
Combining Genetic Algorithm with Variable

Neighbourhood Search for MAX-SAT

Noureddine Bouhmala1, Kjell Ivar Øvergård2
{noureddine.bouhmala@usn.no1, koe@usn.no2}

University College of Southeast Norway, Department of Southeast Norway,

Postboks 4, 3199 Borre, Norway1,2

Abstract. Metaheuristics which have gain popularity for solving different optimization

problems that arise in various fields aim at finding good solutions at a low cost. In this

paper, a hybrid approach combining genetic algorithm (GA) with variable

neighbourhood search (VNS) is proposed for solving the maximum satisfiability

problem (MAX-SAT). VNS works by moving from one neighbourhood to another in

order to avoid getting trapped in local optima. Results comparing GA with and without

VNS are presented. Finally, GA combined with VNS is compared to highly efficient

solvers from the MAX-SAT 2014 competition.

Keywords: genetic algorithm, variable neighbourhood search, maximum satisfiability

problem.

1 Introduction

The MAX-SAT problem which is proved to be NP-complete [1] is formulated as

follows. Given a positive constant k, a propositional formula Φ =⋀ 𝐶𝑗
𝑚
𝑗=1 with M clauses and N

Boolean variables. Each Boolean variable, xi, i ∈ {1, . . . , n}, can be assigned one of the two

values, TRUE or FALSE. Each clause Cj, in turn, is a disjunction of Boolean variables and

has the form as presented in formula (1) where 𝐼𝑗 , 𝐼𝑗 ⊆ {1,n}, I ∩ 𝐼 ̅= ∅, and 𝑥 denotes

the negation of x.

𝐶𝑗 = (⋁ 𝑥𝑙𝑙∈𝐼𝑗
) ∨ (⋁ �̅�𝑙𝑙∈𝐼�̅�

) . (1)

 Let 𝜙(𝑥) be the following formula containing 4 variables and 3 clauses. The goal is to

determine if there exists a truth assignment for 𝜙 that satisfies the maximum number k of

clauses.:

𝜙(𝑥) = (𝑥1 ⋁ ¬𝑥4) ∧ (¬𝑥1⋁𝑥3) ∧ (¬𝑥1 ∨ 𝑥4 ∨ 𝑥2) . (2)

Several state-of-the-art local search algorithms are enhanced versions of WalkSAT

(WSAT) [2] algorithm. Examples include WalkSAT/Tabu [3], Novelty+ and R-Novelty+

heuristics [4], G2WSAT [5]. Evolutionary algorithms are heuristic algorithms that have been

applied to MAX-SAT and many other NP-complete problems. Unlike local search methods

that work on a current single solution, evolutionary approaches evolve a set of solutions.

GASAT [6] is considered to be the best known genetic algorithm for MAX-SAT. GASAT is a

hybrid algorithm that combines a specific crossover and a taboo search procedure.

Experiments have shown that GASAT provides very competitive results compared with state-

of-art MAX-SAT algorithms.

2 Combining GA with VNS (VNS-GA)

Variable Neighbourhood Search (VNS) [7] is a meta-heuristic for solving combinatorial

and global optimization problems. Most metaheuristics are based on using a single

neighbourhood during the whole search. VNS exploits different neighbourhoods within a

local search. VNS is based on the fact that a local optimum reached within one

neighbourhood is different from the local optimum of another neighbourhood , thus the

search can systematically explore different search areas which are defined by different

neighbourhood structures.

Genetic Algorithms (GA) [8] are non-deterministic methods for global optimization and

belong to the class of evolutionary algorithms. GA work with a set of solutions in parallel.

A gene is defined to be the smallest unit of genetic information. Every gene is able to take

various values called allele. The chromosomes are encoded using an appropriate

representation and each can be regarded of as a solution in the search space . Each individual

is assigned a value called (fitness) that permits assessing its quality. The chromosomes that

form the initial population may be randomly constructed or by using greedy techniques

leading to chromosomes having high fitness. GA proceeds afterwards by grouping

chromosomes into pairs and enters them in a mating pool. Each pair is drawn from the

mating pool and combined using the cross-over operator leading to offspring. The new

population goes through the mutation operator which brings diversity into the population.

The probability of the mutation operator is generally chosen to be very low so that the results

achieved during the cross-over phase are not completely disrupted. A selection strategy

based on the fitness is usually used to choose the chromosomes that will be part of the next

generation. The procedure described above iterates over many generations until the

population converges to optimal or near-optimal solutions. The proposed VNS-GA is

described in section 2.1 to 2.9.

2.1 Neighbourhood selection

Let L denotes the set of variables of the MAX-SAT problem to be solved. The first phase

of the algorithm consists in constructing a set of neighbourhoods satisfying the following

property: 𝑁1(𝑥) ⊂ 𝑁2(𝑥) ⊂. . . . 𝑁𝑘𝑚𝑎𝑥
(𝑥). The initial neighbourhood (k = 1) is based on

flipping the value of a single variable. The state of a variable is changed from (True →

False) or (False → True). The first neighbourhood N2 is computed by grouping variables

into clusters using a non-deterministic algorithm. The variables are traversed in a random

order. The procedure selects for each unmatched variable vi the first unmatched variable vj

and a cluster vk made of the two variables is formed. The neighbourhood N2 allow flips

based on changing clusters each having 2 variables. The new formed clusters are used to

construct a larger neighbourhood N3 and the procedure iterates until the desired number of

neighbourhood (kmax) allowed by the user is reached.

2.2 Initial population

The chromosomes are represented as strings of bits. The number of the variables

determine the length of the chromosomes . The values (True and False) are represented by 1

and 0 respectively. In this representation, a chromosome X corresponds to a truth assignment

and the space of configuration is the set S = {0, 1}n. A random initial population is computed

from neighbourhood (𝑁𝑘𝑚𝑎𝑥
). The value assigned to each cluster of a given individual is

broadcast to all the variables belonging to that clusters.

2.3 Fitness function

GA exploits the fitness in order to guide the search. It is a value that quantify the

quality of an individual (solution) so that different solutions can be compared. The fitness of

a chromosome (individual) in the population is chosen to be equal to the number of clauses

that are un- satisfied.

2.4 What neighbourhood to start from

The core of VNS is the selection of the different neighbourhoods according to some

strategy for the effectiveness of the search process. The strategy adopted in this work is to let

VNS-GA start the search process from the largest neighbourhood 𝑁𝑘𝑚𝑎𝑥 and continues to

move towards smaller neighbourhoods. The chosen order enables GA to perform the search

in an efficient manner. The largest neighbourhood Nmax makes GA to treat a cluster as a

single object making the search to become directed and limited only to those solutions in

which the variables grouped within a cluster are given the same value. The change of

neighbourhood leads the search to be is intensified close to solutions from previous

neighbourhoods in order to attain solutions of better quality.

2.5 Matching process

 Pairs of individuals are combined in order to create offspring using the cross-over

operator. Combining pairs of individuals is regarded as a matching process. GA uses the

same random procedure described in section 2.1. The chromosomes are traversed in

random order. An unmatched chromosome ik is matched randomly with an unmatched

chromosome il.

2.6 Cross-over operator

The crossover operator is regarded as the most important in GA. It allows GA to

perform the search hoping to reach regions of the search space with higher fitness value. The

two-point crossover operator is applied to each matched pair of individuals. It works by

selecting two randomly points within a chromosome and then interchanges the two parent

chromosomes between these points to generate two new offspring. Cross-over operator can be

defined as a process in which a set of solutions referred as parents undergoes a transformation

to create a new set of solutions configurations referred to as offspring. The creation of these

descendants involves the location and combinations of patterns extracted from the parents.

Examples of this process can be seen in Tables 1 and 2.  

Table 1. Before applying cross-over operator.

Table 2. After applying cross-over operator.

2.7 Mutation

The purpose of mutation is to generate modified individuals by introducing new features in

the population. By mutation, the alleles of the produced child have a chance to be modified,

which enables further exploration of the search space. The mutation operator takes a single

parameter pm, which specifies the probability of performing a possible mutation. Let C = c1,

c2,cm, be a chromosome represented by a binary chain where each of whose gene ci is

either 0 or 1. In our mutation operator, each gene ci is mutated through flipping this gene’s

allele from 0 to 1 or vice versa if the probability test is passed. In case of a large

neighbourhood (k > 0), the mutation is applied to a cluster of variables.  

2.8 Selection

The selection process applies on chromosomes in the current population. Based on the

fitness of each individual, the selection step chooses the next population based on the

roulette method which is stochastic and biased toward the best individuals. The method works

by first calculating the cumulative fitness of the whole population through the sum of the

fitness of all individuals. Then, the probability of selection for each individual is computed

as being 𝑃𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 = fi / ∑ 𝑓𝑖
𝑁
1 , where fi denotes the fitness of individual i.  

 2.9 Switch to a smaller Neighbourhood  

As soon as GA has reached the stopping criterion according to a neighbourhood Nj. It

moves to another neighbourhood and the assignment obtained on the neighbourhood Ni must

be projected on its parent neighbourhood Ni–1. The projection algorithm is simple; if a cluster

cj ∈Nm is given for example the value of false, then the grouped pair of clusters that it

represents, cj , ck ∈Nm–1 are also given the false value. Finally, GA is applied at the default

neighbourhood.

3 Experimental results

3.1 Test suite and parameter settings

VNS-GA is compared against GA using a set of random problems (MAX-2SAT, MAX-

3SAT). This benchmark is taken from the Ninth MAX- SAT 2014 evaluation

(http://maxsat.ia.udl.cat/benchmarks/) organized as an affiliated event of the 17th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2014). Each problem

instance was run 50 times with a cut–off parameter (max-time) set to 15 minutes. The

experiments were carried out on a DELL machine with 800 MHz CPU and 2 GB of memory.

The code was written in C++ and compiled with the GNU C compiler version 4.6. The

maximum size of neighbourhood and the stopping criterion of GA have been chosen

experimentally and are defined as follows:

kmax: The maximum size of the neighbourhood is computed such that the number of the

formed clusters is 10% of the size of the problem instance (i.e., a problem with 100 problems

will lead to kmax equals to 3).

GA is assumed to have reached stopping criterion and move to a smaller neighbourhood

if the fitness of the best chromosome remains without changed during five consecutive

generations.

3.2 Statistical analysis

Tables 3 and 4 compares VNS-GA against GA. The mean (x) and the standard deviation

(σ) of unsolved clauses for the two algorithms are shown. The range of solutions is also

calculated in order to detect the possibility of an overlap between solutions for any given

instance.

Statistical inferential was conducted using independent samples t-test which compares the

difference in means between the two groups. The non-parametric Mann-Whitney U-test gave

identical results. The non-parametric effect size measure Probability of Superiority (PS) [9]

was adopted to show the relative dominance of one algorithm over the other. The PS effect

size measure is also called �̂�12 [10] and is calculated using the rank sum which is a known

component in any non-parametric analysis such as the Mann-Whitney U-test [11].

Calculating PS is done according to formula (3) [9, 10, 11], where R1 denotes the rank

sum of algorithm VNS-GA, m is the number of observations in the first data sample, and n is

the number of observations in the second data sample.

PS = (R1/m − (m + 1)/2)/n . (3)

 Table 3 and 4 indicate that VNS-GA algorithm beats GA for all MAX2SAT in- stances with

less than 1300 clauses, except for one instance (s2v140c1300-2) where GA wins , although the

best solution (171 unsolved clauses) is the same for both algorithms. For the five remaining

instances, both algorithms reach the same performance.

Table 3. Statistical comparison of the solutions for 2SAT-instances given by VNS-GA and GA.

Table 3: Notes: ∆ = Mean difference, CI = Confidence Interval, p = p-value, PS = Probability of

Superiority (i.e. that VNS-GA will have less unsolved clauses than GA for each instance), ⋆ ⋆ ⋆ = p <

.001. ⋆ ⋆ = p < .01, ⋆ p < .05, c = not possible to calculate CI of PS due to no overlap between VNS-

GA and GA. The 95% CI for PS is calculated in Excel using a bootstrapping procedure (random

selection with replacement) performed 1000 times. Notes: x = Mean, σ = Standard Deviation, Min =

Minimum observed value, Max = Maximum observed value.

VNS-GA dominates GA on all MAX3SAT instances with 70 variables (s3v70c1000-1 to

s3v70c1000-10). GA is significantly better on one instance (s3v80c1000-2) with no statistical

difference between the remaining algorithms with 80 variables (s3v80c1000-1 to s3v80-1000-

10). When GA is significantly better, the difference with respect to best solutions is marginal

or non-existent. VNS-GA has a much lower variation of results across the test suite and we

take this to mean that the variable neighbourhood scheme stabilizes GA in some way.

Table 4: Statistical comparison of the solutions for 3SAT instances given by VNS-GA and GA.

Table 4. Notes: x = Mean, σ = Standard Deviation, Min = Minimum observed value, Max = Maximal

observed value, ∆ = Mean difference, CI = Confidence Interval, p = p-value, PS = Probability of

Superiority (i.e. that VNS-GA will have less unsolved clauses than the GA for each instance), ⋆ ⋆ ⋆ =

p < .001. ⋆ ⋆ = p < .01, ⋆ p < .05, c = not possible to calculate CI of PS due to no overlap between

VNS-GA and GA. The 95% CI for PS is calculated in Excel using a bootstrapping procedure (random

selection with replacement) performed 1000 times. Notes:

Table 5 compares VNS-GA with solvers used at the 2014 MAX-SAT competition. For

each solver, the number of unsatisfied clauses is given while the number between parenthesis

shows the running time in seconds. CCLS2akms and ISAC+2014-ms produce identical

solution. The difference in performance depends on the time invested to produce such

solutions. VNS-GA is found to be able to produce the same quality compared to these two

solvers in 18 cases out of 27. The comparison against CCLS2akms shows that VNS-GA

produces solutions at a lower cost in 8 cases. The time of VNS-GA ranges between 10% and

77% of the time of CCLS2akms. On the other hand, CCLS2akms happens to be faster than

VNS-GA in the remaining cases. CCLS2akms was found between 31% and 86% of the time

of VNS-GA. The comparison between VNS-GA and ISAC+2014-ms shows that VNS-GA is

faster in 12 cases. The time of VNS-GA varies between 19% and 89% of the time of

ISAC+2014-ms. The time of ISAC+2014-ms varies between 10% and 82% in the remaining

6 cases. Finally, VNS-GA gave solution of lower quality in 9 cases compared to these two

solvers. The difference never exceeds 1one unsatisfied clause.

4 Conclusions

In this paper , a hybrid approach combining GA and VNS is proposed. VNS exploits the

notion of neighbourhood change to escape local optima. The set of neighbourhoods proposed

in this paper is based on one type of neighbourhood with varying size. Making the search

begins from the largest neighbourhood and moving systematically towards the smallest

neighbourhood is a better strategy for conducting an efficient search.

The results reported in this paper shows that the variable neighbourhood search strategy can

prevent GA from premature convergence. The results provided by of VNS-GA are better

compared to that of GA. When compared to top ranked solvers, VNS-GA is capable of

producing identical results while requiring the least amount of time for several test cases. At

the present time, a better strategy for constructing the different neighbourhoods is under

implementation. The method is based on grouping variables by taking into account the

number of clauses they share in common rather than doing it randomly.

Table 5. Comparison of VNS-GA with CCLS2akms and ISAC+2014-ms

Table 5. Comparing VNS-GA with state-of-the-art incomplete solvers. Numbers outside brackets

indicate the number of unsolved clauses, while number inside brackets is the time in seconds.

References

[1] Cook, S. A: The complexity of theorem-proving procedures. Proceedings of the Third

ACM Symposium on Theory of Computing, 151–158, (1971).

[2] Selman, B., Kautz, H. A., Cohen, B.: Noise Strategies for Improving Local Search.

Proceedings of AAAI’94, pp. 337–343. MIT Press, (1994). 

[3] McAllester, D., Selman, B. Kautz, H.: Evidence for invariants in local search.

proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),

pp 321-326, (1997). 

[4] Hoos, H.: On the run-time behavior of stochastic local search algorithms for SAT. In

Proceedings of AAAI-99, pp. 661-666, (1999)  

[5] Li,C.M., Huang, W.Q.: Diversification and determinism in local search for

satisfiability. Proceedings of the Eighth International Conference on Theory and

Applications of Satisfiability Testing (SAT-05), 569, Lecture Notes in Computer Science,

158–172, (2005).  

[6] Jin-Kao, H., Lardeux, H., Saubion, F.: Evolutionary computing for the satisfiability

problem. In Applications of Evolutionary Computing, volume 2611 of LNCS, pp. 258-267,

University of Essex, (2003).  

[7] Hansen, P., Jaumard, B., Mladenovic, N., Parreira, A.D.: Variable neighbourhood

search for maximum weighted satisfiability problem. Technical Report G-2000-62, Les

Cahiers du GERAD, Group for Research in Decision Analysis, 2000.

[8] Frank, J.: A study of genetic algorithms to find approximate solutions to hard 3CNF

problem. In proceedings of Golden West international conference on artificial intelligence,

(1994)

[9] Grissom, R. J., Kim, J. J..: Effect sizes for research: Univariate and multivariate

applications. Routledge (2012).

[10] Vargha, A., Delaney, H.D.: A critique and improvement of the CL Common

Language Effect Size statistics of McGraw and Wong. Journal of Educational and

Behavioral Statistics, 25(2), 101-132, (2000).

[11] Arcuri, A., Briand, L.: A Hitchhiker’s Guide to Statistical Tests for Assessing

Randomized Algorithms in Software Engineering. Technical report, Simula Research

Laboratory, number 13/2011, (2011).  

