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Abstract. Interference reduction one of the major problem in the wireless communication 

systems. Minimum Variance Distortionless Response (MVDR) Beamformer is the process of 

extracting the user-of-interest (UOI) signal from interferer signals and external noise. In the 

present work, Gravitational Search Algorithm (GSA) is a new modern metaheuristic optimization 

technique used for optimizing the MVDR null-forming level by controlling the excitation weight 

coefficients in a linear antenna array radiation pattern synthesis. The best set of complex 

excitation coefficients solution in multidimensional problems evaluated based on two figure of 

merit, signal-to-interference-plus-noise ratio (SINR) and beampattern accuracy for two scan 

angles. The results reported here have been compared with the results of conventional MVDR 

technique. MVDRGSA successfully used to calculate the excitation weight coefficients with the 

desired patterns for both accurate beam shaping and introduce deep pattern nulling. It found that 

the SINR and output beampattern were in good agreement with MVDRGSA. 

 Keywords: Beamforming; Linear Antenna Array; Minimum Variance Distortionless 

Response, SINR, Smart Antenna. 

1   Introduction 

Beamforming (BF) algorithms have gained wide attention by researcher’s community due to the 

wider range of application. MVDR or Capon beamformer [1] is one of the optimum statistical 

beamformers which assures a distortionless response for a predefined steering direction [2-4]. The basic 

idea of the MVDR technique is to estimate the excitation coefficients in an adaptive manner by 

minimizing the variance of the residual interference and noise while enforcing a set of linear constraints 

to ensure that the real user signal is not distorted [5]. MVDR weight vector solution depends on the 

array response vector and the estimation of the covariance matrix of user-of-interest (UOI) signals and 

user-not-of-interest (UNOI) sources. The null-forming for MVDR has poor SINR output due to low 

null-forming level towards the UNOI signals when multiple access interference is existing [6-8], the 

finite size of data snapshots [9, 10] or the array response vector uncertainty [11].  



There are many ways to make the MVDR beamformer robust against this error such as diagonal 

loading [12] or beamspace processing [13]. This empirical framewo-rk does not always lead to a 

solution that is easily identifiable. Therefore, optimizatio-n methods can be applied to provide a robust 

solution for the SASs. Some researchers have presented numerical techniques involving nature-inspired 

optimization to impro-ve the antenna beampattern, beamwidth, sidelobe control, phase shifter, or 

complex weight vector based conventional beamforming techniques [6, 8, 14-16]. A study in [8] 

combines the Linear Constrain Minimum Variance (LCMV) beamformer techniq-ue with particle 

swarm optimization (PSO), dynamic mutated-artificial immune system (DM-AIS), and gravitational 

search algorithm (GSA) to improve the complex excitation coefficients of LCMV beamforming 

technique. The most effective solution founded by GSA algorithm among other for all simulation 

results. Similarly, [17] proposed a phase-only pattern optimization by using GSA based on concentric 

ring antenna array of reconfigurable dual-beam. Another study is done to combine GSA with direction 

of arrival (DOA) method based antenna array system for enhancing the accuracy of DOA estimation of 

the incident angles [18]. Chatterjee and co-authors applied GSA and modified PSO to reduce the 

sidelobe effects in the antenna beampattern. Among these studies, GSA gives a superior performance or 

at least comparable improvement than others. In [6] the authors combined two intelligent swarm 

algorithms to improve the MVDR weight vector. Unfortunately, it does not obviously state the noise 

power of the received signals, because the noise power has a significant impact on the MVDR null-

forming [19, 20]. On the other hand, the effects of population size and a number of maximum iteration 

also not explicitly mentioned and investigated. Thus, the solution of this study is not the most accurate 

one.  

In this study, the null-forming of the MVDR technique is enhanced using GSA. GSA is one of the 

modern heuristic optimization algorithm applied to the smart anten-na system. The performance 

evaluation for the comparison purpose is based on two figure of merit, SINR and beampattern accuracy 

for two scan angles which are still unknown from the expressions. The null width in the azimuth and 

elevation scanning angle also have been assessed. The weights excitation coefficients calculated to 

place deep and sharp nulls toward the UNOI direction accurately, and unity gain response toward the 

direction of UOI. Simulation results confirm the accuracy of the numerical results. Also, a GSA has an 

excellent agreement to solve antenna array problems by controlling the complex weight vector solution. 

The outline of this work is organized as follows: section 2, proposed approach along with the 

conventional MVDR system model are described. Section 3, highlight the significant outcomes from 

MVDR based GSA (MVDRGSA) combinations. Lastly, the conclusion is given in section 4. 

2   MVDR Beamformer Design Model 

The basic theory of the BF and the signal structure is presented in this section. The signal model 

considers L sources incident on a uniform linear array (ULA) of M isotropic elements, and the spacing 

between neighboring antennas is a half of wavelength. Assume that L signal is coming from angles of 

θl and ϕl is incident upon an antenna array of M elements. Here, the impinging angles of θ and ϕ are the 



azimuthal and elevation angles, respectively. The received signal, rm(k) ∈ ℂM×K, at the mth antenna in 
the kth snapshot incident upon the antenna array can be written as: 

1

i1 1 0
( ) ( ) ( , ) ( ) ( , ) ( )

S I M

m s s i ms i m
r k x k a x k a n k   



  
           (1) 

Where xs(k), xi(k), and nm(k) denote the sth UOI signals, ith interference signals and additive 

background White Gaussian noise at the mth elements, respectively. Among these L incident signals, 

it is assumed that xs(k) is the desired UOI and xi(k)+nm(k) are the UNOI signals. The array response 

vector, ȃ(θl,ϕl) ∈ ℂM×l of a ULA with M-elements where (θl,ϕl) is the DOAs of the lth signal 

component calculated as [4]: 
sin sin ( 1) sin sin *( , ) [1, ,..., ]j j Ma e e           (2) 

where β=2π/λ is the free-space wavenumber, δ is the separation between two elements and λ is the 

free-space wavelength. The θ ∈ [-π/2, π/2], ϕ ∈ [0, π/2] and (.)* denote the complex conjugate. The 

ȃ(θl,ϕl) is a function of the incident angles, the location of the antenna, and the array geometry. It 

plays an important role in smart antenna systems, containing information of the impinging angles. 

The output of the beamformer at the kth snapshots, y(k) after signal processing is defined as: 
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where h is a complex multiplicative weight vector given as [h0, h1, … , hm, hM-1]T multiplied by the 

received signal at the mth antenna element and (.)†, (.)T denotes respectively the complex conjugate 

transpose and Hermitian transpose of a vector or matrix. The array covariance matrix Γr ∈ ℂM×M is 

the second-order statistical property of the impinging signals. In real applications, Γr is estimated 

using the received array snapshots. The estimated array covariance matrix is defined as [3]: 
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Where K is the number of available snapshots. Γs and Γi+n denote the array correlation matrix 

corresponding to the desired UOI and the undesired UNOI, respectively. The 

terms σs
2, σi

2 and σn
2 denotes the real user, interference, and noise powers. Λm ∈ ℝM×M stands for the 

identity matrix. It is known from the literature that the optimization criterion for MVDR [1] forms 
weights in a way that will attempt to maintain unity 

gain of the beamformer in the beam angle direction while steering nulls in the direction of 

interference [21]. The weights are calculated by solving the following minimization equations with 

unity gain restraint: 
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The Lagrange multipliers are used to solve MVDR constrain, resulted in weight vector 

calculated as follows [22]: 
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Antenna radiation patterns are typically expressed in terms of radiated power. The output power 

is defined as [4]: 
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Equation (7) can be rewritten as: 
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Where the Ps denote the power of the desired signal and Pi+n refer to the power output in the 

direction of UNOI. Finally, the SINR is defined as the ratio of the average power of the desired 

signal divided by the average power of the undesired signal computed as [23]: 
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2.1 Gravitational search algorithm (GSA) 

Metaheuristic approaches have drawn considerable attention from many researchers 

in the past and still of great interest. GSA is one of the most popular metaheuristics methods, 

proposed by Rashedi and his colleagues [24] based on heuristic optimization inspired by Newton's 

laws of motion and gravity. The present section introduces a po-

pulation-based search algorithm based on the law of gravity and mass interaction. All the force of 

gravity attracted objects with each other, and that causes a global movem-

ent towards the heavier mass object. Therefore, they use the direct form of communic-ation objects 

through gravitational forces. According to the best solution with heavier masses, which move more 

slowly than the lighter that guarantees the step of using this 

algorithm to find a better solution. Each agent in GSA has four specifications: position, inertial 

mass, active gravitational mass and passive gravitational mass. The position of the mass is suitable 

for solving the problem, and it is gravitational, and 

inertial masses decides to use an appropriate function. This mass will show an optimal solution in 

the search space. To optimize such a problem, it is necessary to determine the search space. These 

solutions are defined in a particular search space to generate 

the ith initial position of the N number of the individual agent randomly in the search 

space. Every possible solution is a mass for the GSA. The system is designed in this 

section will consist of several masses. The position of the masses as below: 
1( ,..., ,..., ); 1,2,...,n
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Where xi
d denote the position of the individual masses at the ith agent in the dth dimension of N-

space dimension. At each generation, the best and worst of the calculated fitness value is selected 

for all agents and the improvements are made to 

maximize the problem defined as: 
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Where best(t) and worst(t) is expressing the best and worst solutions in the iteration t, fitj(t) shows 

the fitness value and the suitability of individual j at moment t. Each mass is calculated with the 

current fitness value of the fitness function. The gravitational constant G, will be reduced 

exponentially in every generation, and is initially set to 



control the search accuracy. In other words, G is the function of the initial value (G0) and t, 

computed as follows:  
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Where, G0 is the initial value of the gravitational constant, α a fixed value that the user determines, 

and tmax is the total number of iterations generations. The active mass in a gravitational mass of a 

search space based on passive gravitational mass and inertial mass by taking all masses equal to 

each other, the updated weight is calculated when evaluating the fitness through the following 

equation: 
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Where Mai, Mpi, Mii, Mi denotes respectively, the active gravitational mass of bodies, passive 

gravitational mass, inertia mass and ith individual inertial mass. In Equation above normalization 

process is carried out, the heavy mass as determined by the mass update is the most effective. It 

moves slower than others that are more effective mass in the search space and attracts others better 

[17]. Then, by the laws of motion, the acceleration, ai
d(t), of the individual i at tth generation in dth 

dimension can be computed as: 
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Where Fi
d(t) is the total force acting on a mass i is calculated after calculating the 

force between two masses: 
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Where randj it is a random number in the range [0, 1]d, Nbest is the initial starting 

value and function decreasing with time in a certain way that includes the best fitness 

value to prevent discovery initially remain in local optimum and Fij
d(t) is the forces 

between two bodies that acting on the mass i from  j is defined as: 
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Where Maj associated with the j individual active gravitational mass, Mpi associated with the i 

individuals passive gravitational mass, G(t) calculated at the same time, t, ε 

is a numerically small constant decided by a user. xj
d(t), xj

d(t) refer to i and j masses 

and Rij(t), the Euclidean distance between the two point masses in the search space (i and j 

members). All masses are accelerated in the search space interact with each 

other. Further, a next speed of the agent is considered part of the current speed state 

attached to its speed. Therefore, the new velocity and position at next iteration along 

the dth dimension can be upgraded as follows: 
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Where vi
d(t) and xi

d(t) represents the velocity and the position of ith agents in the dth 

dimension at the tth iteration, respectively. randi denote random values in the interval of [0, 1]d. 

By gravitational and inertial mass conformity assessment calculated in a 

simple manner. A heavier weight means more effective than an individual. It is better 

to have a greater attraction of the individual and is not meant slower moving it. The 



inertial mass and gravitational mass assuming equality values conformity of mass mapping are 

calculated. The details on how to combine conventional MVDR with a numerical technique 

involving nature-inspired optimization is described in next section for using the weighted 

objective approach. 

2.2 Problem description and formulation 

The null-forming is an important process in the modern communication systems for maximizing 

SINR. The most common MVDR problem is that the signal model must be entirely accurate in 

order not to form unity gain in the UOI direction nulls in the direction of the UNOI. When the size 

of data snapshots is small will result in a poorly represented beampattern and degrades the MVDR 

performance. However, null-forming of the MVDR affected by these errors. Therefore, the task of 

combine the conventional MVDR (MVDRcon) with nature-inspired metaheuristic method is to find 

appropriate complex excitation coefficient that minimizing Pi+n by deep null-forming and hence 

high SINR can be obtained. On the other hand, desired user power is satisfying the MVDR 

constrain. Firstly, a population of agents is initialized with random position except for the first set 

of agents replaced by the weight vector obtained from MVDRcon in the search space dimension 

and these position vector at specified dimension is converted to a candidate solution vector to this 

problem as shown in Equation 10. Afterward, the fitness function evaluated in each iteration to 

find SINR|max by minimizing power given to reach the UNOIs directions. 
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 ∈ ℂM×1 is analogues to the xN
d, where N is the best solution for the 

total population size in each iteration with the number of variable in the search space dimension 

equal to the number of elements (M=d). In the next iteration, each agent calculates a new velocity 

and a new position according to the Eqs. 19 and 20. In order to have a tradeoff between the 

antenna array pattern synthesis and the optimization method, the fitness function, ff can be 

calculated using the following equation: 
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d
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Where Ps denote the power of the desired user and Pi+n refer to the interference and noise power. 

GSA is used to obtain the radiation pattern with SINR|max. Termination criteria fixed by updating 

the algorithm until iteration reaches their maximum limit. 

Then return the best-so-far fitness value at the final iteration as the global fitness of 

the problem and the positions of the corresponding agent at specified dimensions as the global 

solution of that problem. 



3   Simulation and Discussion Results 

This section presents a three simulation experiments performed to demonstrate the performance 

of the MVDRcon and the MVDRGSA. A set of parameters that control GSA behavior when 

optimizing a given problem is shown in Table 1 as well as the MVDR beamformer simulation 

parameters setting, where the proposed algorithm is executed 20 times, and the best results are 

recorded. It is worth noting that the GSA parameters are taken from [24] as standard ones. The 

total received signal power assumed to be SNR=INR of 10 dB. The weight vector of each 

element depended on the incident angle and array covariance matrix estimation. The weight 

vector for MVDRcon is calculated using Eq. 6. In order to obtain the weights needed, Eq. 21 will 

be utilized by the intelligent swarm optimization process to achieving SINR|max. 

Table 1.  Key intrinsic parameters for MVDR and GSA 

Key system parameters Values Key system parameters Values 

Array antenna geometry ULA Population size (N) 10 

Antenna type Isotropic Search space dimension (d) 4,8 

Carrier frequency (fc) 2.6 GHz [12] Termination condition (tmax) 500 

Beam scanning [θ°,ϕ°] [±90, 0:90] Initial Grav. constant (G0) 100 [24] 

Number of elements (M) 4, 8 Gradient constant (α) 20 [24] 

Element spacing (δ) λ/2 Zero offset constant (ε) 2.2e-16 [24] 

Snapshots (K) 250 Random interval rand[0, 1]d 

SNR [dB] = INR [dB] 10 ff limit Max 

UOI direction [θs°, ϕs°] 0,0 Null-forming limit Min 

UNOI direction [θi°,ϕi°] ±15,0– ±30,0 

The first experiment consists in simulating a 4-element linear antenna array with one desired 

transmitter and two interferers. Both the MVDRcon and the MVDRGSA al-gorithms will obtain an 

optimum weight vector that configures the array in such a way that the resulting mainlobe points 

towards the desired signal while the array patt-ern presents a null in the direction of the 

interferers. The aim of the experiment is to com-pare the results obtained by the algorithms 

concerning average null-forming that SINR|max can be achieved. Uniform linear array with 

element inter-spacing of 0.5λ is considered and 500 iterations are performed. The UOI has an 

AOA at θs=0° and two UNOIs at ±30° while the elevation angles are fixed as ϕs=ϕi=0°. Fig. 1(a) 

shows the convergence rate of the MVDRGSA when optimizing a 4-element using SINR as ff. The 

graph indicates that the best-so-far and mean SINR|max of MVDRGSA method is obtained 161.4 

dB, 149.2 dB compared to 41.3 dB for MVDRGSA and MVDRcon, resp-ectively. It is clearly seen 

that MVDRGSA provide significant ff improvement with keep changing, and this means obvious 

local minima. Fig. 1(b) shows the normalized beampattern for both techniques for four isotropic 

elements. For this problem, d=4 which is the dimension of the problem and the result consists of 

an excitation weight coefficient of ℂ4×l, each one corresponding to one element. It can be seen 

that the MVDRGSA algorithm obtains the lowest null levels compared with the MVDRcon tech-

nique, the average null observed is -40.5 dB and -161.0 dB for MVDRcon and MVDRGSA, 

respectively giving a ≈ 297% null improvements over MVDRcon. These results show that 

MVDRGSA algorithm is capable of obtaining the desired results inde-



pendently within a small number of array elements and places a perfect null at each interference 

source direction. Figs 1(c), (d), (f) and (g) shows the 3D beampattern for azimuthal, θ° and 

elevation, ϕ° scan angles plots of the MVDRcon and MVDRGSA, respectively. The power is 

measured in dB and the color bar is used for a sense of the relative scale of the power. It can be 

easily seen by comparing these figures, the null width in the θ° and ϕ° obtained by MVDRGSA 

narrower than MVDRcon in addition to sharp null-forming. It is observed that the MVDRGSA give 

very deepest null-forming with a null width of almost 3° compared to 10° by MVDRcon, 

respectively. The MVDRcon mainbeam accuracy is skewed by 2° from the target direction while 

MVDRGSA provides accurately mainbeam. The corresponding best final solution (complex 

excitation weight) obtained from MVDRcon and MVDRGSA are shown in Fig 1(e)-(h) that is 

represents the amplitude and phase (A∀Φ) of each antenna element. 

(a)   (b) 

      (c)  (d)  (e) 

 (f)  (g)  (h) 

Fig. 1. Comparison of SINR|max MVDRcon vs. MVDRGSA; UOI at 0°, UNOIs at ±15°, M=4, 

tmax=500, N=10; (a) Best and mean SINR. (b) Normalized beampattern. (c)-(g) 3D beampattern 

in term of azimuth and elevation scan angles. (e)-(h) complex weights vector.   



The second experiment is similar to the first experiment and the aim is to test both 

algorithms to a more difficult environment, namely having four undesired signals instead of two 

with search dimension increased to 8. Given the difficulty of obtaining a suitable array pattern, 

the second experiment is performed for an 8-element linear antenna array is defined. The desired 

user angle at 0° and a number of four undesired directions are set at ±15° and ±30°, respectively. 

Fig 2(a) show the convergence of the SINR|max of the MVDRGSA. It can be seen that the best-so-

far and mean values are obtained of 500th iterations based 10-population size around 147.6 dB 

and 146.5 dB, respectively comparing to the SINR|max obtained by MVDRcon is 50.3 dB. Fig 2(b) 

shows an illustration of the resulting radiation pattern. It is clear that MVDRcon managed to get 

nulls at the UNOIs direction, but the proposed MVDRGSA produces a sophisticated solution that 

is placing deep null-forming with average null found to be -45.6 dB and -147.4 dB, respectively 

and the percentage of null-forming improvement ≈ 223%. Also, it can clearly be seen that the 

mainlobe of the radiation patterns are directed toward the desired angles of UOI (θs=0°, ϕs=0°) 

in both methods. Moreover, the width of the mainlobe decreases as the number of array 

elements is increased; in other words, it becomes narrower and high directivity. Figs 2(c), (d), 

(f) and (g) are graphs that show the behavior of MVDRcon and MVDRGSA methods of the null-

width and sharpness in the θ° and ϕ°. It can be seen that the MVDRGSA null-width position in 

the ϕ° of ≈ 3° compared to ≤10° by MVDRcon. In comparison, it is noted that the mainbeam 

width of the 4-element array is the widest while the 8-element array is the narrowest. Therefore, 

the width of the mainlobe decreases as the number of array elements is increased; in other 

words, it becomes narrower and high directivity. The required complex excitation of each 

element that resulting radiation pattern of SINR|max is shown in Figs 2(e)-(h). 

(a)    (b) 

  (c)  (d)  (e) 



 (f)  (g)  (h) 

Fig. 2. Comparison of SINR|max results MVDRcon vs. MVDRGSA; UOI at 0°, UNOIs at ±15° 

and ±30°, M=8, tmax=500, N=10; (a) Best and mean SINR. (b) Normalized beampattern. (c)-(g) 

3D beampattern in term of azimuth and elevation scan angles. (e)-(h) complex weights vector 

(A∀Φ).   

Lastly, a third experiment is run to investigate the possibility of having a range of population 

size and iterations number. Once again, the MVDRcon and the MVDRGSA algorithms are tested 

with the same simulation setting used in the previous scenario. This scenario is useful to predict 

the overall performance of the MVDRGSA, as often the computational effort happens when 

evaluating the ff. Thus, reducing the number of evaluations, while obtaining an acceptable result 

is important to solve a particular antenna array problem. Fig 3 show a closer look at the 

MVDRGSA for optimizing SINR at N=10, 25 and 50 with each process three different simulation 

runs using: 100th, 250th and 500th iterations are defined. According to the results shown in Fig 3, 

the increases in the number of iterations has led to increases in the value of SINR owing to the 

increasing probability of finding better solutions within the search space. It can be observed that 

for a small number of searching iterations limits the quest for the best solution, for instance at 

N=10, tmax=100th, obtained mean SINR to be 35.5 dB (29% decrease) over 20 simulated runs. On 

the other hand, at N=25 with tmax=100th, found mean SINR to be 147.4 dB give ≈193% 

improvement compared to MVDRcon. Conversely, it can also observe that for a number of agents 

(N=25 and 50) with a large number iterations tmax=500th is a slight change in the resultant SINR. 

Moreover, this improvement is because increasing N can point to increase the likelihood to find 

the complex excitation coefficient perfectly. Nevertheless, the reduction of N and tmax will lead 

to a decreased power consumption and the computational time. 

Fig. 3. Performance comparison of average SINR for MVDRGSA 



4   Conclusion 

Maximizing the SINR is an evaluation criterion that applied to improving the overall desired 

target signal and simultaneously minimizing the effects of co-channel and mu-ltiple access 
interference sources. The aim is to use the SINR in the fitness function of the GSA to find a set 

of array weights. This work has been to investigate the combina-tion of GSA metaheuristic 

optimization with MVDR technique applied for mitigating MAI sources in adaptive 

beamforming application. This investigation is carried out by analyzing and comparing the 

performance based on two figure of merit, SINR and beampattern accuracy for two scan angles. 

The results showed a better progress in terms of the number of iterations as well as consistency 

in the values of fitness functi-ons. It is also found that the GSA algorithm achieved deep and 

sharp null-forming levels compared to conventional MVDR and forming the beampattern 

accurately. Fu-rther analysis showed that the null width in the elevation angle ≤3° using the 

proposed MVDRGSA method. From the findings, it can be concluded that the metaheuristic 

optimization has enabled the GSA algorithm to achieve better performance in terms of 

convergence time and accuracy which can be very helpful in real-time systems. It is 

recommended that further research should be undertaken to reduce the sidelobe level or the 

mainlobe beamwidth by using multiobjective fitness function. 
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