

Here, we just suggest the use of this method which
allows to exhibit a tree, spanning the tiling: the
Hyperbolic-tree (Figure 4).

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Root

Figure 4. 3-regular tree in the hyperbolic plane.

6. Web services routing principle in the SSDT

We now explain in this section how we built
the hyperbolic addressing tree associated to our
intermediaries thirds and how different nodes can

communicate via queries routing in the distributed
system. We propose in our work, a dynamic, reliable
and scalable hyperbolic greedy routing algorithm. At
the beginning of the building of a distributed directory
structure system is the starting of the first node
(directory server) containing the service descriptions
files that must be shared and the choice of the degree
of the addressing tree. We recall that the hyperbolic
coordinates (i.e., a complex number) of the addressing
tree node are used to locate web services server where
is stored a service or a service description on Poincaré
disk via an hyperbolic tree. A node of the tree can give
the addresses corresponding to its children in the tree.
The degree determines how many addresses each node
will be able to give. The discovery and storage structure
based on the various directories servers interconnected
in hyperbolic tree, is then built incrementally, with
each new node (directory server) joining one or more
existing directories servers. This method is scalable
because unlike [23], we do not have to make a two-pass
algorithm over the whole directories system to find its
highest degree. Also in our discovery structure, a node
can connect to any other node at any time in order to
obtain an address. The first step is thus to define the
degree of the tree because it allows building the dual,
namely the regular q-gon. We nail the root of the tree at
the origin of the primal and we begin the tiling at the
origin of the disk in function of q. Each splitting of the
space in order to create disjoint subspaces is ensured
once the half spaces are tangent; hence the primal is an
infinite q − regular tree. We use the theoretical infinite
q − regular tree to construct the greedy embedding of
our q − regular tree. Thus, the regular degree of the tree
is the number of sides of the polygon used to build the
dual (see Figure 4). In other words, the space is allocated
for q child nodes. Each node repeats the computation
for its own half space. In half space, the space is again
allocated for q1 children. Each child can distribute its
addresses in its half space. The algorithm 1 shows
how to calculate the addresses that can be given to the
children of a node. The first node takes the hyperbolic
address (0; 0) and is the root of the tree.

This distributed algorithm ensures that the nodes
representing the services servers are contained in
distinct spaces and have unique coordinates. All
the steps of the presented algorithm are suitable
for distributed and asynchronous computation. This
algorithm allows the assignment of addresses as
coordinates in dynamic topologies. As the global
knowledge of the distributed directories structure
system is not necessary, a new node can obtain
coordinates simply by asking an existing node to be
its parent and to give it an address for itself. If the
asked node has already given all its addresses, the new
node must ask an address to another existing node.
When a new node obtains an address, it computes

5
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

A Scalable Architecture for Secured Access to Distributed Services

Algorithm 1 Coordinates’s computing of the Node’s
children .

1: procedure CalcChildrenCoor(nod, q)
2: / ∗ nod corresponds to services server ∗ /
3: / ∗ q corresponds to the tree degree ∗ /
4: step← argcosh(1/sin(π/q))
5: angle← 2π/q
6: childCoor ← nod.Coor
7: for i ← 1, q do
8: ChildCoor.rotationLef t(angle)
9: ChildCoor.translation(step)

10: ChildCoor.rotationRight(π)
11: if ChildCoor , nod.P arenCoor then
12: StoreChildCoor(ChildCoor)
13: end if
14: end for
15: end procedure

the addresses (i.e., hyperbolic coordinates) of its future
children. When a new node is connected to the system,
it share these informations with others nodes of the
distributed directories structure system, by sending
queries. The routing process is done step by step from
source to target by using the greedy algorithm 2 based
on the hyperbolic distances between the nodes.

Algorithm 2 Routing a query in the distributed
directories.

1: function getNextHop(nod, packet) return nod
2: / ∗ nod corresponds to services server ∗ /
3: w = packet.destinationnodeCoor
4: m = nod.Coor

5: dmin = argcosh
(
1 + 2 |m−w|2

(1−|m|2)(1−|w|2)

)
6: pmin = nod
7: for all neighbor ∈ nod.Neighbors do
8: n = neighbor.Coor

9: d = argcosh
(
1 + 2 |n−w|2

(1−|n|2)(1−|w|2)

)
10: if d < dmin then
11: dmin = d
12: pmin = neighbor
13: end if
14: end for
15: return pmin
16: end function

In a real distributed directories system environment,
link and node failures are expected to happen often.
If the addressing tree is broken by the failure of a
node or link, we flush the addresses attributed to the
nodes beyond the failed node or link and reassign
new addresses to those nodes (some nodes may have
first to reconnect with other nodes in order to restore
connectivity).

7. Naming and binding principle in the SSDT

In this section we explain how our distributed
directories structure system stores and retrieves the
(key, value) pairs which will be store in SSDT is such
as the key corresponds to the hashing (using the SHA-
512 [26] algorithm) of the identifier associated with to
the service description and the value to the concerned
service. Figure 5 indicates the sequence model realized
between web service storage and web service discover
on our SDDT system by using SAPDS protocol.

Intermediary third (Distributed directories using a DHT)

Description &

 Service System SSDT

Service Customer

2. Associated (IDDesc ; Key)

3. Store(SubKey[i] ; Service + Server[j])

IDDesc Service

Generation

6. Discovery (IDDesc Key)

Service Provider

Figure 5. Use case for Service Storage and Discovery.

7.1. Web service storage process

Our solution is a structured DHT system that uses
the local addressing and the greedy routing algorithms
presented in Section 6. In Figure 6, we describe the
sequence model of the storage process.

Figure 6. Service Secured Storage.

6

At the beginning, when a new service has to be to

store in our system SSDT, it uses the web services

EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

supplier interface to send as SAPDS request, the
service description as well as the service. From the
interface, the description and service system associates
the description (in particular the service location URL)
with a service identifier called ”IDDesc“. Afterwards,
this IDDesc is transformed into 512-bits key, by SHA-
512 algorithm. The 512-bits key is then subdivided
into 16 subkeys of 32-bits. Every subkey will be use
to compute the service location in the system SSDT
(particularly on hyperbolic tree) following a linear
transformation given in Equation 2.

The description and service system selects the each
subkey and SSDT system maps it to an angle by a linear
transformation. The angle is given by:

α = 2π × 32-bit subkey

0xFFFFFFFF
(1)

The node then computes a virtual point v on the unit
circle by using this angle:

v(x, y) with
{
x = cos(α)
y = sin(α) (2)

We call here binder, the node of hyperbolic tree
and binding (subkey, service) pair. The service will
then be stored in binder which address (coordinates)
is the closest to the point situated on the unit
circle computed from the determined angle previously.
Figure 7 illustrate binding model.

HASHED

KEY

CLOSEST

BINDER

BINDING

RADIUS

FARTHEST

BINDER

BINDER

BINDER
SHORTCUT

SHORTCUT

Figure 7. Hyperbolic DHT system.

At the beginning, we can define two replication or
redundancy mechanisms for storing copies of a given
binding:

1. We can use more than one binding radius by
creating several uniformly distributed subkeys.

2. We can store the pair in more than one binder in
the same binding radius.

Algorithm 3 Storage algorithm in replication context

1: procedure StoreReplic(Node node, Degree q)
2: SrcURL← Source.GetURL()
3: Key ← Hash(SrcURL)
4: for (r ← 0, RCircular) do
5: depth← DepthMax
6: i ← 1
7: while (i ≤

⌊
1
2 ×

log(N)
log(Q)

⌋
&& d ≥ 0) do

8: SrcSubK[r][d]← CSubK(Key)[r][d]
9: T gtAd[r][d]← CAd(SrcSubKey[r])[d]

10: T gt ← GetT gt(T gtAd[r][d])
11: if (route(Source, T gt)) then
12: i + +
13: put(key, T gtAd[r][d])
14: end if
15: d − −
16: end while
17: end for
18: end procedure

The depth of a node in the addressing tree is defined
as the number of parent nodes to go through for
reaching the root of the tree (including the root itself).
For each binder, the process is repeat from child binder
to parent binder until to reach root or number of
replications specify is reached. Algorithm 3 illustrate
storage process. This mechanism gives as number of
radial replication RRadial = DepthMax or RRadial = log(N)

log(Q)
with N equal to the number of server of SSDT system
and Q equal to the degree of hyperbolic tree.

These mechanisms enable our DHT system to cope
with an non-uniform growth of the hyperbolic tree and
they ensure that a pair will be stored in a redundant
way that will maximize the success rate of its retrieval.
The numbers of subkeys and the numbers of copies in
a radius are parameters that can be set at the creation
of the intermediary third. Increasing them leads to a
tradeoff between improved reliability and lost storage
space in binders.

The division in RCircular = 16 subkeys of identical
sizes will later allow to set up a strategy of services
storages replication on various servers. The aim being
to increase the performance in term of mean number
of hops to be realized to reach a service and therefore
to minimize the mean responses time of the SAPDS
requests. When the successful storage, an SAPDS
response is sent to the service provider in the aim to
inform him.

Our solution has the property of consistent hashing:
if one node fails, only its keys are lost, but the other
binders are not impacted and the whole system remains
coherent. As in many existing systems, pairs will be
stored by following an hybrid soft and the hard state
strategy. A pair will have to be stored by its creator

7
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

A Scalable Architecture for Secured Access to Distributed Services

every x period of time otherwise it will be flushed
by the binders that store it. A delete message may be
sent by the creator to remove the pair before the end
of the period. This mechanism is going to facilitate
the substitution strategy of the failed nodes which we
propose and simulate to improve the reliability of our
distributed system in dynamic context (Section 8).

7.2. Web services discovery process

Now, we are going to present the mechanism of
service discovery in our intermediary third based on
a DHT structure. In this context, Figure 8 presents
the sequence model that we use to realize web service
lookup.

Services Discovery Processinteraction

Services consumer Intermediary third SSDT Services server

Service ID
Location's

Using: URL/Subkey

Select one of servers
containing service requested

1 : Discovery request(using http protocol)

2 : Discovery response(WSDL 512 Bits Key)

3 : SAPDS request(Subkeys Building)

4 : Mutiple Indirection

5 : Service selection request

6 : Service selection response

7 : SAPDS response(Service requested)

Figure 8. Service Secured Discovery.

When a user wants to discover a service, were sup-
plied the related service information in a dedicated
search engine. This system will make the correspon-
dence between the information of service and the ser-
vice identifiers stored in our system SDDT. In near
this stage, comes the step of service identifier choice
(IDDesc) which then transformed into a key of 512 −
bits by the SHA-512 algorithm . This key is then subdi-
vided into subkeys then begin the step of server search
susceptible to contain the service for every subkey.
We stop as soon as one subkey is satisfactory, that is
allows to find the sought service stored in a server. In
the worst of the cases, the process continues with all
the others under key. Indeed, because of the dynamics
of the system, certain server can become inaccessible
thus we let us have in our mechanism of recovering
hyperbolic tree, shortcuts allowing to create alternative
links (Figure 7).

Algorithm 4 shows the web service discovery process.
It to note that our system allows to change service

version. To do it, we proceed to a mechanism of
discovery from the service identifier (IDDesc) given to
the service provider at the end of his process of service
storage. In the case or this new version comes to replace
the previous, we proceed to a new storage from the first
step as if it was again a question service. Otherwise, we

Algorithm 4 Lookup Algorithme in Replication Context

1: procedure LookupReplic(Node Source, Node T gt)
2: T gtname← T gt.GetName()
3: Key ← Hash(T gtname)
4: for (r ← 0, RCircular) do
5: d ← DepthMax
6: i ← 1
7: while (i ≤

⌊
1
2 ×

log(N)
log(Q)

⌋
&& d ≥ 0) do

8: T gtAddress[r][d]← GetV alue(Key)
9: T gt ← GetNode(T gtAddress[r][d])

10: if (T gt ! = null) then
11: i + +
12: end if
13: d − −
14: end while
15: end for
16: end procedure

want to update the service, by replacing all case of the
previous version of service by a news version and by
keeping the previous service identifier.

7.3. Substitution strategy

In this section we are going to present a strategy
of replacement of nodes failed in the system. In the
Section 7 we saw that periodically nodes have to send
of storage messages to their binders at the risk of being
to delete of the table of storage of each of their binders.

Algorithm 5 Substitution Algorithm of Failed Node

1: procedure Substitution(Node Failed, Node Leaf ,
Node New)

2: Neighbor[d]← Leaf .getNeig()
3: Failed ← Node.SetFails()
4: Binder[i]← CompBinders(Failed)
5: for (j ← 0, Neighbor[i].length) do
6: Neighbor[i].SetEntry(Failed)
7: end for
8: Binder[i].Clean()
9: for (k ← prof , 0) do

10: if ((T argNode← PNode.getEntry()) ! =
null) then T argNode.SetP (New) break

11: end if
12: PNode.delete(T argNode)
13: d − −
14: end for
15: end procedure

In the strategy of substitution, during a failure of
node in the system, instead of deleting the entries of
the node of the storage table of each of these binders,
we move these entries to a table buffer of each of
neighbour nodes of the node having failed. This table

8
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

keeps deleted entries only during a limited time called
”time of hope“. So, when a node wants to connect, it
questions randomly a node of the system which passes
on father’s request in father possibly until find a similar
node which is ready to accept the new node because in
the table buffer, there is an entry of a node having failed
the system either until reaching the root. If it reaches
the root unsuccessfully, the first son node if it arranges
to always have free address, allows the new node to
connect to become a node leaf of the system. Otherwise,
the request is redirected towards another node son. This
approach is executed by Algorithm 5.

8. Simulations results

8.1. Simulations context

In this section, we make an experimental study of our
solution of directories distributed of 1st and of 2nd
level. For that purpose, let us consider a system of
10.000 directories servers interconnected in a dynamic
context (i.e. where there is departure and arrived from
new directories servers) following an exponential law
of median 10 min. We suppose that service providers
store WSDL files as well as services every 100 ms.
Besides, every nodes or directories server can store only
the most 10.000 WSDL files in the case of the 1st
intermediary third and 10.000 services in the case of
the 2nd intermediary third. We also consider that the
structure of hyperbolic tree is of degree 3 and depth 8.

8.2. Load balancing and scalability of our

distributed directories structure

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

-0.4 -0.32 -0.24 -0.16 -0.08 0 0.08 0.16 0.24 0.32 0.4

Y
 A

x
is

X Axis

Unit circle

Scatter plot

Figure 9. Scatter plot of distributed directories system.

In this subsection, we try to show how our hyperbolic
tree structure stemming from the tessellation of
Poincaré disk support is scalable. Indeed, the Figure 9
shows that in spite of 10.000 servers of directories
whom we use, all the nodes representing the latter
remain inside the unit circle according to the Poincaré
disk model which has an edge in the infinity. This figure
presents the distribution of directories servers to the
neighborhood on the edge of the circle.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y
 A

x
is

X Axis

Unit circle

Scatter plot

Figure 10. Scatter plot of distributed directories system.

Besides, we also show that our system allows realize
the load balancing. Indeed, we can remark that 10.000
nodes are almost uniformly distributed on the Poincar
é disk as Figure 10 shows it.

8.3. Analysis of the primary number of binders

depending on the number of sub-keys

In our works, the notion of primary binder made
a reference to the node the closest to the border
of the circle. In our case, the ideal is 16 primary
binders in reference to the number of key obtained by
fragmentation of the key of 512 bits stemming from
the hashing of the service description URL or from the
service URL.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16A
ve

ra
g

eS
n

u
m

b
er

So
fS

p
ri

m
ar

yS
b

in
d

er
Sb

yS
n

o
d

e

NumberSofSsub-keys

SimulatedSplot
IdealSplot

Figure 11. Variation du nombre de stockeur en fonction
du nombre de sous-clefs

Figure 11 presents the evolution of the number of
primary binders depending on the number of sub-
keys chooses for the simulation. This plot shows a
continuous growth of the number of binders depending
on the number of sub-keys. Furthermore, we can
observe that this plot is below the ideal case or the

9
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

A Scalable Architecture for Secured Access to Distributed Services

number of binders always corresponds to the number of
sub-key. Simulated plot is besides very close to the ideal
plot, what shows that we have a satisfactory situation
for all the levels of replication. Indeed, this simulated
plot shows that the trend is for a primary differentiation
of binders, that increases at the same time the resistance
of the system in front of breakdown. For example,
when we have 6 used sub-keys, it corresponds to the
identification of 5 different binders to store the pair
key-value of any node. When we have 15 different sub-
keys, we have for every node 11 different binders in
average which store its pair key-value. Where from
the interest for the system, then even when binder
leaves the system, the information remains persistent.
This study contributes to watch that the system which
we propose remains reliable rest in many dynamic
contexts.

8.4. Substitution strategy performance

evaluation

Figure 12 shows us the impact of the substitution
strategy on the average number of binders reached
by by every node during the storage process. Indeed,
we compare a situation or the new nodes join in a
random way the system via the first node having free
address and the case or the new nodes try to substitute
themselves for binders having left the network has in
the aim to continue to assume this role.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
g

ep
n

u
m

b
er

po
fp

b
in

d
er

sp
b

yp
n

o
d

e

Numberpofpsub-keys

Replicationpwithpsubstitution
Replicationpwithoutpsubstitution

Figure 12. Performances evaluation of the substitution
strategy

In Figure 12, we present the variation of average
numbers of binders depending of number of sub-keys,
thus, we can observe that the average numbers of
binders reached in the case of the substitution is much
more important than in the case of a connection of new
nodes to the first random address. This established fact

shows that the substitution strategy returns our more
the hardness of the system in the sense that the pairs
keys-values of the various nodes are distributed on a
largest number of binders so returning the available
information even in case of departure of binders. So, we
have for example by using 8 sub-keys, approximately
7 binders on average during all the simulation in the
strategy of circular replication (depending on number
of subkeys) and simple radial road (depending on
tree depth (d)) against about 14 binders when we use
the substitution method in more. Furthermore, for 16
sub-keys, we have approximately 12 binders against
about 18 on average in the case of the substitution.

8.5. Storage and discovery success rates

evaluation

Figure 13 presents two curves illustrating respectively
the evolution of the rate of success of the requests of
storage in the case of a classic replication (circular and
radial road) then in the case of a classic replication with
which we associated the substitution strategy.

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
g

eR
su

cc
es

sR
ra

te
Ro

fR
st

o
ra

g
eR

re
q

u
es

t

NumberRofRreplications

ReplicationRwithoutRsubstitution
ReplicationRwithRRsubstitution

Figure 13. Success rate evaluation in the storage

In Figure 13, we present average success rate of
storage request depending of the number of replication.
Thus compared to the classic replication results,
the success rate offered by the substitution strategy
is better. Indeed, in a replication, we note a rate
of average success about 62% of successes for the
classic replication against about 75% of the method
of substitution. In the case of 7 replications, we note
78% of successes in the case without substitution
against 89% in the case using this strategy. With 15
replications, we observe 85% of rates of success in
without substitution against 97% of successes in the
case of the substitution. Generally, we can notice an
average an earnings of about 10% in the success of
storage requests.

10
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16A
ve

ra
g

el
su

cc
es

sl
ra

te
lo

fl
d

is
co

v
er

yl
re

q
u

es
t

Numberloflreplication

Replicationlwithoutlsubstitution
Replicationlwithlsubstitution

Figure 14. Success rate evaluation in the lookup
(discovery)

In the case of discovery requests, the situation is
almost similar because to observe us in Figure 14
a better success rate when we use the substitution
strategy. Indeed, also in it an earnings of an average
9% of successes on requests for a discovery. Whether
it is for the storage or for the discovery, we can say that
our strategy is reliable because, she allows us to increase
considerably the success rates.

9. Conclusion and perspectives

In this paper we made an analysis of the inadequacies
of the classic web service model. Thus, we show that
the triplet WSDL, SOAP and UDDI does not allow to
assure on one hand an availability of the services with
regard to the dynamic context of Internet and other
one by it does not guarantee the secured access to the
service because it creates a direct link of connection
between the service consumer and the service provider.
To fill these failures, we propose new architecture of
web services management which we name SSDT which
allows to assure the scalability in the services storage
thanks to DHT structure, an availability of its services
thanks to the replication principle and a secured access
thanks to a decoupling between the service provider
and the services consumer via an intermediary third
based on a spanning hyperbolic tree structure.

The continuation of its works is going to consist
on one hand to propose other strategies to improve
the performances of our system then implement the
protocol SAPDS then our middleware SSDT in a
realistic context.

References

[1] Z. Yun and S. Huayou and Q. Hengnian and N.
Yulin (2010). An approach to discover semantic web
services in distributed environment based on Chord.

International Conference on Intelligent Systems and
Knowledge Engineering, pp. 401-405.

[2] G. Meditskos and N. Bassiliades (2010). Structural and
role-oriented web service discovery with taxonomies in
OWL-S. IEEE Trans. Knowl. Data Eng., Volume 22(2):278-
290.

[3] W. Ren and Z. Xu (2008). A new web service
discovery method based on semantic. Workshop on Power
Electronics and Intelligent Transportation System, ,pp.
223-226.

[4] S. Hwang, E. Lim, C. Lee, and C. Chen. On composing a
reliable composite web service: A study of dynamic web
service selection. In 2007 IEEE International Conference
on Web Services (ICWS 2007), July 9-13, 2007, Salt Lake
City, Utah, USA, pp. 184-191, 2007.

[5] J. Ma, Y. Zhang, and J. He (2008). Efficiently finding
web services using a clustering semantic approach. In
Proceedings of the International Workshop on Context
Enabled Source and Service Selection, Integration and
Adaptation: Organized with the 17th International World
Wide Web Conference (WWW 2008), CSSSIA ’08, New
York, NY, USA, ACM, pp. pp. 1-5.

[6] E. Al-Masri and Q. H. Mahmoud (2009). Discovering
the best web service: A neural network-based solution.
In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, San Antonio, TX, USA, pp.
4250-4255.

[7] E. Kabir and H. Wang and E. Bertino(2011). A conditional
purpose-based access control model with dynamic roles.
In Expert Systems with Applications, Volume 38(3): 1482-
1489.

[8] H. Wang and J. Cao and Y. Zhang(2011). A Flexible
Payment Scheme and Its Role-Based Access Control. In
IEEE Transactions on knowledge and Data Engineering,
Volume 17(3): 425-436.

[9] M. P. Papazoglou and W.-J. Heuvel (2007). Service
oriented architectures: Approaches, technologies and
research issues. The VLDB Journal, Volume 16(3):389-
415.

[10] B. T. et. al. Uddi specification index page. (Date last
accessed 19-July-2002).

[11] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker
(2003). UDDIe: An Extended Registry for Web Services. In
Proceedings of the 2003 Symposium on Applications and
the Internet Workshops (SAINT’03 Workshops), SAINT-
W ’03, Washington, DC, USA, IEEE Computer Society, pp.
85-89.

[12] D. Bela’́id, N. Provenzano, and C. Taconet (1998).
Dynamic management of corba trader federation. In Pro-
ceedings of the 4th Conference on USENIX Conference on
Object-Oriented Technologies and Systems, COOTS’98,
USENIX Association, , Berkeley, CA, USA, Volume 4, pp.
4-4.

[13] R. C. Prim (1957). Shortest connection networks and
some generalizations. The Bell Systems Technical Journal,
Volume 36(6), pp. 1389-1401.

[14] S. Melnik, H. Garcia-Molina, and E. Rahm (2002).
Similarity flooding: A versatile graph matching algorithm
and its application to schema matching. In Proceedings of
the 18th International Conference on Data Engineering,
ICDE ’02, IEEE Computer Society, Washington, DC, USA,

11
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

A Scalable Architecture for Secured Access to Distributed Services

pp. 117-128.
[15] S. Melnik, E. Rahm, and P. A. Bernstein (2003). Rondo:

A programming platform for generic model management.
In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, , New
York, NY, USA, ACM, pp. 193-204.

[16] A. Norbert and P. Athanase (2012). Notes on hyperbolic
geometry. Strasbourg Master class on Geometry, Volume
18, pp. 1-182.

[17] A. Papadopoulos (2010). Lobachevsky : Pangeometry.
Heritage of European Mathematics. European Mathemat-
ical Society.

[18] J. Milnor (1982). Hyperbolic geometry: the first 150
years. Bulletin of the American Mathematical Society,
Volum 6 (1), pp. 9-24.

[19] S.-G. Taherian(2010). On algebraic structures related to
Beltrami-Klein model of hyperbolic geometry. Bull. Amer.
Math. Soc., New Ser, Volume 57, pp. 205-219.

[20] J. Stillwell(1998). An elementary introduction to the
poincaré half-plane model of the hyperbolic plane.

Springer-Verlag, pp. 100-104.
[21] Wikiwand (1957). Poincaré disk model. (Date last

accessed 19-January-2016). Volume 36(6), pp. 1389-1401.
[22] Y. Bi, B. Fan, and F. Wu (2015). Beyond mahalanobis

metric: Cayley-Klein metric learning, pp. 2339-2347.
[23] R. Kleinberg (2007). Geographic routing using hyper-

bolic space. In in Proceedings of the 26th Annual Joint
Conference of INFOCOM,Computer and Communica-
tions Societies, IEEE, pp. 1902-1909.

[24] M. Margenstern (2007). Cellular automata in hyperbolic
spaces. Encyclopedia of Complexity and Systems Science,
Paris, pp. 791–800.

[25] M. Margenstern (2000). New tools for cellular automata
in the hyperbolic plane. J. UCS, Volume 6(12), pp. 1226-
1252.

[26] R. Kayalvizhi, R. Subramanian, R. Santhosh,
J. Gurubaran, and V. Vaidehi(2010). CNSA,
Communications in Computer and Information Science,
Springer, Volume 89, pp. 105-113.

12
EAI Endorsed Transactions on

Scalable Information Systems
12 2016 - 01 2017 | Volume 4 | Issue 13 | e5

Telesphore Tiendrebeogo

	1 Introduction
	2 Related work
	3 Basic principle and functioning
	4 Architecture of services' secured management
	5 Poincaré disk model
	5.1 Concept and Metrics properties of the Poincaré disk model
	5.2 Poincaré 's disk tiling

	6 Web services routing principle in the SSDT
	7 Naming and binding principle in the SSDT
	7.1 Web service storage process
	7.2 Web services discovery process
	7.3 Substitution strategy

	8 Simulations results
	8.1 Simulations context
	8.2 Load balancing and scalability of our distributed directories structure
	8.3 Analysis of the primary number of binders depending on the number of sub-keys
	8.4 Substitution strategy performance evaluation
	8.5 Storage and discovery success rates evaluation

	9 Conclusion and perspectives

