
Leveraging attention-based deep neural networks for
security vetting of Android applications
Prabesh Pathak1,∗, Prabesh Poudel1, Sankardas Roy1,†, Doina Caragea2

1Bowling Green State University, Bowling Green, Ohio, USA
2Kansas State University, Manhattan, Kansas, USA

Abstract

Many traditional machine learning and deep learning algorithms work as a black box and lack interpretability.
Attention-based mechanisms can be used to address the interpretability of such models by providing insights
into the features that a model uses to make its decisions. Recent success of attention-based mechanisms in
natural language processing motivates us to apply the idea for security vetting of Android apps. An Android
app’s code contains API-calls that can provide clues regarding the malicious or benign nature of an app. By
observing the pattern of the API-calls being invoked, we can interpret the predictions of a model trained
to separate benign apps from malicious apps. In this paper, using the attention mechanism, we aim to find
the API-calls that are predictive with respect to the maliciousness of Android apps. More specifically, we
target to identify a set of API-calls that malicious apps exploit, which might help the community discover
new signatures of malware. In our experiment, we work with two attention-based models: Bi-LSTM Attention
and Self-Attention. Our classification models achieve high accuracy in malware detection. Using the attention
weights, we also extract the top 200 API-calls (that reflect the malicious behavior of the apps) from each of
these two models, and we observe that there is significant overlap between the top 200 API-calls identified
by the two models. This result increases our confidence that the top 200 API-calls can be used to improve the
interpretability of the models.

Received on 14 July 2021; accepted on 03 August 2021; published on 27 September 2021

Keywords: Android Apps, Android Security, Malware Detection, Deep Neural Networks, Attention

Copyright © 2021 P. Pathak et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.27-9-2021.171168

1. Introduction
Android is the most popular OS with 71.9% of global
market share as of February 2021 [1]. Google Play is
one of the largest Android app stores, hosting more
than 3 million apps that are collectively used by
billions of users. Unfortunately, this success story of
the Android ecosystem also motivates adversaries to
inject malicious apps into the app store for monetary
gains and more. Once in a while, we see headline
news of a malicious app landing up in Google Play
breaching their security vetting system. This implies
that all the users who installed that malicious app
from Google Play on their Android phones could be
vulnerable to the relevant attack. The potential attacks

∗Corresponding author. Email: ppathak@bgsu.edu
†Corresponding author. Email: sanroy@bgsu.edu

include forceful advertisements, sensitive credential
theft, hidden surveillance, and many more. Even worse,
a user can install apps from a third-party market which
may not even enforce a security vetting process for
the apps. Hence, there is a pressing need to build an
efficient security vetting system for Android apps.

Approaches to malware detection include dynamic
analysis and static analysis. Dynamic analysis involves
running the code in a controlled environment and
vetting based on the run-time behavior of the app.
Alternatively, static analysis involves studying the app
code without executing it – this can be the analysis
of the source code (which can be in Java) itself or the
executable (i.e., Dalvik bytecode), manifest files, other
resource files, decompiled code (which can be in the
form of smali code), etc.

1

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<ppathak@bgsu.edu>
mailto:<sanroy@bgsu.edu>

P. Pathak et al.

In the current work, as the app artifacts we use the
API-calls1 that are obtained from the decompiled code,
i.e., the smali files. By scanning the smali files, we
extract the API-calls that are in the form of strings. A
sample API-call is: Ljava/io/BufferedWriter;.close:()V.

We use the sequence of API-calls as artifacts to
train the deep learning models. In particular, we get
the embeddings of the API-calls via the word2vec [3]
mechanism and feed them as the input to deep learning
algorithms. We experiment with two deep learning
algorithms as mentioned below.

Recurrent Neural Networks (RNN) represent a type
of deep learning approach suited for learning from
sequence-type data [4, 5]. Long Short Term Memory
(LSTM) cells are RNNs that can potentially handle
longer inputs. A bidirectional LSTM (Bi-LSTM) can find
predictive dependencies in both forward and backward
directions, typically giving better performance than
a regular LSTM. Prior research [6, 7] in the domain
of Neural Machine Translation (NMT) showed that
a Bi-LSTM combined with the attention mechanism
holds even better promise, as the use of attention
mechanism allows the model to focus on the most
important parts of the input. Motivated by this success,
we choose an attention-based Bi-LSTM as the first
deep learning algorithm to experiment with. Note that
we build a classification model (instead of performing
NMT) and analyze the attention weights to identify the
most predictive features that reflect maliciousness of
Android apps. Given that we rank the features based
on their attention weights, we also refer to the most
predictive features as top features in this paper.

In our second deep learning algorithm, we leverage
the self-attention mechanism as used in the encoder
block of Transformer [8]. In contrast to RNN-based
attention where sequential processing is necessary (i.e.,
there is no parallelization), Transformer facilitates some
parallelization during training. This parallelization
allows training on larger datasets with potentially
longer sequences. In particular, with multi-headed self-
attention, we can process all input tokens at the same
time and subsequently retrieve attention weights. These
weights can be further used to rank the features and
ultimately identify the top features.

A simplified flowchart of our work is shown in
Fig. 1. The major contributions of our work are: (a)
We built two attention-based classification models with
Bi-LSTM Attention and Self-Attention, respectively. (b)
Using the attention weights from these models, we
identified top 200 API-calls for each model, which
reflect maliciousness of Android apps. Interestingly,

1Formally, an API-call is a method-invoking statement in the app’s
code whose implementation is not present within the app’s package
(i.e., the apk file) [2].

we found that 21 API-calls were common between the
top 200 API-calls from these two models.(c) Finally,
we collected an aggregate set of top 200 API-calls by
combining the two individual models’ output. These
can be further studied by the research community to
potentially discover new malware signature.

2. Related Works
Here we review prior works on Android malware
detection, which are related to our work. We also briefly
discuss the relevant deep learning approaches.

2.1. Static Analysis
FlowDroid [9] is a static analysis tool that can be used
to detect certain malicious behaviors of an Android
app. It, however, does not track Inter-component
communications in an app. Amandroid [10] supports
constructing inter-component CFG (control flow graph)
and inter-component DFG (data flow graph) that can be
used to detect multiple malicious signatures. However,
building such CFG and DFG is computationally
expensive.

2.2. Machine Learning (ML)
Drebin [11] used over 500k static features (extracted
from the decompiled code and the manifest file) to train
ML algorithms (e.g., SVM) to classify apps as malicious
or benign. Out of those (500k) features, Roy et al. [12]
handpicked (applying domain knowledge) only 471
features to train the ML models, and claimed to attain
similar detection accuracy. However, with the evolving
Android ecosystem, an automated feature selection
approach is required (instead of manual handpicking)
for building a scalable vetting system.

DroidAPIMiner [13] performed ML-based frequency
analysis on 169 APIs to identify the most relevant APIs.
The authors of another tool, MaMaDroid [14], claimed
that their proposed tool outperforms DroidAPIMiner.
MaMaDroid abstracts the API calls to their class,
package, or family, and builds a model (in the form of
a Markov chain) from the API call sequences obtained
from the call graph of an app.

ApiChecker [15] is an ML-powered malware detec-
tion system that utilizes ground-truth data from a
large Android app market called Market-X. The authors
identified 426 key APIs in three categories: Restricted
API, Highly-Correlation API, and Sensitive Operation
API. Their API selection strategy is based on the SRC
(Spearman’s rank correlation coefficient) value of each
API with the malice of apps.

2.3. Deep Learning (DL)
Xu et al. [16] performed multi-phase security vetting of
Android apps. In the first phase, they feed the XML

2 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

Figure 1. System design of attention-based security vetting of Android apps

artifacts (e.g., the manifest file in the app apk) to a
multi-layer perceptron (MLP). Only the uncertain apps
not meeting a specific threshold are passed on to the
second phase. In the second phase, the authors use
bytecode semantics to train an LSTM model.

Deep4MalDroid [17] extracts the (Linux kernel)
system calls while executing Android apps under test.
It performs classification using Stacked AutoEncoders
(SAEs) where the feature set consists of the system calls.

The most closely related work to ours is MalDozer
[18] that uses deep learning for security vetting of
Android apps. MalDozer extracts raw sequences of API
calls from the app executable (i.e., DEX file in the apk).
The API calls are then tokenized and are populated
in fixed-length vectors which are then used to train
multi-layer Convolutional Neural Networks (CNNs).
The main differences between our work and MalDozer
can be summarized as follows: (a) we extract API calls
from the decompiled app code (i.e., smali). (b) Our deep
learning approach uses sequence models together with
the attention mechanism, as opposed to CNNs.

Furthermore, Chaulagain et al. [2] built an Android
app vetting system using variants of LSTM models.
Amandroid [10] was used to collect API calls as
static artifacts. System calls were collected as dynamic
artifacts using the Genymotion [19] emulator. The
hybrid approach makes the prediction based on the
average of the probabilistic predictions of the static and
dynamic models.

Attention. The attention mechanism was first proposed
in the context of neural machine translation (NMT).
Sutskever et al. [20] proposed an NMT architecture of
Encoder-Decoder using LSTMs. The architecture uses

a fixed-length context vector where all the necessary
information from the input sequence is compressed.
However, as the length of the input sentence increases,
the performance deteriorates as demonstrated by Cho
et al. [21].

Bahdanau et al. [6] proposed to address this issue
using the attention mechanism which acts as an
intermediate layer between encoder and decoder,
and allows the decoder to selectively retrieve the
information relevant to the input sequence. This type of
attention is known as additive attention as it performs
a linear combination of encoder and decoder states.

Luong et al. [7] improved Bahdanau’s attention
mechanism with a different method of alignment score
calculation. They introduced the concepts of local and
global attention, and proposed three different methods
to calculate the alignment scores: dot, concat and
general. Global attention takes all source hidden states
into account, whereas local attention focuses only on a
subset of the source hidden states.

Vaswani et al. [8] proposed the Transformer, a novel
approach of processing sequences without the use
of RNNs. Their model consists of a multi-head self-
attention mechanism together a simple fully connected
layer in the encoder, and a similar architecture for
the decoder. Transformer attends to information from
different angles, which is mathematically seen as
different linear subspaces. For instance, consider two
sentences: "The animal didn’t cross the road because
it was too tired." and "The animal didn’t cross the
road because it was too wide." In these sentences, the
word it refers to animal and street, respectively. Such
relations can be captured by Transformer. Transformer

3 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

P. Pathak et al.

has been the building block for state-of-the-art language
representation models.

Recently, Wu et al. [22] proposed an attention-based
mechanism to interpret Android malware classification
results. In particular, they combined an attention-
module with a Multi-Layer Perceptron (MLP) networks
to find the attention weights of the input features.
The difference between Wu et al.’s work and our
work is as follows: (a) We use Bi-LSTM [23] or
Transformer [8] models instead of an MLP network.
Note that Bi-LSTM and Transformer are deep learning
approaches specifically designed for sequence data,
and Transformer architectures are state-of-the-art in
NLP; (b) Our input feature set does not include app
permissions or intents as in Wu et al.’s work. Thus, our
work is complementary to Wu et al.’s work, and a direct
comparison is beyond the scope of this paper.

3. Background
In this section, we present some background on the
concepts of attention-based deep learning algorithms.

3.1. Deep Learning
Here, we discuss briefly on the deep learning algorithms
used in our work.

LSTM. LSTM cells are special RNNs designed to
address the vanishing gradient problem of traditional
RNNs [24]. Each LSTM block consists of an input
gate, a forget gate and an output gate. These gates
determine which information from the previous step
flows through to the next step in time. Their internal
cell states can extract and hold temporal information
hidden in input sequences. This allows the network
to learn when to truncate the gradient and thus avoid
vanishing gradients. LSTMs are only capable of leaning
information from the past by parsing the sequence from
left-to-right.

Bi-LSTM. To make use of both past and future
information, Bi-LSTMs (which parse the sequence both
from left-to-right and also from right-to-left) were
introduced. Bi-LSTMs, also referred to as Bidirectional
LSTMs, use two LSTMs in forward and backward
manner to capture more information from the input
sequence [23, 25]. In traditional LSTM, information
flows in a forward direction with respect to time. In
the case of API calls, looking at both directions when
processing sequences could help the model make better
inference using inherent dependencies of the function
calls. Hence, the whole context of the input sequence
can be taken into account.

Attention. The attention mechanism was originally
proposed to address the RNN’s imitations when
processing longer inputs. Originated in the context of

the encoder-decoder architecture in NMT [20, 26], the
attention mechanism involves an additional layer after
the encoding process where all the outputs produced
by the encoder time steps are preserved and passed to
the decoder at each time step. Bahdanau et al. [6] and
Luong et al. [7] proposed encoder-decoder architectures
with the attention mechanism, but the two groups used
different score calculation methods.

Bi-LSTM Attention. Zhou et al. [23] proposed a Bi-LSTM
with attention approach for relation classification tasks,
inspired from Luong’s attention. Let H be a matrix
consisting of output vectors [h1, h2 . . . , hn] that the
LSTM layer produced, where n is the sequence length.
The representation r of the sequence is formed by a
weighted sum of these output vectors. Let α represent
the attention weight of each sequence. We have:

M = tanh(H)

α = softmax
(
wTM

)
r = HαT

h∗ = tanh(r)

(1)

where H ∈ Rdw∗n, dw is the dimension of the word
vectors, w is a trained parameter vector and wT is
a transpose. The dimension of w, α, r is dw, n, dw

respectively; h∗ is the final sentence-pair representation
which can be further used for classification. Chaulagain
et al. [2] used this attention mechanism for malware
classification.

Transformer and Self-Attention. Vaswani et al. [8] pro-
posed the Transfomer, a novel approach of processing
sequences without the use of recurrent cells. RNNs
exhibit sequential processing which is incompatible
with parallel computation. This can affect the robust-
ness and efficiency when used on longer input sequence.
The self-attention mechanism is fully parallelizable.
The transformer model is an extension of the Encoder-
Decoder structure consisting of self-attention blocks
with linear layers and residual connections. It is a
combination of multi-head self-attention layers and
regular feed-forward neural networks. The use of self-
attention ensures that long-distance dependencies can
be captured effectively and efficiently.

Firstly, the embeddings from the inputs are combined
with some positional information. The positional
embeddings take into consideration the sequential
nature of input data. This is typically carried out in
the form of sine and cosine functions of different
frequencies:

P E(pos,2i) = sin
(

pos

10000
2i

dmodel

)
(2)

P E(pos ,2i+1) = cos
(

pos

10000
2i

dmodel

)
(3)

4 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

where pos denotes token’s position, i denotes a specific
dimension/index in the embedding, dmodel is the
embedding dimension. Hence, i belongs to the interval
[0, dmodel]. Each dimension of the positional embedding
corresponds to a sinusoid.

The encoder in Transformer consists of a multi-head
attention block followed by linear transformation with
a non-linear activation function. Here, the motivation
behind using multi-head self-attention is to give
multiple perspective of the same input sequence.

Self-Attention in Transformer is an extension of
the generic attention mechanism which makes use
of queries Q, keys K and values V to calculate an
alighment score. These three vectors provide alternative
representations of the same positionally encoded input
sequence. As in other forms of attention, the alignment
here is computed on Q and K , and subsequently
applied to V . Intuitively, the process is analogous to
search engines, where a user’s query is matched against
engine’s keys and the values are the results.

Transformer uses a scaled dot-product attention as
in Equation (4) to calculate the alignment score. The
input consists of queries and keys of dimension dk ,
and values of dimension dv . The formula introduces
a scaling factor to prevent the softmax function from
giving values close to 1 for highly correlated vectors and
values close to 0 for non-correlated vectors. This makes
gradients easier to work with during back-propagation.

Attention (Q,K, V) = softmax
(
QKT√
dk

)
V (4)

The multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions. The vectors from
each head are concatenated into one vector followed
by a linear projection to the subspace of the initial
dimension. The output from the attention block
is then fed to a feed-forward network. There are
residual connections around each block. These residual
connections help keep track of data, and are followed
by layer normalization which helps in reducing features
variance. The decoder block is similar to the encoder
block, except that it inserts a third attention sub-
layer between multi-head self-attention and a piece-
wise fully connected layer.

The transformer suffers from the issue of memory
requirements. Self-attention layers are faster than
recurrent layers when the sequence length n is
smaller than the embedding dimension d, which is
most often the case with sentence representations.
With the increase in sequence length, the model
has to include more and more parameters for
both intermediate feed-forward layers and attention.
Computational complexity per layer for RNNs is
O(n.d2) whereas for self-attention is O(n2.d). However,

massive computational power is required for training
big transformer models. This indicates that such level of
experiment is suitable only for large industrial research
labs as it quickly becomes impossible to fit the model in
a single GPU.

3.2. Preparatory Work
As a preparatory work, we initially tested our models
on two freely available datasets: Amazon Reviews and
MNIST.

Amazon Review Dataset. The Amazon Review Dataset
is a freely available collection of user reviews, which
has been widely used in the field of natural language
processing for sentiment analysis. Amazon Review
Dataset is based on English vocabulary. The goal of
the classification task is to separate positive reviews
from the negative reviews. On training our models with
200,000 reviews, we got impressive auPRC scores for
classifying the test data, which is 0.9762 with Bi-LSTM-
Attn and 0.9691 with Self-Attn, respectively.

An example review (after data cleaning) is as follows:
“fantastic i love this book absolutely a keeper the length
of time it for the book to get to me was very short
i am very satisfied.” Our models identified keywords
such as f antastic, love and satisf ied as predictive
with respect to the classification decision. This set of
keywords matches with the expectation of a human
with knowledge of the English language.

MNIST Dataset. MNIST is a widely used image dataset
of handwritten digits. It has thousands of grey-scale
images of handwritten digits from ‘0’ to ‘9’. The goal
of the classification task is to identify individual digits,
e.g., ‘0’, ‘1’, etc. The dimension of the image is 28 ×
28 pixels. We test how our attention-based models can
identify the important features of the images. In other
words, we want to identify which pixels of the image is
more important (in identifying the digit) compared to
other pixels of the image.

We trained our models with 48,000 images from
MNIST. On evaluating our models on MNIST images,
we found that the top features (aka. pixels) have darker
shades and are at the central part of the image. This
gives us some visual explanation on how the model
was able to classify the test data correctly. Both of our
algorithms are able to identify the top features (aka.
pixels) of the images.

4. Approach
4.1. APK Collection and Artifacts Extraction
In this work, we use a public repository named
AndroZoo [27] as our primary source of Android apks.
Both benign and malicious apps along with the VT
(Virus Total) scores are available in AndroZoo. the

5 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

P. Pathak et al.

VT score represents the number of anti-virus engines
that have marked that app as malware. We divide the
set of malware apps into two sections based on their
VT scores: Apps with VT score between 2 and 10 are
considered as low quality malware, whereas apps with
VT score greater than 10 are considered as high quality
malware. Apps with VT score zero are considered as
benign apps.

Android apps frequently use android library and
java library. That means most of the APIs that an
Android app invokes are implemented in these two
libraries. With the popularity of the Android ecosystem
and it being an open community, several third-party
libraries are also available to be used by Android apps.
We identified such 132 popular third party libraries.
That means if an Android app invokes a method
implemented in one of these libraries, we consider it as
an API call. So, there are three main categories of APIs
under our consideration: Android library, Java library,
and third party libraries.

We used a Python script that uses apktool to
decompile an app to smali code, and obtain the
sequence of API-calls from the smali file. Note that
this sequence of API-calls represents a true execution
sequence only within the boundary of a code block2. In
other words, the actual execution sequence of the API-
calls may be different based on the actual execution
order (that is decided only in run time) of multiple
code blocks [2, 18] with respect to each other. Note that
to establish the true sequence, we need to build inter-
procedural control flow graph (CFG) of the app, which
is computationally expensive. So, we make a trade-off:
our process of collecting artifacts is lightweight but we
get only a quasi-sequential order of API-calls. Finally,
we store the API-calls (as artifacts) in a text file where
each API-call obtained is delimited from the next one
by a space.

4.2. Deep Learning
We experiment with two deep learning algorithms:
Bi-LSTM attention and Self-attention. In particular,
using each such algorithm, we build one deep learning
model as sketched in Fig. 1 via training with the
aforementioned artifacts.

Fig. 2 shows an overview of the Bi-LSTM attention
architecture. This involves two LSTM cells unfolding
in forward and backward directions, respectively,
and capturing information from the input sequences.
Afterwards, the outputs are sent to an attention layer
from where we extract the attention weights. This
output is then fed to a feed-forward neural network for
the classification task.

2A code block is a linear chunk of code, i.e., it has no branching out.

Fig. 3 shows us the architecture of the self-attention
model. In this scheme, we first combine the word2vec
embedding with positional embedding module. We
use positional embedding to preserve the order of the
“words” (i.e., APIs) in the sequence. The combined
embeddings are then fed to the encoder of a multi-
head self-attention block with layer normalization. The
output is then passed to a feed-forward classification
network.

For either of the two models, we perform hyper-
parameter tuning by observing the training and
validation losses.

4.3. Selection of Top Features
We identify a set of top features from each of the
two deep learning models. To do so, we analyze the
attention weights of the model after the training phase
is completed. In particular, for each model we identify
the top m API-calls using the ‘true positive’ malware
apps in the test dataset. Let the set of true positive
malicious apps be P . Note that an API-call can appear
multiple times in a single app, and it can have different
attention weights for the same app based on its position
in the sequence. To address this issue, we take a
cumulative weight of an API-call; actually, we take the
cumulative weight of an API-call across all the true
positive malware apps. This also helps us deal with
any possible outlier. We store the unique API-calls
along with the corresponding weights in a hash map,
and then sort them to get the top m API-calls. After
obtaining top m features from each of the two models,
we also check for any overlapping features. In summary,
we take the following steps to get the aggregate top
features, representing both of our models.

1 For each app we take the first nAPI calls; if an app
has more, we discard the later API calls.

2 For each model j:

2a Softmax scores (i.e., attention weights) are
assigned to each API call in an app.

2b API calls can be repeated within an app; we
cumulatively add the weights.

2c Furthermore, we cumulatively add the
weights of a repeated API call across P , the
set of true positive malicious apps.

2d Get topm ranked API calls that is denoted by
set Aj .

3 Compute union U of the two sets, A1 and A2. Sort
the union set U according to the corresponding
weights. Identify the top m API-calls from U ,
which makes the aggregate top features.

4 Compute intersection I of the two sets, A1 and A2.

6 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

Figure 2. Bi-LSTM attention architecture

Figure 3. Self-Attention architecture

In step 1, the value of n is chosen such that for most
apps no API is discarded. For our app dataset, we found
that a good value of n is 4000. Furthermore, in our work,
we chose 200 as value of m. Also, for step 4, note that
the API-calls in set I appear in both the sets, A1 and A2.
The bigger the size of I , the more confident we are in
identifying the top predictive features.

Note that alternative schemes to identify top API-
calls are possible, and will be explored in the future.
For instance, as an alternative scheme to the current
version of step 2, we could specifically aim to capture
an API with one occurrence but a very high weight

in an app versus an API with many occurrences but
smaller weights in an app (such APIs can be ranked
as top features in the current version of step 2).
Differentiating between the two types of APIs identified
as top features can help security analysis to identify
interesting patterns explored by the coders of malicious
apps.

5. Experimental Setup and Implementation
Here we discuss the experimental setup along with the
experiment specifics.

7 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

P. Pathak et al.

Table 1. The App Dataset

Year Benign apks Malicious apks
2016 30,000 10,000
2017 30,000 10,000
2018 30,000 10,000
2019 30,000 10,000
2020 9000 3000
Total 129,000 43,000

5.1. Dataset
Our dataset comprises of Android apks that were
published over the last 5 years (2016-2020). We use
40, 000 apks each from years 2016 to 2019. We collected
only 12, 000 apks from year 2020. To maintain the data
balance factor over the years, we kept the malicious app
to benign app ratio at 1 : 3 for each year. Note that in
real life also, malicious apps are far less in number than
benign apps in an app store. The dataset composition is
shown in Table 1. Note that we have a total of 43,000
malware apps in the dataset.

To emulate the real life situation, we include both
high quality malware apps and low quality malware
apps in the dataset as discussed in Section 4.1. The
detailed division of these two types of malware over the
years is shown in Table 2.

5.2. AWS Setup
Setup for Artifacts Extraction. For artifacts extraction,
we use an Amazon’s EC2 instance with Ubuntu
Version 39.0 as our AMI (Amazon Machine Image).
Artifacts extraction process requires a machine with
high memory power and large number of cores. So,
we use memory optimized instance type r5.8xlarge. It
comes with 32 cores and 256 GB of memory. We also
require external EBS to copy the apks from S3 bucket.

Setup for Deep Learning. For the deep learning tasks, we
use Amazon’s EC2 instance with Deep Learning Ubuntu
Version 40.0 as the AMI. This comes with pre-installed
data science libraries and frameworks. To facilitate
deep learning, we need to use an instance with high
computational power. So we choose, p3.2xlarge as our
instance which comes with 8 cores and 61GiB of RAM.
It delivers high performance with 8 NVIDIA V100
Tensor Core GPUs and up to 100 Gbps of networking
throughput. We use ssh to connect to the instance. We
also define security group to forward the port 8888
which can be used to run Jupyter notebook on the local
machine.

5.3. Artifacts Extraction
On successful decompilation of the Android apk
using apktool, we get smali files and more. We scan

smali files to find keywords .method, invoke− and
.endmethod keywords (that do not represent a user-
defined function) to spot API-calls. We list API-calls
of an app in a text file, separating each API-call by a
space and delimiting each function boundary with a #
symbol. As noted in Section 4.1, the API-calls of an app
are listed in quasi-sequential order only.

Over our total dataset of 172, 000 apps, we compute
the distribution of the source of APIs, which is
illustrated in Figure 4. We observe that android and
java APIs comprise of the majority of the APIs in the
vocabulary. Note that the total number of unique APIs
(i.e., the vocabulary length of the corpus) is 858, 193.

Figure 4. The distribution of the API Source

5.4. Implementing the Deep Learning Approaches
The first step is to obtain the embeddings of the app
artifacts via word2vec algorithm. We get embeddings
of three different dimensions: 128, 256 and 512. The
length of our input sequence of API-calls is 4000. This
is a large number which, along with the embedding
dimension, significantly increases the computational
complexity per layer, especially when self-attention is
used.

We build our deep learning models using two
approaches: Bi-LSTM Attention and Self-Attention.

Fig. 5 gives a detailed overview of the Bi-LSTM
Attention approach with matrix dimensions. The heart
of the computation lies in Equation 1. Bi-LSTM gives
an output in the form of [batch_size x seq_len x
hidden_units], which is fed to the attention module.
The output from the attention module gives our
feature representation in terms of attention weights.
This is amplified again with multiplication with input
as Batch-wise Matrix Multiplication (BMM) to get a
context vector. This vector is then is then fed to the
classifier network.

The hyper-parameters in our experiments were
finalized based on the training and validation loss
observed through the epochs. Other parameters not

8 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

Table 2. The Malicious dataset

Year # of Malicious Apps Low Quality Malware High Quality Malware
2016 10,000 8999 1001
2017 10,000 8599 1401
2018 10,000 9005 995
2019 10,000 8507 1493
2020 3000 2920 80
Total 43,000 38,030 4970

Figure 5. Detailed Bi-LSTM Attention

mentioned are set as default parameters provided by
the PyTorch library.

For Bi-LSTM Attention, we get our best performing
model with the following hyper-parameters: 128 LSTM
hidden units, Adam Optimizer with learning rate of
0.0005, weight decay of 5e − 4 and dropout of 0.3. We
train this model for 20 epochs with a batch size of 20.
The training app set is as in Table 3. Total training time
for 20 epochs was about 7 GPU hours.

As Self-Attention is computationally expensive, we
set the batch size to 2 and train the model for 20
epochs. The training app set is as in Table 3. The best
performing hyper-parameters are: Adam Optimizer
with learning rate of 0.0005 and a decay factor 5e − 4,
embedding dimension of 256, 2 attention heads and 16
hidden units in the dense layer of encoder block. It took
around 17 GPU hours to train this model.

6. Evaluation
In this section, we present the results of our experi-
ments with Bi-LSTM Attention and Self-Attention. We
consider auPRC (Area Under Precision Recall Curve)
[12] as the core evaluation metric. Then, we present
results from a few additional experiments, e.g., com-
parison of the two deep learning algorithms’ malware

detection accuracy with that of some traditional ML
algorithms [12].

Training and Test Data Split. Table 3 gives an overview
of the train-test split of the (app) dataset that we
used in the experiments. Note that the same dataset
is used for both Bi-LSTM Attention and Self-Attention.
Furthermore, we used 20% of the training data as the
validation dataset.

6.1. Malware Detection Accuracy
We now evaluate our two deep learning models on the
API-calls dataset. As shown in Table 3 , the test dataset
contains 17200 apps: 4300 malware apps and 12900
benign apps.

Bi-LSTM-Attention Model. Fig. 6 (Left) shows the
confusion matrix of the Bi-LSTM-Attention model on
the test dataset. We see that 634 malicious apps were
falsely classified as benign apps. Furthermore, the
auPRC is 0.9391 whereas the Precision-Recall curve
(PRC) is illustrated in Figure 7 (Left).

Self-Attention Model. Fig. 6 (Right) shows the confusion
matrix of the Self-Attention model on the test dataset.
We see that 955 malicious apps were falsely classified

9 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

P. Pathak et al.

Table 3. The train-test data split

Year Ben-train Mal-train Ben-test Mal-test Total
2016 27,000 9000 3000 1000 40,000
2017 27,000 9000 3000 1000 40,000
2018 27,000 9000 3000 1000 40,000
2019 27,000 9000 3000 1000 40,000
2020 8100 2700 900 300 12,000
Total 116,100 38,700 12,900 4300 172,000

Figure 6. Confusion matrix for Bi-LSTM Attention (Left) and Self-Attention (Right)

Figure 7. Area under PR-Curve with Bi-LSTM Attention (Left) and Self-Attention (Right)

as benign apps. We found that 850 out of 955 were low-
quality malware. We also note that a large proportion
of the training dataset was comprised of low-quality
malware which possibly explains the large-number
of false positives. Furthermore, the auPRC is 0.9074
whereas the PRC is illustrated in Figure 7 (Right).

Comparison of Bi-LSTM Attention and Self-Attention Models.
When we compare and observe the results from the
two deep learning approaches, we see that both models

give competitive results. Bi-LSTM Attention has a
slight edge over the Self-Attention model. Training
Self-Attention is computationally expensive and hyper-
parameter tuning was difficult as compared to Bi-
LSTM attention. Thus, we employed a very simple Self-
Attention model which can be potentially improved
with further tuning, a task that we leave as part of
future work.

10 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

Table 4. Comparison of the two deep learning models

Model App Type Precision Recall F1-Score Area Under PR Curve
Benign 0.9515 0.9647 0.9580

Bi-LSTM Attention Malicious 0.8895 0.8525 0.8706 0.9391
Benign 0.9283 0.9586 0.9432

Self-Attention Malicious 0.8623 0.7779 0.8179 0.9074

6.2. Top Feature Selection
To identify the top features, we only make use of the
true positive apps, i.e., the malware that were correctly
predicted.

Fig. 8 lists the top 10 API calls of a true-positive mal-
ware as computed by the Self-Attention model. The top
API call on the list is: ljavax/crypto/spec/deskeyspec.
In this API-call, DES (Data Encryption Standard) is
a symmetric-key block cipher. This indicates that our
model is capturing relevant top features.

Fig. 9 shows an overview of how the selection process
occurs. For the sake of readability, this figure illustrates
the selection process with a tiny dataset of two apps
where the goal is to identify only 4 top features. Here,
even though y ranks second in both the apps, it ends up
being the top feature. We believe that this deals with the
bias of single occurring highly scored features like m.

To aggregate the API-calls from Bi-LSTM Attention
and Self-Attention models, we do a simple concate-
nation and get the combined top 200 API-calls. We
found 21 overlapping API-calls. Our total vocabulary
was 850, 193 and we were able to find 21 common
features between our two models. That is more than
10% of common features which we believe is a good
number considering such big vocabulary. Table 5 shows
the common API-calls between the two models.

6.3. Results from additional experiments
Comparison with Traditional ML-Algorithms. Roy et al. [12]
used traditional machine learning models with 471
handpicked features to detect malware apps. We use
Roy et al.’s feature extraction scheme to extract those
471 features for our 172k apps. We use the same
train-test split as in Table 3. The results obtained are
presented in Table 6. The result might look competitive
here, but we note that ML requires handpicked features
whereas the deep learning models learn the features
themselves. Chaulagain et al. [2] also used 471 features
on their dataset and got auPRC of 0.9819 with SVM.
This high auPRC could be a result of using only high
quality malware (both for training and testing) and an
older dataset dated before 2016.

We should note that traditional ML techniques such
as Random Forest can also rank the features according
to their importance. However, we did not consider
ranking based on Random Forest in this work, as

Random Forest cannot leverage the sequential nature
of our artifacts (i.e., API-calls) and can suffer from
scalability issues and overfitting if the whole set of APIs
present in the apps (i.e., approximately 858K APIs) is
used in training. As opposed to that, deep learning
techniques (such as LSTM and Transformer) can use
sequential data that may include a large number of
APIs.

Imbalanced Ratio Experiment. In this experiment, we
vary our malicious to benign apps ratio in our test
dataset and discuss the results. We test with 5 different
ratios: 1:3, 1:5, 1:10, 1:20 and 1:50, varying number
of malicious apps and keeping the number of benign
apps constant. Fig. 10 shows that auPRC of our model
decreases greatly as we decrease the ratio of malicious
to benign apps. We also notify the readers that in real
world this ratio is very low. Thus, when building an
Android vetting system with a classification model,
researchers should be wary about the ratio of malware
to benign apps. The malware percentage in the test set
should approximate the real world malware percentage
[28].

High Quality Malware Experiment. To observe the effect
of high and low quality malware, we conduct another
experiment by varying the malware quality in our test
dataset. Out of 4300 malicious apps in test dataset, we
had only 512 high-quality malware. Thus, we brought
down the number of benign apps to 1536 to match the
original 1 : 3 ratio of malicious to benign apps.

Table 7 shows that the performance of the model
increases when we deal only with high quality malware.
Our model was trained with few high quality malware.
We believe that on increasing the number of high
quality malware during training, we can expect better
results. Due to time and resource constraints, we leave
such experiments as future work.

7. Limitations and Future Works
We identified a few possible directions for the future
work, which are as follows.

In the current work, the sequence of API-calls is not
obtained via dynamic analysis whereas for a malicious
app the true sequence of API-calls can be decided only
at the runtime. We plan to analyze the sequence of API-
calls collected via dynamic analysis in a future work.

11 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

P. Pathak et al.

Figure 8. API-calls and attention weights for an Android malware app

Figure 9. Top feature selection strategy: For the sake of readability, here we illustrate the selection process with a tiny set of two
apps whereas the goal is to identify only top 4 features.

In the current work, we finally extracted 200 top
features of malicious apps. In order to prove that these
top features are valid, we plan to compare them with
the manually extracted features in a future work.

Someone may wonder that instead of considering
so many individual API calls as in the current work,
whether it is better to merge API calls into groups
such as permission related, string related, File/Network
IO related, and so on. Although the features will then
become more coarse-grained, it is important to explore
this route in the future.

8. Conclusions
We leveraged attention-based deep learning approaches
for security vetting of Android apps. API-calls extracted

from the Android apps were used as the artifacts
for deep-learning models. Such API-calls are quasi-
sequential in nature. We experimented with two
attention-based models: Bi-LSTM Attention and Self-
Attention. Both models gave competitive results.
Additionally, after analyzing the attention weights from
these two models, we identified top 200 API-calls that
reflect the maliciousness of an Android app.

Our experiments show that deep learning models can
be implemented for large scale Android app security
vetting. This can save human time and effort from
manually handpicking the malicious features. The top
features identified from the models can be further
studied by the research community to potentially
discover new malware signature.

12 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

Leveraging attention-based deep neural networks for security vetting of Android applications

Table 5. Common API-calls from the two models

Common API-calls
ljava/io/file;.mkdir:()z
ljava/io/file;.exists:()z
ljava/io/fileinputstream;.close:()v
ljava/lang/reflect/method;.setaccessible:(z)v
landroid/content/res/resources;.getassets:()landroid/content/res/assetmanager;
ljava/io/file;.delete:()z
ljava/io/filenotfoundexception;.printstacktrace:()v
landroid/telephony/telephonymanager;.getdeviceid:()ljava/lang/string;
landroid/os/asynctask;.onpostexecute:(ljava/lang/object;)v
ljava/io/file;.listfiles:()[ljava/io/file;
landroid/content/res/resources;.getboolean:(i)z
landroid/util/base64;.decode:([bi)[b
landroid/app/application;.onconfigurationchanged:(landroid/content/res/configuration;)v
ljava/lang/stringbuilder;.insert:(iljava/lang/string;)ljava/lang/stringbuilder;
lorg/apache/http/statusline;.getstatuscode:()i
landroid/content/sharedpreferences;.edit:()landroid/content/sharedpreferences$editor;
ljava/io/objectoutputstream;.writeobject:(ljava/lang/object;)v
landroid/app/application;.onterminate:()v
ljava/io/inputstream;.mark:(i)v
ljava/lang/process;.destroy:()v
ljava/util/zip/zipinputstream;.closeentry:()v

Table 6. Accuracy of standard ML algorithms

ML Model App Class Precision Recall F1-Score Area Under PR Curve
Bernoulli Naive Bayes Malicious 0.6209 0.6105 0.6156 0.6845

Benign 0.8709 0.8757 0.8733
K-Nearest Neighbor (K=5) Malicious 0.9071 0.8881 0.8975 0.9471

Benign 0.9630 0.9697 0.9663
Support Vector Machine Malicious 0.9133 0.8940 0.9035 0.9547

Benign 0.9649 0.9717 0.9683

Table 7. Deep learning models’ accuracy with high quality malware

Model Review Type Precision Recall F1-Score Area Under PR Curve
Benign 0.9554 0.9772 0.9662

Bi-LSTM Attn. Malicious 0.9266 0.8632 0.8938 0.9548
Benign 0.9283 0.9586 0.9432

Self Attention Malicious 0.9084 0.7949 0.8479 0.9291

Acknowledgement. This work has been partially supported
by the U.S. National Science Foundation (NSF) under grant
no. 1718214 and 1717871. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF.

References

[1] Statcounter (2021), Android OS Market Share. URL
https://gs.statcounter.com/os-market-share/

mobile/worldwide.

[2] Chaulagain, D., Poudel, P., Pathak, P., Roy, S., Caragea,
D., Ou, X. and Liu, G. (2020) Hybrid analysis of android
apps for security vetting using deep learning. In IEEE
conference on communications and network security (CNS).

[3] Pascanu, R., Mikolov, T. and Bengio, Y. (2012)
Understanding the Exploding Gradient Problem. arXiv
e-print : arXiv:1211.5063.

[4] Bengio, Y., Simard, P. and Frasconi, P. (1994) Learning
Long-term Dependencies with Gradient Descent is
Difficult. IEEE Transactions on Neural Networks : 157–
166.

13 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

P. Pathak et al.

Figure 10. Experimenting with varying malware apps to benign
apps ratio in the test set

[5] Gers, F.A., Schmidhuber, J. and Cummins, F. (1999)
Learning to forget: continual prediction with lstm. In
1999 Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470): 850–855.

[6] Bahdanau, D., Cho, K. and Bengio, Y. (2016), Neural
machine translation by jointly learning to align and
translate. 1409.0473.

[7] Luong, M.T., Pham, H. and Manning, C.D. (2015),
Effective approaches to attention-based neural machine
translation. 1508.04025.

[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. et al. (2017), Attention
is all you need. 1706.03762.

[9] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y. et al. (2014) FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps. SIGPLAN : 259–
269.

[10] Wei, F., Roy, S., Ou, X. and , R. (2018) Amandroid:
A Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. ACM Transactions on Privacy and Security : 1–32.

[11] Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H.

and Rieck, K. (2014) DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket. In
Symposium on Network and Distributed System Security
(NDSS): 23–26.

[12] Roy, S., DeLoach, J., Li, Y., Herndon, N., Caragea, D.,
Ou, X., Ranganath, V.P. et al. (2015) Experimental study
with real-world data for android app security analysis
using machine learning. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC): 81–
90.

[13] Aafer, Y., Du, W. and Yin, H. (2013) DroidAPIMiner:
Mining API-Level Features for Robust Malware Detec-
tion in Android. In International conference on security
and privacy in communication systems: 86–103.

[14] Onwuzurike, L., Mariconti, E., Andriotis, P.,
De Cristofaro, E., Ross, G. and Stringhini, G. (2017)

MaMaDroid: Detecting Android Malware by Building
Markov Chains of Behavioral Models. arXiv e-prints :
arXiv:1612.04433.

[15] Gong, L., Li, Z., Qian, F., Zhang, Z., Chen, Q.,
Qian, Z., Lin, H. et al. (2020) Experiences of landing
machine learning onto market-scale mobile malware
detection. Proceedings of the Fifteenth European Conference
on Computer Systems .

[16] Ke, X., Li, Y., Deng, R.H. and Chen, K. (2018)
DeepRefiner: Multi-layer Android Malware Detection
System Applying Deep Neural Networks. In 2018 IEEE
European Symposium on Security and Privacy (EuroS P):
473–487.

[17] Hou, S., Saas, A., Chen, L. and Ye, Y. (2016)
Deep4MalDroid: A Deep Learning Framework for
Android Malware Detection Based on Linux Kernel Sys-
tem Call Graphs. In 2016 IEEE/WIC/ACM International
Conference on Web Intelligence Workshops (WIW): 104–
111.

[18] Karbab, E.B., Debbabi, M., Derhab, A. and Mouheb, D.

(2018) MalDozer: Automatic Framework for Android
Malware Detection using Deep Learning. Digital Inves-
tigation : S48–S59.

[19] (2018), Genymotion Android Emulator. URL https://

www.genymotion.com/.
[20] Sutskever, I., Vinyals, O. and Le, Q.V. (2014), Sequence

to sequence learning with neural networks. 1409.3215.
[21] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,

D., Bougares, F., Schwenk, H. and Bengio, Y. (2014),
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. 1406.1078.

[22] Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W. and
Lyu, M.R. (2021) Why an android app is classified as
malware: Toward malware classification interpretation.
ACM Trans. Softw. Eng. Methodol. 30(2).

[23] Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H. and
Xu, B. (2016) Attention-Based Bidirectional Long Short-
Term Memory Networks for Relation Classification. In
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics: 207–212.

[24] Hochreiter, S. and Schmidhuber, J. (1997) Long Short-
Term Memory. Neural Computation : 1735–1780.

[25] Schuster, M. and Paliwal, K. (1997) Bidirectional
Recurrent Neural Networks. IEEE Transactions on Signal
Processing : 2673–2681.

[26] Cho, K., van Merrienboer, B., Bahdanau, D. and
Bengio, Y. (2014), On the properties of neural machine
translation: Encoder-decoder approaches. 1409.1259.

[27] Allix, K., Bissyandé, T.F., Klein, J. and Le Traon, Y.

(2016) AndroZoo: Collecting Millions of Android Apps
for the Research Community. In Proceedings of the 13th
International Conference on Mining Software Repositories:
468–471.

[28] Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J.

and Cavallaro, L. (2019) TESSERACT: Eliminating
experimental bias in malware classification across space
and time. In 28th USENIX Security Symposium: 729–746.

14 EAI Endorsed Transactions on
Security and Safety

09 2021 - 11 2021 | Volume 8 | Issue 29 | e2

1409.0473
1508.04025
1706.03762
https://www.genymotion.com/
https://www.genymotion.com/
1409.3215
1406.1078
1409.1259

	1 Introduction
	2 Related Works
	2.1 Static Analysis
	2.2 Machine Learning (ML)
	2.3 Deep Learning (DL)
	Attention

	3 Background
	3.1 Deep Learning
	LSTM
	Bi-LSTM
	Attention
	Bi-LSTM Attention
	Transformer and Self-Attention

	3.2 Preparatory Work
	Amazon Review Dataset
	MNIST Dataset

	4 Approach
	4.1 APK Collection and Artifacts Extraction
	4.2 Deep Learning
	4.3 Selection of Top Features

	5 Experimental Setup and Implementation
	5.1 Dataset
	5.2 AWS Setup
	Setup for Artifacts Extraction
	Setup for Deep Learning

	5.3 Artifacts Extraction
	5.4 Implementing the Deep Learning Approaches

	6 Evaluation
	Training and Test Data Split
	6.1 Malware Detection Accuracy
	Bi-LSTM-Attention Model
	Self-Attention Model
	Comparison of Bi-LSTM Attention and Self-Attention Models

	6.2 Top Feature Selection
	6.3 Results from additional experiments
	Comparison with Traditional ML-Algorithms
	Imbalanced Ratio Experiment
	High Quality Malware Experiment

	7 Limitations and Future Works
	8 Conclusions

