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Abstract. In this paper, a metamaterial-based ultra wideband stop-band filter is presented. 

Initially, a pi-shaped metamaterial was designed. The metamaterial shows wide band negative 

refractive index and near zero refractive index property. The metamaterial was then utilized in 

designing a filter that performs stop-band operation over an ultra wide band region. The smaller 

size ultra wideband application has persuaded the design a potential one. 
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1   Introduction 

Artificially constructed metamateraial have become a promising field for the researcher. Metamaterial is 
playing a vital role in almost all the electromagnetic field due to its exceptional electromagnetic properties. 
Materials those are found in nature rarely show negative permittivity or negative permeability but not 
simultaneously. Moreover, natural material with refractive index of a negative value is not available.  
Natural material having simultaneous negative permittivity and permeability is unavailable well. However, 
artificially developed a metamaterial have overcome all these complexities and may contain all these 
extraordinary characteristics simultaneously. For this reason, now almost in every field of 
electromagnetism metamaterial is being used like, in antenna design, cloak design, sensing application, 
filter design etc. [1-5].  

Metmaterial can be utilized in designing a wideband filter. In the field of filter design, very few works 
are found with metamaterial in stop-band applications. For example, a metamaterial-based cut-band filter 
was proposed in [6] for C-band applications. They utilized a different array of same metamaterial for 
increasing the resonance, but all in C-band of microwave spectra. They also increased bandwidth by 
increasing the metamaterial array. A metamaterial-based stop band filter was reported 
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in [7], but the centre frequency of their filter operates in the S-band region only. They utilized four open 
loop resonators in the upper and lower side of the feed line to get the poles of the pass band of the filter. A 
metamaterial-based stop-band filter was proposed in [8], where two electrical metamaterial unit cells were 
utilized in the filter design in the form of fractal resonator to create the stop band in the L-band only. 
However, they did not provide any metamaterial characteristics. 

In this study, a new pi-shaped metamaterial-based stop-band filter is presented. Initially, a pi-shaped 
metamaterial unit cell was designed. Then the unit cell was employed for the design of a stop-band filter. 
Finite integration technique based simulation software CST was used for the design and S-parameters 
calculation of the unit cell and filter. 

2   Design of the Unit Cell 

In the Fig.1, the structure of the proposed metamaterial unit cell is being displayed. This structure is based 

on pi-shape design. “π” is term, is usually used in mathematical calculation specially in the geometrical 

aspect. The proposed pi-shaped structure was developed on FR-4 substrate material having relative 

permittivity ε=4.2 and the thickness of 1.6mm. Loss tangent of the material was 0.002. The dimension of 

the substrate was maintained 10mm. The pi-shape unit cell used here contains two metal L-shaped arms 

arranged in an inverted pattern to each other.  Tiny gap was maintained between the arms at two ends. The 

dimension of the unit cell is shown in Table-1.  

Fig. 1. The proposed metamaterial unit cell 



Table 1. Paramaters of the Unit cell 

 Unit Cell Parameters Value(mm) 

d 6 

g 0.33 

h 6 

l 8 

m 1 

n 1.5 

p 6.27 

q 1 

s 0.5 

 The size of the unit cell was chosen to have more than three times shorter than the wavelength. The 

length of the arms creates magnetic resonance and the gap between the arms produce electrical resonance.  

3   Methodology 

To excite a structure properly, the incident electric field should be polarized along the x-axis and the 
magnetic field along the y-axis. The electromagnetic wave should be propagated along the z-axis. 
Therefore, simulation of the unit cell was done using CST Microwave Studio and transverse 
electromagnetic wave was propagated through the z-axis using two waveguide ports. For the measurement 
reason, a metamaterial prototype consisting 23×12 unit cells was prepared. The fabricated prototype for 
measurement is shown in Fig.2. Two horn antennas were used as a transmitter and receiver of 
electromagnetic waves and those were connected to a vector network analyzer Agilent E8363D. The 
fabricated prototype of pi-shaped metamaterial was placed between the antennas to extract the 
experimental S-parameters.   

Fig. 2. Fabricated pi-shaped metamaterial prototype for measurement 



4   Result and Discussion 

The S-parameter results of the simulation are shown in Fig.3. Two transmittances in 8.31 GHz and 12.81 
GHz in the microwave region are seen from the Fig.3. The measured results of the S-parameters are 
provided in the same figure as well for the comparison. The experimental results show almost good 
conformity with the simulation results.  

Fig. 2. S-Parameter magnitude of the pi-shaped unit cell in dB 

The Fig.4 depicts the map of the surface current distribution in the proposed pi-shaped meta-atom at 
12 GHz. From that figure, it is seen that the direction of current along the two sides of the unit cell is 
opposite that yields sharp transmittance for the unit cell. 

Fig. 3. Surface current distribution in pi-shaped atom 



The numerical results of the S-parameters were utilized in a slandered retrieval technique- Nicolson-
Ross-Weir (NRW) algorithm [9] to evaluate the real and imaginary value of effective permeability and 
permittivity. Direct calculation of refractive index was done using the direct refractive index (DRI) -
algorithm mentioned in [10] for perfection.  

In the Fig. 5a and 5b, the permittivity and permeability curves against frequency are shown. The real 
permittivity curve shows a negative region from 4.58GHz to 8.48 GHz, 9.38GHz to 11.33 GHz and 14.29 
GHz to 15GHz frequency. Similarly, the real mu-negative curve is seen in the Fig.5b from 8.85GHz to 15 
GHz frequencies. Therefore, the common negative area of the both permittivity and permeability curve 
may produce negative refractive index (NRI) zone in the range. The imaginary curves of both permittivity 
and permeability curve refers to the electric and magnetic loss tangent of the material.     

Fig. 4. (a) Effective permittivity, (b) effective permeability of the pi-shape metamaterial unit 

cell. 

The Fig.6 shows the refractive index curve for the pi-shaped atom of the metamaterial. Negative 
refractive index (NRI) region is visible in the frequency range of 9.38GHz to 11.59GHz and 12.57GHz to 
15GHz. This range covers the X-and Ku-band of microwave regime. Usually, in this NRI region, the 
energy reverses to the phase of the waves. The Imaginary part of the refractive index curve is found 
positive over the whole frequency in the range. Moreover, near zero region of the refractive index is also 
visible in the frequency range of 5GHz to 8.5GHz region. 

(a)  (b) 



Fig. 5. Refractive index (n) curve for the pi-shaped atom 

5   Metamaterial-based Filter Design and Operation 

In a further step, a filter was constructed using the metamaterial unit cell for stop-band operation. The 
20mm ×10 mm filter was designed on the same substrate material. However, in the filter design the 
copper arms of the unit cell structure were extended up to ending border on two opposite sides.  

Two waveguide ports were connected to the ends of the arms of the filter. The two ports are acting as 
transmitter and receiver of the filter. The design and simulation arrangement is being displayed in the 
Fig.7. The same electromagnetic wave was propagated through the filter and S-parameters were 
calculated.  

Fig. 6. Simulation setup of the metamaterial-based filter 

The current distribution for the filter operation at 12 GHz is shown in the Fig.8. It is seen from the 

Fig.8 that the current following opposite dirrection that results wide 



cut-band region of the filter. However, the current distribution follows the same of metamaterial unit 

cells, which reflects the direct contribution of the metamaterial for the filter operation.  

Fig. 7. Current distribution for the filter operation 

Fig. 8. S-paramaters for the filter operation 

The Fig.9 displays the numerical results of S-parameters for the filer operation. 

The stop band region has started from the frequency of 1 GHz to 12.04 GHz. The 

rejection level was found greater than 20dB from 1GHz to 10 GHz. The return loss 

was found below -10 dB from the frequency of 12.07 GHz to 12.55 GHz. A small 

pass band is visible  from the frequency of 12.15GHz to 12.28 GHz.   



6   Conclusion 

In this paper, a new negative refractive index property (NRI) based-metamaterial is proposed. 

The characteristics of permittivity, permeability of the metamaterial supports the refractive 

index property of the material for the wideband region X-and Ku-band in the microwave span. 

Experimental results were also provided. Later on, an ultra stop band filter was designed using 

the metamaterial that is applicable for ultra wideband applications. The filter operating with 

rejection over 12 GHz areas in conjunction with small pass band region. Therefore, the 

metamaterial can be utilized for filter applications beside other metamaterial applications.   
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