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Abstract. A well-known method to represent a partially ordered set P consists in 

associating to each element of P a subset of a fixed set S ={1,...,k} such that the order 

relation coincides with subset inclusion. Such an embedding is called a bit-vector 

encoding of P and is economical with space. As a consequence, they have found 

applications in knowledge representation, distributed computing or object-oriented 

programming. The smallest size of such an encoding is called the 2-dimension of P and 

its computation is known to be NP-hard in the general case [12]. Finding heuristics 

which provide compact encodings is challenging and it has yielded many works. Our 

paper presents a new heuristic through modular decomposition. This unified process is 

a 4-approximation for rooted trees 2-dimension and provides reduced encoding by 40% 

for series-parallel posets. It reaches or improves the best results for general posets. 
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1   Introduction 

Partially ordered sets (posets for short) occur in numerous fields of computer science, like 

distributed computing, programming languages, databases or knowledge representation. Such 

applications have raised the need for storing and handling them efficiently. Many ways of 

encoding partially ordered sets have been proposed in the literature. Depending on the 

purpose, several criteria are commonly considered to guide the choice of the most appropriate 

encoding. One may cite the compromise between speeding up operations and saving space, the 

choice between dynamic or static data structures with regard to possible modifications of the 

order, the complexity of generating the encoding from usual data structures (like matrices or 

lists of successors), the restrictions on the data structures imposed by hardware and software 

(e.g. storing the order in a database which can be then accessed only by means of SQL 

requests). Performing fast comparisons between elements while saving space is the most usual 

issue. 

Here is a non-exhaustive list of approaches that have been studied: numbering the 

elements in order to compress their lists of successors [1], partitioning the order into nice 

subsets like antichains [7, 22, 16] or chains [2, 7, 13], mixing numbering and partitioning [10, 

23], describing the order as the union of nice orders on the same set of elements [3], focusing 

on lattice operations [20], embedding the order into one which is known to have a nice 

representation [18]. 



 

 

 

 

In this article, we study bit-vector encodings of orders which are embeddings into 

Boolean lattices. In other words, let P = (X,≤P) be a poset, denoted by P if there is no 

ambiguity. A bit-vector encoding of P is a mapping 𝜑 from X into 2S (the set of all the subsets 

of a set S) such that for all x and y in X, x ≤P y if and only if 𝜑(x) ⊆ 𝜑(y). The size of the 

encoding 𝜑 is the cardinal of S and we will refer to the elements of S as colors of the 

encoding. A classical implementation of bit-vector encodings associates to each element x a 

vector Vx of  |S| bits where the ith bit is equal to 1 for i in 𝜑(x) and equal to 0 otherwise. In that 

case, checking whether x ≤P y is equivalent to check whether Vx OR Vy = Vy. Figure 1 

illustrates different representations of such embeddings. 

Fig. 1. Three descriptions of the same bit-vector encoding of P. On the left the embedding 
X → 2{1,2,3,4}, in the center X → {0,1}4, on the right a reduced encoding of P. 

 

 

Given an order P, the smallest size of a bit-vector encoding of P is called the 2-dimension 

of P and denoted Dim2(P). Originally defined by V. Novak in 1963 ([15]), this parameter has 

yielded many studies in computer science. Its computation is known to be NP-hard in the 

general case (see [12] for a survey) and the assets of bit-vector encodings have urged to design 

good heuristics for applications. Beyond algorithms for the general case [5, 11, 22], the class 

of rooted trees has been specifically studied by several authors ([6, 8, 17]). 

Our contribution is organized as follows: in section 2 we give a description of previous 

approaches and definitions about the modular decomposition. In Section 3 we describe series-

parallel posets and our heuristic. We compare its performance on synthetic datasets and rooted 

trees. Then in Section 4, we describe an original blow up operator used to extend our heuristic 

to the whole class of posets and we analysis its performance on benchmarks traditionally used 

in this context. 

2   Preliminaries  

2.1   Historical approaches  

 

Today, the best approach to compute the encoding of a given poset can be done in two 

steps. A first preprocessing step, called Splitting & Balancing (SB), that splits and balances 

the poset ([4], [14]) and a second effective step, called Simple Coloring (SC), that computes 

the encoding of the resulted order through a graph coloring strategy ([5]). We denote this 

approach SBSC.  



 

 

 

 

Splitting & balancing In [14], authors proposed a preprocessing step to compute the size 

of a bit vector encoding of a poset. By referring to the work of Caseau in [4], they propose to 

split the set of children of a node if this set is too large. Indeed, Caseau showed that this 

splitting can easily be done by adding some additional nodes in the hierarchy so that the 

encoding is smaller. Then, the balancing consists in adding splitting nodes so that the 

hierarchy remains as balanced as possible (see Figure 2). 

 

 
Fig. 2. On the left, an encoding of P of size 5. One new color is assigned to each internal node. In 

the middle, a new node is added to split children of the node a, P is balanced and the size of the encoding 

is 4. By introducing a new node in the right spot, the number of needed colors is reduced. On the right, a 

new node is added to split children of the node a, P is not balanced and the size of the encoding is 6. 

 

Simple coloring In [5], authors show how to reduce the bit-vector encoding problem in a 

graph coloring problem. We need to introduce few definitions. 

 

Definition 1 (Join/meet irreducible elements) Given a poset P and an element x in P, the 

set ↑ x (resp. ↓ x) denotes all elements of  P which are greater (resp. smaller) than or equal to 

x. An element x in P is join-irreducible if there exists y such that y is in P ∖ ↑ x and for all z in 

P, if z ≤ x then z = x or z ≤ y. Meet irreducible elements are defined dually. The set of join 

irreducible (resp. meet-irreducible) elements of P is denoted J(P) (resp. M(P)). 

 

Definition 2 (Critical pairs) Given two elements x and y in P, we say that (x,y) is a 

critical pair if y is not in ↑ x and  ↓ x ∖ {x} ⊆ ↓ y and  ↑ y ∖ {y} ⊆ ↑ x . 

 

Two join irreducible elements j and j` are said to be in conflict if there exists m in M(P) 

such that (j,m) is a critical pair and j` ≤ m or (j`,m) is a critical pair and j ≤ m. The conflict 

graph of P denoted Gconflict(P) has J(P) as vertex set and an edge jj` if j and j` are in conflict. 

 

Proposition 1 (Simple coloring and the 2-dimension [5]) Given P, Dim2(P) ≤ 

𝜒(Gconflict(P)). 

 

Actually, join-irreducible elements are the only elements which need their own color. 

Other elements will be assigned some colors by inheritance in the initial poset. Moreover, 

Proposition 1 states which join-irreducibles can share the same own color. See Figure 3 for an 

example. 

 



 

 

 

 

Fig. 3. On the left a given poset whose join-irreducible elements are in black. In the middle its 

conflict graphs Gconflict and an associated coloration. On the right, an encoding of the poset using the 

given coloration. 

 

2.2   Modular decomposition 

 

We present the modular decomposition process used in our heuristic. 

 

Definition 3 (Modules) Given a poset P, a module of P is a subset M of P such that any 

two elements of M have the same comparison relation with elements of P ∖ M. Formally,   

 

∀ 𝑥, 𝑥` ∈ 𝑀, ∀ 𝑦 ∈ 𝑃  \𝑀, (𝑥 ≤ 𝑦 ⇔ 𝑥` ≤ 𝑦) 𝑎𝑛𝑑 (𝑦 ≤ 𝑥 ⇔ 𝑦 ≤ 𝑥`) 
 

A non empty module M is strong if every other module is a subset of M or a superset of 

M or does not intersect M. Gallai [9] proved that maximal strong modules (not equal to P) 

form a partition of P called the modular partition. See Figure 4 for an illustration of the last 

definitions. 

 

Definition 4 (Quotient) Let P = (X,P) be a poset and M = {M1,… Mℓ} be the modular 

partition of P. The quotient poset P/M is defined on the ground set M and Mi  ≤ P/M Mj if there 

are x in Mi and y in Mj, such that x ≤𝑷 y (i.e. each strong module is shrinked into a single 

element). 

 

 

 

 

 

 
 

 

 

 

 

Fig. 4. On the left, a poset P = (X,≤P) defined on the ground set X = {a,b,c,d,e,f}. In the middle, the 

lists of its modules and its strong modules. On the right its quotient graph P/M with M= 

{{a},{b,c},{d,e},{f}} its corresponding modular partition. 

 

Definition 5 (Chain/Antichain) A poset P is a chain (resp. antichain) if for all x and y in 

P, x and y are (resp. are not) comparable, i.e. x ≤P y or y ≤P x. 



 

 

 

 

Definition 6 (Modular decomposition) Let P be a poset, the modular decomposition of P 

is the rooted tree denoted 𝑇𝑃 of its strong modules with inclusion as ancestor relation. The 

leaves are exactly the elements of P. Each inner node corresponds with a strong module whose 

induced poset can be further decomposed. If its quotient by its modular partition is a chain 

(resp. an antichain, resp. another type of poset), the node is called a series (resp. parallel, resp. 

prime) node. 

 

Definition 7 (Series-parallel posets) A poset is called series-parallel if all the inner nodes 

of its modular decomposition are either series or parallel. See Figure 5 for an illustration. 

 

 

 

 

 

 

 

 

 
 

Fig. 5. On the left, a poset P. On the right its modular decomposition tree. S stands for series node 

and P for parallel node. Since there is no prime node, P is series-parallel. 

3   Series-parallel posets  

3.1   The series operation and the 2-dimension 

 

The 2-dimension of chains is easy to compute. 

 

Proposition 2 (Folklore) Given a chain P = (X,≤P) of n elements, then Dim2(P) is n-1. Let 

x0, x1 ,…, xn-1 be the n elements of P ordered by x0 <P x1 <P … <P xn-1, then an optimal bit-

vector encoding 𝜑 using colors from S = {1,…, n-1} is given by 𝜑 (x0) = 0 and 𝜑 (xi) = {1,…, 

i} for all 1 ≤ i ≤ n-1. 

 

This proposition can be generalized to posets whose quotients by their modular 

decomposition are chains.  

 

Proposition 3 (Series node) Let (P,≤P) be a poset whose modular partition is {M1 ,.., Mℓ} 

and the quotient poset is the chain {M1 < … < Mℓ}. Then 

 

𝐷𝑖𝑚2(𝑃) = ∑ 𝐷𝑖𝑚2(𝑀𝑖)

1≤𝑖≤ℓ | |𝑀𝑖≥2

+ |{1 ≤ 𝑖 ≤ ℓ||𝑀𝑖| = |𝑀𝑖−1| =  1| 

 

 

 

 

 



 

 

 

 

3.2   The parallel operation and the 2-dimension 

 

Proposition 4 (Sperner [19]) Given an antichain P = (X, ≤P) with n elements, then Dim2(P) = 

sp(n) where sp(n) = min{k | (
k
k

2

)  ≥ n}. An optimal bit-vector of P is obtained by associating 

with each x in P a combination of  
sp(n)

2
 elements from S = {1,…,sp(n)}.  

 

In [6], authors introduced the generalized polychotomic algorithm, denoted GP, which is a 

4-approximation of the 2-dimension of rooted trees. Thanks to Proposition 4, one can design 

an algorithm to approximate the 2-dimension of posets whose quotients by their modular 

decompsition are antichains. 

 

Proposition 5 (Parallel node [6]) Let P = (X, ≤P) be a poset whose modular partition is 

{M1,…,Mℓ} and its quotient is the antichain <M1,…,Mℓ>. Then, from the sequence  

<weight(M1),…,weight(Mℓ)>, where weight(Mi), for 1 ≤ 𝑖 ≤ ℓ, is the size of the encoding 

associated with each induced poset Mi, the GP algorithm computes a bit-vector encoding of P. 

 

3.3   Heuristic description 

 

Thanks to Propositions 3 and 5 we are able to design an algorithm to compute the size of 

a bit-vector encoding of a given poset P. Each module which is a leaf of 𝑇𝑃 is assigned a 

weight equal to 0. Then, by a recursive process in 𝑇𝑃, when all sub-modules M1,…,Mℓ of a 

given module M are assigned a weight, depending on its type (S or P), we compute the own 

weight of M (see Figure 6):  

      

 If type(M) = S then weight(M) = ∑ 𝐷𝑖𝑚2(𝑀𝑖)1≤𝑖≤ℓ | |𝑀𝑖≥2 + |{1 ≤ 𝑖 ≤ ℓ||𝑀𝑖| = |𝑀𝑖−1| =  1| 

 If type(M) = P then weight(M) = GP(<weight(M1),…,weight(Mℓ)>) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. On the left the referral two steps process SBSC. On the right the modular decomposition process. 

 

 

 

 

 



 

 

 

 

3.4   Theoretical result 

 

Proposition 6 states that the modular decomposition strategy (MD) maintains the 4-

approximation result of the generalized polychotomic algorithm for the class of rooted trees 

which are series-parallel posets. 

 

Proposition 6 Let T be a tree. MD(T) is a 4-approximation of Dim2(T). 

 

3.5   Experimental results 

 

Regrettably, no natural hierarchy corresponds to formal series-parallel posets. Thus, some 

evaluations are done on synthetic datasets that have been generated with parameters such as 

the number of elements, depth and maximal degree of the poset. Some other evaluations are 

done on known rooted tree hierarchies (see Table 1). 

Table 1.  First columns give descriptors of posets, column SBSC gives the sizes of the 

encoding with the referral SBSC process. Last columns give the size with the modular 

decomposition strategy and with GP Algorithm on tree hierarchies. 

Dataset Size Depth Max parents SBSC MD  

Synthetic data       

 200 13 64 49 34  

 200 29 4 49 47  

 1000 

1000 

10000 

10000 

22 

19 

6 

4 

140 

32 

6222 

2 

90 

53 

32 

27 

56 

39 

19 

17 

 

 

Rooted trees 

VisualWorks 

Digitalk3 

NextStep 

ET++ 

 

1956 

1357 

311 

371 

 

15 

14 

8 

9 

 

1 

1 

1 

1 

 

50 

36 

23 

30 

 

 

 

19 

26 

17 

19 

GP 

19 

26 

17 

19 

 

Results show the efficiency of our heuristic on series-parallel posets with an improvement 

rate around 40% for posets with a significant width. Moreover, in accordance with Proposition 

6, our heuristic find the same values than GP Algorithm on rooted tree hierarchies. 

4   General posets 

4.1  The prime operation and the 2-dimension 

 

A prime node of a modular decomposition tree corresponds to a suborder P, let M be its 

modular decomposition. Intuitively, Dim2 (P) can't be higher than Dim2(P/M) plus the sum of 

its own suborders’ 2-dimension [24]. Actually, Proposition 7 provides a finer upper bound by 

stating that most of these suborders can share the same colors. 



 

 

 

 

 

Proposition 7 (Bounds on the 2-dimension) Let (P,≤P) be a poset and M its modular 

partition. Then 

𝐷𝑖𝑚2(𝑃) ≤ 𝐷𝑖𝑚2(𝑃/𝑀) + max
C chain of 𝑃/𝑀

∑ 𝐷𝑖𝑚2(𝑀)

𝑀∈𝐶

   

 

4.2  Blow up operator 

 

We define below a new operator called Blow up to apply to the quotient order. Thanks to 

this operator we will be able to provide a tighter upper bound of the 2-dimension of posets. 

 

Definition 8 (Blow up) Let (P,≤P) be a poset, M be its modular partition and P/M the 

associated quotient. The blow up of P, denoted B(P), is the poset obtained from P/M by 

substituting  each module M in M  with a chain of Dim2(M) + 1. See Figure 7. 

 

Fig. 7. On the left, a poset P whose modular partition is M = {{o, a, b, c, d, e, f, g; h}, {x}, {i}, {j}, 

{k}, {l},{m}, {n}}. On the right P/M and B(P). 

 

Proposition 8 (Blow up bounds) Let (P,≤P) be a poset, M be its modular partition and 

B(P) its blow up. Then 

Dim2(P) ≤ Dim2(B(P)) ≤ Dim2(P/M ) + max
C chain of 𝑃/𝑀

∑ 𝐷𝑖𝑚2(𝑀)

𝑀∈𝐶

 

 

Fig. 8. On the left, a poset P with a non trivial module {o,a,b,c,d,e,f,g,h} requiring 5 bits for its encoding. 

On the center its quotient whose encoding requires 6 bits. On the right its blow up whose encoding 

requires 10 bits (Prop. 8) instead of 11 (Prop. 7). 

 



 

 

 

 

4.3 Heuristic description  

 

The principle of our heuristic is the same as described in Section 3.3 with additional rules 

to deal with prime nodes. For such a node P, we apply the Simple coloring to B(P) and then 

return the chromatic number of the corresponding conflict graph Gconflict(B(P)). However, first 

results showed that applying the blow up operator to prime nodes is not sufficient to reach the 

smallest encoding providing by the referral approach SBSC. Nevertheless, by introducing the 

Splitting & Balancing pre-processing in our own process, we are able to produce the shortest 

bit vector encodings. We have two options to introduce this pre-processing. We can execute it 

on the initial poset and then launch the modular decomposition (Global Split & Balance). Or 

we can launch the modular decomposition and execute the pre-processing to deal with each 

inner prime node (Local Split & Balance), (see Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Test protocols 

 

 

4.3 Experimental results 

 

Our heuristic has been applied on class libraries having poset structures ([14]). We have 

introduced in this list the recent Java8 hierarchy. Characteristics of benchmarks are given in 

Table 2 and representation of the Java8 hierarchy in Figure 10. From results given in Table 3 

we can see that by applying the blow up processing with the one or the other option we reach 

the smallest known encoding or we improve it.  

Note that these benchmarks have been studied for a long time and thus results from 

referral approach SBSC should be very closed to the optimum. For this reason, it is our 

understanding that to win few bits for each benchmark stay a challenge. Moreover, our 

heuristic was first designed for series-parallel partial orders and it is a nice result that this 



 

 

 

 

approach is also the most efficient for the whole class of posets and improves by 20% some of 

the benchmarks. 

 
Table 2.  Benchmarks characteristics. 

 

Data Size Depth Max parents Max Children 

Unidraw 

Self 

Love-ed 

Laure 

Geode 

Ed 

Java 

Java8 

613 

1801 

436 

295 

1318 

434 

225 

17086 

10 

18 

10 

12 

14 

11 

7 

11 

2 

9 

10 

3 

16 

7 

3 

17 

147 

232 

78 

8 

323 

78 

112 

4621 

     

 

 
Table 3.  First column states the name of hierarchies. Second column gives results of the referral 

approach and the two last columns give results of our heuristic with the Global Split & Balance and the 

Local Split & Balance options. 

 

Data SBSC Global S&B Local S&B 

Unidraw 

Self 

Love-ed 

Laure 

Geode 

Ed 

Java 

Java8 

30 

53 

54 

23 

89 

50 

19 

84 

30 

53 

54 

23 

89 

50 

19 

81 

24 

52 

58 

23 

97 

53 

16 

78 

    

 

 

5   Conclusion 

Computing optimal bit-vector encodings was proved non-approximable and NP-hard in 

[12], and the best heuristics rely on another hard problem, that is graph coloring [14, 5]. 

Nonetheless the class of trees, which includes chains and antichains, was shown to be 

approximable [12, 6]. In this paper, we show how to combine these heuristics for trees and the 

reduction to graph coloring to compute bit-vector encodings for general posets. Based on the 

modular decomposition, this heuristic uses tree ideas for series and parallel inner nodes, our 

original blow up operator and colorings for prime inner nodes. With two options depending on 

the preprocessing step, it outperforms previously known algorithms, especially for series-

parallel posets. 

 

 



 

 

 

 

 
 

Fig. 10. Graphical representation of Java8 hierarchy  

 

 

 

References 
 

[1]R. Agrawal, A. Borgida, and J. V. Jagadish.: Efficient management of transitive            

relationships in large data and knowledge bases.  ACM SIGMOD International    

Conference on Management of Data. pp. 115-146 (1989). 

[2]A. Bouchet.: Etude combinatoire des ordonnes finis, Applications. PhD thesis, 

Universite  scientifique et medicale de Grenoble (1971). 

[3]C. Capelle.: Representation of an order as union of interval orders. Proceedings of 

ORDAL'94, LNCS 831. pp. 143-161 (1994).  

[4]Y. Caseau.:  Efficient handling of multiple inheritance hierarchies. Proceedings of 

OOPSLA'93. pp. 271-287  (1993).  



 

 

 

 

[5]Y. Caseau, M. Habib, L. Nourine, and O. Raynaud.: Encoding of multiple inheritance 

hierarchies and partial orders. Computational Intelligence. pp. 50-62 (1999). 

[6]P. Colomb, O. Raynaud, and E. Thierry.: Generalized polychotomic encoding. 

Proceedings of MCO'08. pp. 77-86 (2008).  

[7]A. Fall. The foundations of taxonomic encodings. Computational Intelligence. pp. 598-

642 (1998).  

[8]R. E. Filman.: Polychotomic encoding: A better quasi-optimal bit-vector encoding 

of tree hierarchies. Proceedings of ECOOP'2002. pp. 545-561 (2002). 

[9]T. Gallai.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum 

Hungaricae. pp. 25-66 (1967).  

[10]J. Gil and Y. Zibin.: Efficient subtyping tests with pq-encoding. ACM Trans. Program. 

pp.819-856 (2005). 

[11]M. Habib and L. Nourine.: Bit-vector encoding for partially ordered sets. Proceedings 

of ORDAL'94, LNCS 831. pp.1-12 (1994).  

[12]M. Habib, L. Nourine, O. Raynaud, and E. Thierry.: Computational aspects of the 2-

dimension of partially ordered sets. Theor. Comput. Sci. pp. 401-431 (2004). 

[13]H. V. Jagadish.: A compression technique to materialize transitive closure. ACM 

Transactions on Database Systems. pp. 558-598 (1990). 

[14]A. Krall, J. Vitek, and R.N. Horspool.: Near optimal hierarchical encoding of types. 

Proceedings of ECOOP'97. pp. 128-145 (1997). 

[15]V. Novak.: On the pseudo-dimension of ordered sets. Czechoslovak Math. Journal. pp. 

587-598 (1963). 

[16]Krzysztof Palacz and Jan Vitek.: Java subtype tests in real-time. ECOOP'03 

Conference Proceedings. pp. 378-404 (2003). 

[17]O. Raynaud and E. Thierry.: A quasi optimal bit-vector encoding of tree hierarchies. 

Proceedings of ECOOP'2001, LNCS 2072. pp. 165-180 (2001). 

[18]O. Raynaud and E. Thierry.: The complexity of embedding orders into small products 

of chains. pp. 365-381 (2010). 

[19]E. Sperner.: Ein satz •uber untermengen einer endlichen menge. Math. Z. pp. 544- 

548 (1928). 

[20]M. Talamo and P. Vocca.: An efficient data structure for lattice operations. SIAM J. 

Comput. pp. 1783-1805 (1999). 

[21]M. Tedder, D. Corneil, M. Habib, and C. Paul.: Simple, linear-time modular 

decomposition. ICALP. N 5125 in LNCS. pp. 634-645 (2008). 

[22]J. Vitek, R.N. Horspool, and A. Krall.: Efficient type inclusion tests. OOP- SLA'97. 

pp. 142-157 (1997). 

[23]Y. Zibin and Y. Gil.: Efficient subtyping tests with pq-encoding. Proceedings of 

OOPSLA'2001 (2001). 

[24]E. Thierry.: Sur quelques interactions entre structures de donnees et algorithms 

efficaces pour les ordres et les graphes. PhD thesis, LIRMM, Universite Montpellier II, 

(2001). 

 

 

 


