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Abstract. In this paper we discuss the possibility of novel mutual fusion of evo-lutionary 
algorithms, complex networks, strange dynamics and hidden attractors. As demonstrated in 
previous research papers, evolutionary algorithms are capable of very complex tasks such 
as chaotic system control, identification or synthesis and vice versa, chaos can be observed 
also in the evolutionary dynamics. We pro-pose a novel approach non how to analyze and 
control dynamic of evolutionary algorithm and also discuss possibility on strange 
dynamics analysis that is a part of dynamic of evolutionary algorithms. In any words, we 
propose to understand algorithms as a discrete dynamical system that exhibit wide spectra 
behavior that can be controlled and analyzed.
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1 Basic Ideas on Evolutionary Dynamics and its Complex Network
Duality

In this paper we introduce our recent research results on evolutionary algorithm (EA) 
dynamics and its complex network duality. This research is based on idea that EAs can be 
converted into complex network, then into so called CML systems and via complex network or 
CML system can be then controlled and analyzed as depicted in Fig. 2. The main idea as already 
published in [40] is as follows.

1. Evolutionary dynamics is observable-recordable via population behavior.
2. Interactions between individuals are recorded as a change of edge weights of the

complex network in which vertices are individuals (particles,...) of the swarm (pop-ulation) 
and edges are interactions amongst them. Edges between vertices (and their
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strength) then reflect dynamics of evolutionary process. When an individual A is 
improved by another one B, then oriented edge from B to A is established or/and 
increased by some weight increment. If no improvement is observed, then in the same 
way can be strength of edge decremented. Thus we get network that behaves in a similar 
way as well known complex networks like social networks, citation networks, etc.

3. Complex network is then converted into a CML, where each row of CML is under-
stood as a time development of related vertex from complex network. The values 
(amplitudes, excitation,...) on that row are given by strengths and number of in-coming 
and outcoming edges - for example by In-degree and Out-degree of given vertex.

4. CML can be then studied and analyzed for different kinds of behavior (deterministic
and chaotic regimes, intermittence, ...), [1].

5. Beside analysis, CML can be also controlled as very well described in [1]. The
control is in fact focused on search of suitable control inputs and so called pinning values 
(i.e. controller output - u in the scheme) in CML system and is based on mathematical 
analysis of CML, if structure is known. If not, then SEA techniques can be used.

6. The most typical scheme of CML control is standard feedback control philosophy,
as depicted in Fig. 2. The controller can be, in general, derived by means of clas-sical 
mathematics, based on a priori knowledge of CML system, however, this is more 
complicated for CML with non-symmetrical structure (i.e. sites are not influ-enced by 
nearest one but by different one, and its change during time). In such a case it is better to 
use evolutionary control instead of classical one, as studied and demonstrated in [3], [2]. 
With such approach we can control an arbitrary CML even without knowledge of its 
internal structure.

7. By controlling of CML, that shall be understood as a reflection of algorithm dynam-
ics, we in fact, control dynamics of complex network derived from SEA dynamics 
(remember that this approach has side effect - if omitted step 1, then it can be used to 
control complex networks.) and ...

8. ... also to control dynamics of SEA.

Steps 1-4 are reported in bigger details in [4] - [6], while (independently on just
described methodology) CML control by means of EAs in [3], [2]. It is clear from pre-vious 
experiments and results, that proposed scheme of algorithm dynamics conversion and its CML 
control is applicable and can be used in order to study and visualize its control and 
performance. It is also possible to use it to make some analysis by means of complex 
networks as well as CML systems tools.

If taken more classical view on control of evolutionary algorithms is taken, then, as 
reported in [7] : in classical control theory is one of ways how to control dynamical system 
represented by so called feedback loop, that is depicted at Fig. 2, where variables in the figure 
are: w is so called desired value (the aim toward to which we would like to control system), y is 
output value of controlled system, that is further taken back in feedback loop, subtracted from 
w and difference e goes to the controller. In controller is e used to calculate the most suitable 
controller output u so that y will be more close to expected aim of control and future e = w− y 
will be minimized as much as possible.
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Whole control process can be influenced by noise v, whose existence is not, in control
theory, welcome and each control technique try to avoid or eliminate it. If this is taken
into consideration, then it is clear that evolutionary algorithms are nothing more than
discrete dynamical system, that shall be controllable by modern as well as classical
methods too.
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Fig. 1. Scheme of EA dynamics conversion into complex network, CML system and its control.
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2 The Latest Results and Progress

The main idea of conversion of EA dynamics to complex network is such that each 
individual is represented by vertex and edges between vertices reflect dynamics of in-
teractions amongst individuals in the population. In this conversion [4] it is considered that 
no new offspring are created (if offspring philosophy is used) but instead of it new position of 
an individual is understood as improvement of old position/fitness by means of interaction 
with another individuals. This interaction is then recorded as an oriented edge between 
vertices (individuals). Individual that has been improved gets incoming edges in CNS 
representation from those that ”help” to improve it.

For example, the SOMA algorithm, as described in [10], consists of so called Leader (the 
best individual in the population) attracting the entire population in each migration loop 
(equivalent of generation), so in that SEA, it is clear that the Leaders shall be recorded 
like vertex (getting new inputs from remaining vertices - individuals) or vice-versa each 
improved individual get incoming edge from Leader that signalizes, that it was improved by 
interaction with Leader.

The other case is differential evolution [9], e.g. DERand1Bin in which each individ-ual is 
selected in each generation to be a parent. Thus in CNS only those individuals-parents, that 
have been replaced by better offspring (in this philosophy active parent was improved in 
fitness) are recorded like a vertex with added connections from indi-viduals that cause it. In 
the DE class of algorithms the philosophy that a bad parent is replaced by a better offspring 
is again omitted, but there is an accepted philosophical interpretation, that individual (worse 
parent) is moving to the better position (better off-spring). Thus no vertex (individual) has to 
be either destroyed or replaced in the CNS point of view. If, for example, DERand1Bin has 
a parent replaced by offspring, then it was considered in CNS point of view as a vertex that 
got 3 new incoming edges (or weight increment of an existing edges) from three another 
vertices (randomly selected individuals, see [9]).

In [40], [4]-[6] [41]-[43] it is visible, that interactions between individuals create (at 
first glance) structures, which looks like complex networks. Meaning of vertices in the 
above mentioned figures is given by ratio of incoming and outgoing edges and and implies 
that: small vertex (small gray (pink) with dashed edges) has less incoming edges than 
outgoing. Dark gray (green), the biggest, are vertices with more incoming edges than 
outgoing. The light gray (yellow) vertex is the most activated individual ver-tex with the 
maximum of incoming edges. In SEA jargon, small vertex is an individual, which has been 
used more times for offspring creation rather than as a successful parent and pink vertices 
reflect the opposite. Each edge can be added or canceled during the evolution of the 
network, or importance of an edge can be modified by weights associ-ated to the each edge. 
Adding or canceling the edges or modification of the edge weights represents, in fact, 
dynamics of the SEA. Network then changes its shape, structure and size and as a 
consequence isolated sub-networks (or their fractions) can be observed, see Fig.3, [8]. Such 
network can be then analyzed, as for example partially is reported in [11]-[13], and 
controlled, as reported in [14] and [15].

Complex network created as described above, has been used successfully in related EAs 
control as reported in [40], . Thus control of the EAs dynamics via complex net-work 
duality has been approved.



Evolutionary Dynamics Analysis 5

Fig. 3. Complex network based on SEA dynamics, analyzed for degree centrality, see [8].

3 The Strange Dynamics and Hidden attractors

Despite fact that the control of EAs dynamics has been accomplished, there are still an-other 
research questions, that we would like to propose here. In [16] and [17] is demon-strated that 
inside EAs dynamics can be observed chaotic behavior. If in EAs exist chaotic behavior 
i.e. chaotic regimes (see Fig. 4-7, [16], [17]) then important question for computer science 
researchers is whether and how can such chaotic behavior influ-ence EAs performance. This 
is quite important question, because EAs are used on very hard problems solution, whose 
solution by brute force or by classical methods can take much more longer time than our 
universe exist [17] or time which is not, for practical reasons, acceptable.

The part of chaotic regimes, already proved in EAs, are so called hidden attractors, that 
can be important part of our research reported here. The hidden attractors are a special set 
of points that reflect dynamic of observed system as reported in [18]-[31]. In general and 
from a computational point of view attractors can be regarded as self-excited and hidden 
attractors. Self-excited attractors can be localized numerically by a standard computational 
procedure, in which after a transient process a trajectory, start-ing from a point of unstable 
manifold in a neighborhood of an equilibrium, reaches a
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state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a 
basin of attraction does not intersect with any small neighborhoods of equilibriums. Normal, 
i.e. standard basins of an attraction are solid part-sets that represent initial con-ditions, that 
lead trajectory to the attractor while basin of attraction of hidden attractors can be quite tiny.

Hidden attractor can be chaotic as well as periodic solution - e.g. the case of co-
existence of the only stationary point which is stable and a stable limit cycle (like in the 
counterexamples to the Kalman and Aizerman conjecture) [18]-[31]. On the con-trary, 
classical attractors are self-excited attractors and can therefore be obtained and identified 
numerically by the standard computational procedure as for example for the Lorenz system. It 
can easily predict the existence of self-excited attractor, while for hid-den attractor the main 
problem is how to predict its existence in the phase space. Thus, for localization of hidden 
attractors it is important to develop special procedures, since there are no similar transient 
processes leading to such attractors. Few novel methods have been developed during the time 
as in [32] or [33].

Thus performance of EAs is very important topic.

Fig. 4. Bifurcation diagram of simple genetic al-
gorithm, version I, see [17]

Fig. 5. Bifurcation diagram of simple genetic al-
gorithm, version II, see [17]

Fig. 6. Bifurcation diagram of simple genetic al-
gorithm, version III, see [17]

Fig. 7. Bifurcation diagram of simple genetic al-
gorithm, version IV, see [17]

It is clear that chaos have an impact on algorithm performance. It is not only about 
performance, but also about relations between chaos existence in EAs and relation with
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different EA phases and so called stagnation, population diversity and speed of the al-
gorithm convergence toward to global optimum. Another partial question whether HA exist 
in EAs dynamics and if yes, then again, what impact does it have for that. Does it disturb 
algorithm performance? IS it related to algorithm stagnation [34]? Concerning to simple 
chaotic systems as logistic equation one, they were derived from natural sys-tems as 
predator-prey is. Thus, from systems based on swarm behavior and structure. Are then HA 
also inside swarm systems? Concerning to performance of EAs influenced by chaos, 
important research papers have been already published as [35]-[37].

It is also joined with control of chaotic systems whose chaotic regimes are not ac-
ceptable in classical engineering and thus questions like can we successfully avoid by 
control trapping in HA. Or we can control in HA are also important. Remember that all 
systems reported here and in many other papers are artificial and well known a priori. Thus 
its control and analysis is very easy (due to easy model readability and knowledge) compare it 
with possible HAs present in black box real time systems. In the past it has been clearly 
demonstrated that EAs are capable of such task. However it is still impor-tant topic that 
deserves more deep research. Can we identify HA in real-time black box systems? Can ve 
control it in/out of HA regime?

Back to swarm systems, there are also another interesting directions, another in-
terdisciplinary research joining EAs, chaos, HA and control is proposed in [38] and is under 
process by our research group1. The main idea is captured in Fig. 2, see [4] and [40]. Here 
swarm dynamics of selected algorithms is converted into complex networks that reflect its 
dynamics and thus by means of classic complex network analysis we can get information 
about EA dynamics and use it backward to control EAs performance. However it can be 
translated further and complex network can be converted into a CML (coupled map lattices) 
system [39], that can be also controlled and analyzed in a differ-ent way. In complex 
networks we can also analyze presence of chaos as well as in CML [39] a thus a research 
space for HA existence in such systems (i.e. in EAs, CN or CML) is provided.

4 Conclusion

The aim of this paper is not to present single results from particular experiment, but the 
latest results and ideas, that are based on idea that EA can be converted into com-plex 
network and CML system and consequently controlled. Our results, published in [40], [4]-
[6] [41]-[43] clearly has showed that this approach is usable and performance of selected 
modern as well as classical algorithms has been approved. Together with achieved results 
we also proposed here possible research topics that join EAs perfor-mance with chaotic 
regimes in it, as was demonstrated in [16], [17].

1 navy.cs.vsb.cz
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