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Abstract. Metaheuristics which have gain popularity for solving different  optimization 

problems that arise in various fields aim at finding good solutions at a low cost.  In this 

paper, a hybrid approach  combining  genetic algorithm (GA)  with variable 

neighbourhood search (VNS) is proposed for solving the maximum   satisfiability 

problem (MAX-SAT). VNS works by moving from one neighbourhood to another in 

order to avoid  getting  trapped in local optima. Results comparing GA with and without 

VNS are presented. Finally, GA combined with VNS is  compared  to highly efficient 

solvers from the MAX-SAT 2014 competition. 
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1   Introduction 

The MAX-SAT problem which is  proved  to be NP-complete [1] is formulated as 

follows. Given a positive constant k, a propositional formula Φ =⋀ 𝐶𝑗
𝑚
𝑗=1  with M clauses and N 

Boolean variables. Each Boolean variable, xi, i ∈ {1, . . . , n},  can be assigned  one of the two 

values, TRUE or FALSE. Each clause Cj, in turn, is a disjunction of  Boolean variables and 

has the form as presented  in formula (1) where 𝐼𝑗 , 𝐼𝑗   ⊆ {1, .....n}, I ∩ 𝐼 ̅= ∅, and 𝑥 denotes 

the negation of x.  
 

𝐶𝑗 =  (⋁ 𝑥𝑙𝑙∈𝐼𝑗
)  ∨ (⋁ �̅�𝑙𝑙∈𝐼�̅�

) .    (1) 

 
 Let 𝜙(𝑥) be the following formula containing 4 variables and 3 clauses. The   goal  is to 

determine if there exists a truth assignment for 𝜙 that satisfies the maximum number k of 

clauses.:  

 

𝜙(𝑥) = (𝑥1 ⋁ ¬𝑥4) ∧ (¬𝑥1⋁𝑥3)  ∧ (¬𝑥1 ∨ 𝑥4 ∨ 𝑥2) .    (2) 

 

Several state-of-the-art local search algorithms are enhanced versions of WalkSAT 

(WSAT) [2] algorithm. Examples include WalkSAT/Tabu [3], Novelty+ and R-Novelty+ 



 

 

 

 

heuristics [4], G2WSAT [5]. Evolutionary algorithms are heuristic algorithms that have been 

applied to MAX-SAT and many other NP-complete problems. Unlike local search methods 

that work on a current single solution, evolutionary approaches evolve a set of solutions. 

GASAT [6] is considered to be the best known genetic algorithm for MAX-SAT. GASAT is a 

hybrid algorithm that combines a specific crossover and a taboo   search procedure. 

Experiments have shown that GASAT provides very competitive results compared with state-

of-art MAX-SAT algorithms.  

 

2   Combining GA with VNS (VNS-GA) 

Variable Neighbourhood Search (VNS) [7] is a  meta-heuristic for solving combinatorial 

and global optimization problems. Most metaheuristics are based on using  a single 

neighbourhood  during the whole search. VNS exploits   different neighbourhoods within a 

local search. VNS is based on the fact that a local optimum reached within one  

neighbourhood  is different  from the  local optimum of another neighbourhood , thus the 

search can systematically explore different search areas which are defined by different 

neighbourhood structures.  

Genetic Algorithms (GA) [8] are non-deterministic   methods for global  optimization and 

belong to the class  of evolutionary algorithms.   GA  work with a set of solutions in parallel. 

A gene is defined to be the smallest unit of genetic information. Every gene   is able to take  

various  values called allele.  The chromosomes are encoded using an  appropriate  

representation and each can be  regarded  of as a solution  in the search space . Each individual 

is assigned a value called  (fitness)  that permits  assessing its quality. The   chromosomes that 

form the initial   population  may  be randomly  constructed   or by using greedy techniques   

leading  to chromosomes  having high fitness.  GA proceeds afterwards by grouping 

chromosomes into pairs and enters them in a mating pool.  Each pair   is   drawn from the 

mating pool and combined using the cross-over operator leading to offspring. The new 

population goes through the mutation operator which   brings  diversity into the population. 

The  probability  of the mutation operator is generally chosen to be very low so that the results 

achieved during the cross-over phase are not completely disrupted. A  selection  strategy   

based on the fitness is usually used to choose the chromosomes that will be part of  the next 

generation. The procedure   described above  iterates  over many generations until  the 

population  converges to optimal or near-optimal solutions. The proposed VNS-GA is 

described in section 2.1 to 2.9. 

 

2.1   Neighbourhood selection  

 

Let L denotes the set of variables of the MAX-SAT problem to be solved. The first phase 

of the algorithm consists in constructing a set of neighbourhoods satisfying the following 

property: 𝑁1(𝑥) ⊂ 𝑁2(𝑥) ⊂. . . . 𝑁𝑘𝑚𝑎𝑥
(𝑥). The initial neighbourhood (k = 1) is based on 

flipping  the value  of  a single variable.  The state   of  a variable is changed from (  True → 

False) or ( False → True). The first neighbourhood N2 is computed   by grouping variables 

into clusters using a  non-deterministic  algorithm. The variables are  traversed  in a random 

order. The  procedure selects for each  unmatched  variable vi  the first  unmatched variable vj 

and a cluster vk  made  of the two variables  is formed.  The neighbourhood   N2  allow  flips  

based on  changing  clusters each having 2 variables. The new formed clusters are used to 



 

 

 

 

construct   a  larger neighbourhood N3 and the procedure  iterates  until the desired number of 

neighbourhood (kmax)  allowed by the user is reached. 

 

2.2   Initial population 

 

The chromosomes are  represented as strings of bits. The number of the variables 

determine the  length of the chromosomes . The values (True and False ) are represented by 1 

and 0 respectively. In this representation, a chromosome X corresponds to a truth assignment 

and the space of configuration  is the set S = {0, 1}n. A random initial population is computed   

from   neighbourhood (𝑁𝑘𝑚𝑎𝑥
). The value assigned to each cluster of a given individual is 

broadcast to all the variables belonging to that clusters.  

 

2.3   Fitness function 
 

GA exploits the fitness in  order  to guide  the search.  It is  a value that  quantify  the  

quality  of an individual (solution) so that different solutions  can be compared. The fitness of 

a chromosome (individual) in the population is chosen to be equal to the number of clauses 

that are un- satisfied.    

 

2.4   What neighbourhood to start from 

 

The core of  VNS is the selection of the different neighbourhoods according to some 

strategy for the effectiveness of the search process. The strategy adopted in this work is to let 

VNS-GA start the search process from the largest neighbourhood 𝑁𝑘𝑚𝑎𝑥  and continues to 

move towards smaller neighbourhoods. The chosen order  enables  GA to perform the search 

in an efficient manner.  The largest neighbourhood Nmax  makes  GA to  treat  a cluster as a 

single  object making  the search to become  directed  and  limited  only to those  solutions  in 

which the variables grouped  within a cluster are given  the same value. The change of 

neighbourhood   leads   the search to be  is intensified close  to  solutions from previous 

neighbourhoods in order to attain solutions of better quality.  

 

2.5   Matching process 

 

 Pairs of individuals are combined in order to  create  offspring using the cross-over 

operator.  Combining pairs of individuals is regarded as a matching process.  GA uses the 

same  random  procedure described in section 2.1. The chromosomes  are  traversed  in 

random order. An unmatched  chromosome  ik is matched randomly with an unmatched 

chromosome il.  

 

2.6   Cross-over operator 

 

The  crossover operator  is regarded as the most important in  GA. It  allows  GA to 

perform the search hoping  to reach regions of the search space with higher  fitness value. The 

two-point crossover operator is applied to each matched pair of individuals. It works by 

selecting two randomly points within a chromosome and then interchanges the two parent 

chromosomes between these points to generate two new offspring. Cross-over operator  can be 

defined as a process in which a set of solutions referred as parents  undergoes a transformation 

to create a new set of solutions configurations referred to as offspring. The creation of these 



 

 

 

 

descendants involves the location and combinations of patterns  extracted from the parents. 

Examples of this process can be seen in Tables 1 and 2.    

 
Table 1. Before applying  cross-over operator. 

 
 

Table 2. After  applying cross-over operator. 

 
 

2.7   Mutation 

 

The purpose of mutation is to generate modified individuals by introducing new features in 

the population. By mutation, the alleles of the produced child have a chance to be modified, 

which enables further exploration of the search space. The mutation operator takes a single 

parameter pm, which specifies the probability of performing a possible mutation. Let C = c1, 

c2, ......cm, be a chromosome represented by a binary chain where each of whose gene ci is 

either 0 or 1. In our mutation operator, each gene ci is mutated through flipping this gene’s 

allele from 0 to 1 or vice versa if the probability test is passed. In case of a large 

neighbourhood (k > 0), the mutation is applied to a cluster of variables.    

 

2.8   Selection 
 

The selection process  applies  on chromosomes  in the current population. Based on the 

fitness of each individual, the selection  step  chooses  the next population based on  the 

roulette method which is  stochastic and biased toward the best individuals. The method works 

by first    calculating  the cumulative fitness of the whole population through the sum of the 

fitness of all individuals.  Then, the probability of selection for each  individual  is computed  

as being 𝑃𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖  = fi / ∑ 𝑓𝑖
𝑁
1 , where fi  denotes  the fitness of individual i.    

 

 

 

 2.9   Switch to a smaller Neighbourhood    

  

As soon as  GA has reached the stopping  criterion according  to a neighbourhood Nj. It 

moves  to another neighbourhood and the assignment  obtained  on the neighbourhood Ni must 

be projected on its parent neighbourhood Ni–1. The projection algorithm is simple; if a cluster 

cj ∈Nm is  given  for example the value of  false,  then the grouped  pair of clusters that it 

represents, cj , ck ∈Nm–1 are also given  the false  value. Finally, GA is applied at the default 

neighbourhood.  

 
 



 

 

 

 

3   Experimental results 

 
3.1   Test suite and parameter settings 

 

VNS-GA is  compared  against GA using a set of random problems (MAX-2SAT, MAX-

3SAT). This benchmark  is taken from the Ninth MAX- SAT 2014 evaluation 

(http://maxsat.ia.udl.cat/benchmarks/) organized as an affiliated event of the 17th International 

Conference on Theory and Applications of Satisfiability Testing (SAT 2014). Each problem 

instance was run 50 times with a cut–off parameter (max-time) set to 15 minutes. The 

experiments   were carried out on a DELL machine with 800 MHz CPU and 2 GB of memory. 

The code was written in C++ and compiled with the GNU C compiler version 4.6. The 

maximum size of neighbourhood and the stopping criterion of GA   have been chosen  

experimentally and are  defined as follows:  

kmax: The  maximum size  of the neighbourhood is  computed  such that the number of the 

formed clusters is 10% of the size of the problem instance (i.e., a problem with 100 problems 

will lead to kmax equals to 3).  

GA is assumed to have reached  stopping criterion  and move  to a smaller neighbourhood 

if the fitness of the best  chromosome remains  without changed during five consecutive 

generations.  

 

3.2   Statistical analysis 

 

Tables 3 and 4 compares  VNS-GA against GA. The mean (x) and the standard deviation 

(σ) of unsolved clauses for the two algorithms are shown. The range of solutions is also 

calculated   in order to detect the possibility of an  overlap between solutions  for any given 

instance.  

Statistical inferential  was  conducted using independent samples t-test which compares the 

difference in means between the two groups. The non-parametric Mann-Whitney U-test gave 

identical results. The non-parametric effect size measure Probability of Superiority (PS) [9] 

was  adopted  to  show  the relative dominance of one algorithm over the other. The PS effect 

size measure is also called �̂�12 [10] and is calculated using the rank sum which is a known  

component in any non-parametric analysis such as the Mann-Whitney U-test [11]. 

Calculating PS is done according to formula (3) [9, 10, 11], where R1 denotes  the rank 

sum of algorithm VNS-GA, m is the number of observations in the first data sample, and n is 

the number of observations in the second data sample. 

 

PS = (R1/m − (m + 1)/2)/n .    (3)  

 Table 3 and 4 indicate that   VNS-GA algorithm beats GA for all MAX2SAT in- stances with 

less than 1300 clauses, except for one instance (s2v140c1300-2) where GA wins , although the 

best solution (171 unsolved clauses) is the same for both algorithms. For the five remaining 

instances, both  algorithms reach the same performance. 

Table 3. Statistical comparison of the solutions for 2SAT-instances given by VNS-GA and GA. 



 

 

 

 

Table 3: Notes: ∆ = Mean difference, CI = Confidence Interval, p = p-value, PS = Probability of 

Superiority (i.e. that VNS-GA will have less unsolved clauses than GA for each instance), ⋆  ⋆  ⋆  = p < 

.001. ⋆ ⋆  = p < .01, ⋆ p < .05, c = not possible to calculate CI of PS due to no overlap between VNS-

GA and GA. The 95% CI for PS is calculated in Excel using a bootstrapping procedure (random 

selection with replacement) performed 1000 times. Notes: x = Mean, σ = Standard Deviation, Min = 

Minimum observed value, Max = Maximum observed value.  

VNS-GA dominates GA on all MAX3SAT instances with 70 variables (s3v70c1000-1 to 

s3v70c1000-10). GA is significantly better on one instance (s3v80c1000-2) with no statistical 

difference between the remaining algorithms with 80 variables (s3v80c1000-1 to s3v80-1000-

10). When GA is significantly better, the difference with respect to best solutions is marginal 

or non-existent. VNS-GA has a much lower variation of results across the test suite and we 

take this to mean that the variable neighbourhood scheme stabilizes GA in some way.  

 

 

 

Table 4: Statistical comparison of the solutions for 3SAT instances given by VNS-GA and GA. 



 

 

 

 

Table 4. Notes: x = Mean, σ = Standard Deviation, Min = Minimum observed value, Max = Maximal 

observed value, ∆ = Mean difference, CI = Confidence Interval, p = p-value, PS = Probability of 

Superiority (i.e. that VNS-GA will have less unsolved clauses than the GA for each instance), ⋆  ⋆  ⋆  = 

p < .001. ⋆ ⋆  = p < .01, ⋆ p < .05, c = not possible to calculate CI of PS due to no overlap between 

VNS-GA and GA. The 95% CI for PS is calculated in Excel using a bootstrapping procedure (random 

selection with replacement) performed 1000 times. Notes:  

Table 5 compares VNS-GA with solvers used at the 2014 MAX-SAT competition. For 

each solver,  the number of unsatisfied clauses is given while the number between parenthesis 

shows the running time  in seconds. CCLS2akms and ISAC+2014-ms produce identical   

solution.  The difference in  performance  depends on  the time invested  to produce such 

solutions. VNS-GA is found to be able to  produce  the same  quality compared to these two 

solvers in 18 cases out of 27.  The  comparison  against  CCLS2akms shows that VNS-GA 

produces solutions at a lower cost  in 8 cases. The time of VNS-GA ranges between   10% and 

77% of the time of CCLS2akms. On the other hand, CCLS2akms happens to be faster than 

VNS-GA in the remaining cases. CCLS2akms was found  between 31% and 86% of the time 

of VNS-GA. The comparison between VNS-GA and ISAC+2014-ms shows that VNS-GA is  

faster in 12 cases. The time of VNS-GA  varies  between 19% and 89% of the time of 

ISAC+2014-ms. The time of ISAC+2014-ms varies  between 10% and 82% in the remaining  

6 cases. Finally, VNS-GA gave solution of lower quality in 9 cases   compared to these two 

solvers. The  difference  never exceeds 1one unsatisfied clause. 

 

4   Conclusions  

In this paper , a hybrid approach combining GA and VNS is proposed. VNS   exploits the 

notion of neighbourhood change to escape local optima. The set of neighbourhoods proposed 

in this paper is based on one type of neighbourhood with varying size.  Making   the search 



 

 

 

 

begins  from the largest neighbourhood and moving systematically towards the smallest 

neighbourhood is a better strategy for conducting an efficient search. 

The results  reported in this paper shows  that the variable neighbourhood search strategy can 

prevent GA from premature convergence.  The   results  provided by  of VNS-GA are  better 

compared to that of GA.  When compared to top ranked solvers, VNS-GA is capable of 

producing  identical  results  while requiring the least amount of time for several test cases. At 

the present time, a better strategy for constructing the different neighbourhoods is under 

implementation. The method is   based on grouping  variables by  taking into account  the 

number of clauses they  share  in common rather than doing it randomly. 

 

Table 5. Comparison of VNS-GA with CCLS2akms and ISAC+2014-ms 

 
Table 5. Comparing VNS-GA with state-of-the-art incomplete solvers. Numbers outside brackets 

indicate the number of unsolved clauses, while number inside brackets is the time in seconds.  
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