
Encoding Partial Orders

Through Modular Decomposition

Laurent Beaudou1, Kaoutar Ghazi2, Giacomo Kahn3, Olivier Raynaud4 and Eric Thierry5

{laurent.beaudou@univ-bpclermont.fr1, ghazi@isima.fr2, giacomo.kahn@univ-bpclermont.fr 3

raynaud@isima.fr 4, eric.thierry@ens-lyon.fr5}

Limos laboratory, Blaise Pascal University, 63000 Clermont-Ferrand, France1, 2, 3, 4

LIP laboratory, University of Lyon, ENS Lyon, France5

Abstract. A well-known method to represent a partially ordered set P consists in

associating to each element of P a subset of a fixed set S ={1,...,k} such that the order

relation coincides with subset inclusion. Such an embedding is called a bit-vector

encoding of P and is economical with space. As a consequence, they have found

applications in knowledge representation, distributed computing or object-oriented

programming. The smallest size of such an encoding is called the 2-dimension of P and

its computation is known to be NP-hard in the general case [12]. Finding heuristics

which provide compact encodings is challenging and it has yielded many works. Our

paper presents a new heuristic through modular decomposition. This unified process is

a 4-approximation for rooted trees 2-dimension and provides reduced encoding by 40%

for series-parallel posets. It reaches or improves the best results for general posets.

Keywords: Bit-vector encodings; 2-dimension; Modular decomposition, Series-parallel

partial orders; Embeddings; Heuristics.

1 Introduction

Partially ordered sets (posets for short) occur in numerous fields of computer science, like

distributed computing, programming languages, databases or knowledge representation. Such

applications have raised the need for storing and handling them efficiently. Many ways of

encoding partially ordered sets have been proposed in the literature. Depending on the

purpose, several criteria are commonly considered to guide the choice of the most appropriate

encoding. One may cite the compromise between speeding up operations and saving space, the

choice between dynamic or static data structures with regard to possible modifications of the

order, the complexity of generating the encoding from usual data structures (like matrices or

lists of successors), the restrictions on the data structures imposed by hardware and software

(e.g. storing the order in a database which can be then accessed only by means of SQL

requests). Performing fast comparisons between elements while saving space is the most usual

issue.

Here is a non-exhaustive list of approaches that have been studied: numbering the

elements in order to compress their lists of successors [1], partitioning the order into nice

subsets like antichains [7, 22, 16] or chains [2, 7, 13], mixing numbering and partitioning [10,

23], describing the order as the union of nice orders on the same set of elements [3], focusing

on lattice operations [20], embedding the order into one which is known to have a nice

representation [18].

In this article, we study bit-vector encodings of orders which are embeddings into

Boolean lattices. In other words, let P = (X,≤P) be a poset, denoted by P if there is no

ambiguity. A bit-vector encoding of P is a mapping 𝜑 from X into 2S (the set of all the subsets

of a set S) such that for all x and y in X, x ≤P y if and only if 𝜑(x) ⊆ 𝜑(y). The size of the

encoding 𝜑 is the cardinal of S and we will refer to the elements of S as colors of the

encoding. A classical implementation of bit-vector encodings associates to each element x a

vector Vx of |S| bits where the ith bit is equal to 1 for i in 𝜑(x) and equal to 0 otherwise. In that

case, checking whether x ≤P y is equivalent to check whether Vx OR Vy = Vy. Figure 1

illustrates different representations of such embeddings.

Fig. 1. Three descriptions of the same bit-vector encoding of P. On the left the embedding
X → 2{1,2,3,4}, in the center X → {0,1}4, on the right a reduced encoding of P.

Given an order P, the smallest size of a bit-vector encoding of P is called the 2-dimension

of P and denoted Dim2(P). Originally defined by V. Novak in 1963 ([15]), this parameter has

yielded many studies in computer science. Its computation is known to be NP-hard in the

general case (see [12] for a survey) and the assets of bit-vector encodings have urged to design

good heuristics for applications. Beyond algorithms for the general case [5, 11, 22], the class

of rooted trees has been specifically studied by several authors ([6, 8, 17]).

Our contribution is organized as follows: in section 2 we give a description of previous

approaches and definitions about the modular decomposition. In Section 3 we describe series-

parallel posets and our heuristic. We compare its performance on synthetic datasets and rooted

trees. Then in Section 4, we describe an original blow up operator used to extend our heuristic

to the whole class of posets and we analysis its performance on benchmarks traditionally used

in this context.

2 Preliminaries

2.1 Historical approaches

Today, the best approach to compute the encoding of a given poset can be done in two

steps. A first preprocessing step, called Splitting & Balancing (SB), that splits and balances

the poset ([4], [14]) and a second effective step, called Simple Coloring (SC), that computes

the encoding of the resulted order through a graph coloring strategy ([5]). We denote this

approach SBSC.

Splitting & balancing In [14], authors proposed a preprocessing step to compute the size

of a bit vector encoding of a poset. By referring to the work of Caseau in [4], they propose to

split the set of children of a node if this set is too large. Indeed, Caseau showed that this

splitting can easily be done by adding some additional nodes in the hierarchy so that the

encoding is smaller. Then, the balancing consists in adding splitting nodes so that the

hierarchy remains as balanced as possible (see Figure 2).

Fig. 2. On the left, an encoding of P of size 5. One new color is assigned to each internal node. In

the middle, a new node is added to split children of the node a, P is balanced and the size of the encoding

is 4. By introducing a new node in the right spot, the number of needed colors is reduced. On the right, a

new node is added to split children of the node a, P is not balanced and the size of the encoding is 6.

Simple coloring In [5], authors show how to reduce the bit-vector encoding problem in a

graph coloring problem. We need to introduce few definitions.

Definition 1 (Join/meet irreducible elements) Given a poset P and an element x in P, the

set ↑ x (resp. ↓ x) denotes all elements of P which are greater (resp. smaller) than or equal to

x. An element x in P is join-irreducible if there exists y such that y is in P ∖ ↑ x and for all z in

P, if z ≤ x then z = x or z ≤ y. Meet irreducible elements are defined dually. The set of join

irreducible (resp. meet-irreducible) elements of P is denoted J(P) (resp. M(P)).

Definition 2 (Critical pairs) Given two elements x and y in P, we say that (x,y) is a

critical pair if y is not in ↑ x and ↓ x ∖ {x} ⊆ ↓ y and ↑ y ∖ {y} ⊆ ↑ x .

Two join irreducible elements j and j` are said to be in conflict if there exists m in M(P)

such that (j,m) is a critical pair and j` ≤ m or (j`,m) is a critical pair and j ≤ m. The conflict

graph of P denoted Gconflict(P) has J(P) as vertex set and an edge jj` if j and j` are in conflict.

Proposition 1 (Simple coloring and the 2-dimension [5]) Given P, Dim2(P) ≤

𝜒(Gconflict(P)).

Actually, join-irreducible elements are the only elements which need their own color.

Other elements will be assigned some colors by inheritance in the initial poset. Moreover,

Proposition 1 states which join-irreducibles can share the same own color. See Figure 3 for an

example.

Fig. 3. On the left a given poset whose join-irreducible elements are in black. In the middle its

conflict graphs Gconflict and an associated coloration. On the right, an encoding of the poset using the

given coloration.

2.2 Modular decomposition

We present the modular decomposition process used in our heuristic.

Definition 3 (Modules) Given a poset P, a module of P is a subset M of P such that any

two elements of M have the same comparison relation with elements of P ∖ M. Formally,

∀ 𝑥, 𝑥` ∈ 𝑀, ∀ 𝑦 ∈ 𝑃 \𝑀, (𝑥 ≤ 𝑦 ⇔ 𝑥` ≤ 𝑦) 𝑎𝑛𝑑 (𝑦 ≤ 𝑥 ⇔ 𝑦 ≤ 𝑥`)

A non empty module M is strong if every other module is a subset of M or a superset of

M or does not intersect M. Gallai [9] proved that maximal strong modules (not equal to P)

form a partition of P called the modular partition. See Figure 4 for an illustration of the last

definitions.

Definition 4 (Quotient) Let P = (X,P) be a poset and M = {M1,… Mℓ} be the modular

partition of P. The quotient poset P/M is defined on the ground set M and Mi ≤ P/M Mj if there

are x in Mi and y in Mj, such that x ≤𝑷 y (i.e. each strong module is shrinked into a single

element).

Fig. 4. On the left, a poset P = (X,≤P) defined on the ground set X = {a,b,c,d,e,f}. In the middle, the

lists of its modules and its strong modules. On the right its quotient graph P/M with M=

{{a},{b,c},{d,e},{f}} its corresponding modular partition.

Definition 5 (Chain/Antichain) A poset P is a chain (resp. antichain) if for all x and y in

P, x and y are (resp. are not) comparable, i.e. x ≤P y or y ≤P x.

Definition 6 (Modular decomposition) Let P be a poset, the modular decomposition of P

is the rooted tree denoted 𝑇𝑃 of its strong modules with inclusion as ancestor relation. The

leaves are exactly the elements of P. Each inner node corresponds with a strong module whose

induced poset can be further decomposed. If its quotient by its modular partition is a chain

(resp. an antichain, resp. another type of poset), the node is called a series (resp. parallel, resp.

prime) node.

Definition 7 (Series-parallel posets) A poset is called series-parallel if all the inner nodes

of its modular decomposition are either series or parallel. See Figure 5 for an illustration.

Fig. 5. On the left, a poset P. On the right its modular decomposition tree. S stands for series node

and P for parallel node. Since there is no prime node, P is series-parallel.

3 Series-parallel posets

3.1 The series operation and the 2-dimension

The 2-dimension of chains is easy to compute.

Proposition 2 (Folklore) Given a chain P = (X,≤P) of n elements, then Dim2(P) is n-1. Let

x0, x1 ,…, xn-1 be the n elements of P ordered by x0 <P x1 <P … <P xn-1, then an optimal bit-

vector encoding 𝜑 using colors from S = {1,…, n-1} is given by 𝜑 (x0) = 0 and 𝜑 (xi) = {1,…,

i} for all 1 ≤ i ≤ n-1.

This proposition can be generalized to posets whose quotients by their modular

decomposition are chains.

Proposition 3 (Series node) Let (P,≤P) be a poset whose modular partition is {M1 ,.., Mℓ}

and the quotient poset is the chain {M1 < … < Mℓ}. Then

𝐷𝑖𝑚2(𝑃) = ∑ 𝐷𝑖𝑚2(𝑀𝑖)

1≤𝑖≤ℓ | |𝑀𝑖≥2

+ |{1 ≤ 𝑖 ≤ ℓ||𝑀𝑖| = |𝑀𝑖−1| = 1|

3.2 The parallel operation and the 2-dimension

Proposition 4 (Sperner [19]) Given an antichain P = (X, ≤P) with n elements, then Dim2(P) =

sp(n) where sp(n) = min{k | (
k
k

2

) ≥ n}. An optimal bit-vector of P is obtained by associating

with each x in P a combination of
sp(n)

2
 elements from S = {1,…,sp(n)}.

In [6], authors introduced the generalized polychotomic algorithm, denoted GP, which is a

4-approximation of the 2-dimension of rooted trees. Thanks to Proposition 4, one can design

an algorithm to approximate the 2-dimension of posets whose quotients by their modular

decompsition are antichains.

Proposition 5 (Parallel node [6]) Let P = (X, ≤P) be a poset whose modular partition is

{M1,…,Mℓ} and its quotient is the antichain <M1,…,Mℓ>. Then, from the sequence

<weight(M1),…,weight(Mℓ)>, where weight(Mi), for 1 ≤ 𝑖 ≤ ℓ, is the size of the encoding

associated with each induced poset Mi, the GP algorithm computes a bit-vector encoding of P.

3.3 Heuristic description

Thanks to Propositions 3 and 5 we are able to design an algorithm to compute the size of

a bit-vector encoding of a given poset P. Each module which is a leaf of 𝑇𝑃 is assigned a

weight equal to 0. Then, by a recursive process in 𝑇𝑃, when all sub-modules M1,…,Mℓ of a

given module M are assigned a weight, depending on its type (S or P), we compute the own

weight of M (see Figure 6):

 If type(M) = S then weight(M) = ∑ 𝐷𝑖𝑚2(𝑀𝑖)1≤𝑖≤ℓ | |𝑀𝑖≥2 + |{1 ≤ 𝑖 ≤ ℓ||𝑀𝑖| = |𝑀𝑖−1| = 1|

 If type(M) = P then weight(M) = GP(<weight(M1),…,weight(Mℓ)>)

Fig. 6. On the left the referral two steps process SBSC. On the right the modular decomposition process.

3.4 Theoretical result

Proposition 6 states that the modular decomposition strategy (MD) maintains the 4-

approximation result of the generalized polychotomic algorithm for the class of rooted trees

which are series-parallel posets.

Proposition 6 Let T be a tree. MD(T) is a 4-approximation of Dim2(T).

3.5 Experimental results

Regrettably, no natural hierarchy corresponds to formal series-parallel posets. Thus, some

evaluations are done on synthetic datasets that have been generated with parameters such as

the number of elements, depth and maximal degree of the poset. Some other evaluations are

done on known rooted tree hierarchies (see Table 1).

Table 1. First columns give descriptors of posets, column SBSC gives the sizes of the

encoding with the referral SBSC process. Last columns give the size with the modular

decomposition strategy and with GP Algorithm on tree hierarchies.

Dataset Size Depth Max parents SBSC MD

Synthetic data

 200 13 64 49 34

 200 29 4 49 47

 1000

1000

10000

10000

22

19

6

4

140

32

6222

2

90

53

32

27

56

39

19

17

Rooted trees

VisualWorks

Digitalk3

NextStep

ET++

1956

1357

311

371

15

14

8

9

1

1

1

1

50

36

23

30

19

26

17

19

GP

19

26

17

19

Results show the efficiency of our heuristic on series-parallel posets with an improvement

rate around 40% for posets with a significant width. Moreover, in accordance with Proposition

6, our heuristic find the same values than GP Algorithm on rooted tree hierarchies.

4 General posets

4.1 The prime operation and the 2-dimension

A prime node of a modular decomposition tree corresponds to a suborder P, let M be its

modular decomposition. Intuitively, Dim2 (P) can't be higher than Dim2(P/M) plus the sum of

its own suborders’ 2-dimension [24]. Actually, Proposition 7 provides a finer upper bound by

stating that most of these suborders can share the same colors.

Proposition 7 (Bounds on the 2-dimension) Let (P,≤P) be a poset and M its modular

partition. Then

𝐷𝑖𝑚2(𝑃) ≤ 𝐷𝑖𝑚2(𝑃/𝑀) + max
C chain of 𝑃/𝑀

∑ 𝐷𝑖𝑚2(𝑀)

𝑀∈𝐶

4.2 Blow up operator

We define below a new operator called Blow up to apply to the quotient order. Thanks to

this operator we will be able to provide a tighter upper bound of the 2-dimension of posets.

Definition 8 (Blow up) Let (P,≤P) be a poset, M be its modular partition and P/M the

associated quotient. The blow up of P, denoted B(P), is the poset obtained from P/M by

substituting each module M in M with a chain of Dim2(M) + 1. See Figure 7.

Fig. 7. On the left, a poset P whose modular partition is M = {{o, a, b, c, d, e, f, g; h}, {x}, {i}, {j},

{k}, {l},{m}, {n}}. On the right P/M and B(P).

Proposition 8 (Blow up bounds) Let (P,≤P) be a poset, M be its modular partition and

B(P) its blow up. Then

Dim2(P) ≤ Dim2(B(P)) ≤ Dim2(P/M) + max
C chain of 𝑃/𝑀

∑ 𝐷𝑖𝑚2(𝑀)

𝑀∈𝐶

Fig. 8. On the left, a poset P with a non trivial module {o,a,b,c,d,e,f,g,h} requiring 5 bits for its encoding.

On the center its quotient whose encoding requires 6 bits. On the right its blow up whose encoding

requires 10 bits (Prop. 8) instead of 11 (Prop. 7).

4.3 Heuristic description

The principle of our heuristic is the same as described in Section 3.3 with additional rules

to deal with prime nodes. For such a node P, we apply the Simple coloring to B(P) and then

return the chromatic number of the corresponding conflict graph Gconflict(B(P)). However, first

results showed that applying the blow up operator to prime nodes is not sufficient to reach the

smallest encoding providing by the referral approach SBSC. Nevertheless, by introducing the

Splitting & Balancing pre-processing in our own process, we are able to produce the shortest

bit vector encodings. We have two options to introduce this pre-processing. We can execute it

on the initial poset and then launch the modular decomposition (Global Split & Balance). Or

we can launch the modular decomposition and execute the pre-processing to deal with each

inner prime node (Local Split & Balance), (see Figure 9).

Fig. 9. Test protocols

4.3 Experimental results

Our heuristic has been applied on class libraries having poset structures ([14]). We have

introduced in this list the recent Java8 hierarchy. Characteristics of benchmarks are given in

Table 2 and representation of the Java8 hierarchy in Figure 10. From results given in Table 3

we can see that by applying the blow up processing with the one or the other option we reach

the smallest known encoding or we improve it.

Note that these benchmarks have been studied for a long time and thus results from

referral approach SBSC should be very closed to the optimum. For this reason, it is our

understanding that to win few bits for each benchmark stay a challenge. Moreover, our

heuristic was first designed for series-parallel partial orders and it is a nice result that this

approach is also the most efficient for the whole class of posets and improves by 20% some of

the benchmarks.

Table 2. Benchmarks characteristics.

Data Size Depth Max parents Max Children

Unidraw

Self

Love-ed

Laure

Geode

Ed

Java

Java8

613

1801

436

295

1318

434

225

17086

10

18

10

12

14

11

7

11

2

9

10

3

16

7

3

17

147

232

78

8

323

78

112

4621

Table 3. First column states the name of hierarchies. Second column gives results of the referral

approach and the two last columns give results of our heuristic with the Global Split & Balance and the

Local Split & Balance options.

Data SBSC Global S&B Local S&B

Unidraw

Self

Love-ed

Laure

Geode

Ed

Java

Java8

30

53

54

23

89

50

19

84

30

53

54

23

89

50

19

81

24

52

58

23

97

53

16

78

5 Conclusion

Computing optimal bit-vector encodings was proved non-approximable and NP-hard in

[12], and the best heuristics rely on another hard problem, that is graph coloring [14, 5].

Nonetheless the class of trees, which includes chains and antichains, was shown to be

approximable [12, 6]. In this paper, we show how to combine these heuristics for trees and the

reduction to graph coloring to compute bit-vector encodings for general posets. Based on the

modular decomposition, this heuristic uses tree ideas for series and parallel inner nodes, our

original blow up operator and colorings for prime inner nodes. With two options depending on

the preprocessing step, it outperforms previously known algorithms, especially for series-

parallel posets.

Fig. 10. Graphical representation of Java8 hierarchy

References

[1]R. Agrawal, A. Borgida, and J. V. Jagadish.: Efficient management of transitive

relationships in large data and knowledge bases. ACM SIGMOD International

Conference on Management of Data. pp. 115-146 (1989).

[2]A. Bouchet.: Etude combinatoire des ordonnes finis, Applications. PhD thesis,

Universite scientifique et medicale de Grenoble (1971).

[3]C. Capelle.: Representation of an order as union of interval orders. Proceedings of

ORDAL'94, LNCS 831. pp. 143-161 (1994).

[4]Y. Caseau.: Efficient handling of multiple inheritance hierarchies. Proceedings of

OOPSLA'93. pp. 271-287 (1993).

[5]Y. Caseau, M. Habib, L. Nourine, and O. Raynaud.: Encoding of multiple inheritance

hierarchies and partial orders. Computational Intelligence. pp. 50-62 (1999).

[6]P. Colomb, O. Raynaud, and E. Thierry.: Generalized polychotomic encoding.

Proceedings of MCO'08. pp. 77-86 (2008).

[7]A. Fall. The foundations of taxonomic encodings. Computational Intelligence. pp. 598-

642 (1998).

[8]R. E. Filman.: Polychotomic encoding: A better quasi-optimal bit-vector encoding

of tree hierarchies. Proceedings of ECOOP'2002. pp. 545-561 (2002).

[9]T. Gallai.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum

Hungaricae. pp. 25-66 (1967).

[10]J. Gil and Y. Zibin.: Efficient subtyping tests with pq-encoding. ACM Trans. Program.

pp.819-856 (2005).

[11]M. Habib and L. Nourine.: Bit-vector encoding for partially ordered sets. Proceedings

of ORDAL'94, LNCS 831. pp.1-12 (1994).

[12]M. Habib, L. Nourine, O. Raynaud, and E. Thierry.: Computational aspects of the 2-

dimension of partially ordered sets. Theor. Comput. Sci. pp. 401-431 (2004).

[13]H. V. Jagadish.: A compression technique to materialize transitive closure. ACM

Transactions on Database Systems. pp. 558-598 (1990).

[14]A. Krall, J. Vitek, and R.N. Horspool.: Near optimal hierarchical encoding of types.

Proceedings of ECOOP'97. pp. 128-145 (1997).

[15]V. Novak.: On the pseudo-dimension of ordered sets. Czechoslovak Math. Journal. pp.

587-598 (1963).

[16]Krzysztof Palacz and Jan Vitek.: Java subtype tests in real-time. ECOOP'03

Conference Proceedings. pp. 378-404 (2003).

[17]O. Raynaud and E. Thierry.: A quasi optimal bit-vector encoding of tree hierarchies.

Proceedings of ECOOP'2001, LNCS 2072. pp. 165-180 (2001).

[18]O. Raynaud and E. Thierry.: The complexity of embedding orders into small products

of chains. pp. 365-381 (2010).

[19]E. Sperner.: Ein satz •uber untermengen einer endlichen menge. Math. Z. pp. 544-

548 (1928).

[20]M. Talamo and P. Vocca.: An efficient data structure for lattice operations. SIAM J.

Comput. pp. 1783-1805 (1999).

[21]M. Tedder, D. Corneil, M. Habib, and C. Paul.: Simple, linear-time modular

decomposition. ICALP. N 5125 in LNCS. pp. 634-645 (2008).

[22]J. Vitek, R.N. Horspool, and A. Krall.: Efficient type inclusion tests. OOP- SLA'97.

pp. 142-157 (1997).

[23]Y. Zibin and Y. Gil.: Efficient subtyping tests with pq-encoding. Proceedings of

OOPSLA'2001 (2001).

[24]E. Thierry.: Sur quelques interactions entre structures de donnees et algorithms

efficaces pour les ordres et les graphes. PhD thesis, LIRMM, Universite Montpellier II,

(2001).

