
Modelling Business Processes Using Evolutionary 

Generated Petri Nets 

 
Jan Plucar1, Ondrej Grunt2, Pandian Vasant 3, Ivan Zelinka 4 

{jan.plucar@vsb.cz 1, ondrej.gruntr@vsb.cz2, pvasant@gmail.com3} 
 

VSB-Technical University of Ostrava,17. listopadu 15, 708 33 Ostrava1,2 

Universiti Teknologi PETRONAS,Department of Fundamental and Applied Sciences 

32610 Seri Iskandar, Malaysia3 

Abstract. Evolutionary algorithms or computations (EC) are commonly used for solving 

problems such as optimization and reverse engineering of complex systems. In this 

paper, we present bio-inspired approach in a process of evolving design for the workflow 

processes. Workflow management systems often offer modelling capabilities to support 

construction of business processes. However, constructing formal workflow model for 

the extensive business process is a non-trivial task. Workflow process could be described 

as bipartite graph and therefore interpreted by Petri Nets.  The goal is to describe a 

process for evolving and verification of petri nets. 

Keywords: Evolving petri nets, Analytic programming, Genetic algorithm 

1   Introduction 

Every company management is trying to obtain reliable partners in business and make 

their company successful and profitable. Many methods and methodologies are used to 

achieve this goal. The quality of services offered by the company is a crucial factor when 

establishing partnership. In the past, several standards that are trying to assess maturity level 

of company were introduced. One such standard is Software Process Improvement and 

Capability Determination (SPICE), which is described in the ISO / IEC 15504 framework. 

Thanks to the success of the standard, more specialized versions such as Automotive SPICE, 

Medi SPICE or Enterprise SPICE were developed. All these standards have one thing in 

common. It is description of company's business processes, which are then evaluated and 

improved. Improvement of the business process is always difficult, and initiatives often fail to 

achieve better results. Therefore, it is important to understand the initial baseline level of the 

process, and re-assess the situation after improvements have been performed. 

This article lays the foundation for the possibility of automatic business process creation 

with the respect to expected process parameters and outputs. In the first part of this paper, 

methods, languages and algorithms that were used are presented. Then visualized overview of 

the system is described and proposed solution is discussed. 



 

 

 

 

2   Petri Nets 

From this point, we will focus on one business process that will be represented by Petri 

net (PN). Such PN will be used as a model of real process. Petri Nets is a modeling language 

designed by Carl Adam Petri capable of describing parallel and distributed systems [1]. PN 

model is graphically represented by directed bipartite graph consisting of two types of nodes: 

 

 Places: nodes representing current condition of a net normally indicated by circle 

symbol. 

 Transitions: nodes representing events occurring in the net normally indicated by 

bar symbol. 

 

Nodes in PN are connected by directed arcs, which can be divided into three groups: input 

arcs, output arcs and inhibitor arcs. Arcs can only connect place to a transition and vice versa.  

Places in PN may contain tokens, which are indicated by a number of dots corresponding 

to number of tokens present at a place. Tokens move through the net by firing an enabled 

transition (transition that has at least one token present at its input place). Distribution of 

tokens in the net is called marking. The initial state of the net is then called initial marking.  

As basic PN provide only immediate transitions, where token moves immediately after a 

transition is enabled, stochastically determined delay can be applied to a transition to reflect 

events more accurately [2]. Such transition then fires a token only after it is enabled and 

amount of time given by stochastically determined delay passes. This extension of PN 

language is called Stochastic Petri nets (SPN) [3,4,5] and was chosen as tool for modelling of 

our business process. 

 

Definition 1 A Petri Net is a four-tuple PN = (P,T,F,M0) where:  

 

1. P is a set of places. 

2. T is a set of transitions. 

3. F, 𝐹 ⊂ (𝑃 𝑥 𝑇) ⋃  (𝑇 𝑥 𝑃) is a set of arcs. 

4. 𝑀0 is the initial marking.  

 

2.1   PN properties 

 

One of the advantages of PN approach is its ability to analyze resulting PN (or SPN) 

model in objective matter by proving properties of the net [6]. Their interpretations then 

heavily depend on the purpose of the constructed model. For our PN representation of 

business process, following properties were deemed as the most useful in further verification 

of the model:  

 

Reachability -  Let 𝑀𝑦 and 𝑀𝑥 be two different markings in a net. We call marking 𝑀𝑖 

reachable from marking 𝑀𝑗  if there is a sequence 𝜎𝑀 such that 𝑀𝑖[𝜎𝑀〉𝑀𝑗. Reachability is 

used to estimate the probability of a PN model being in a given marking M. All markings that 

are reachable from the initial marking then form reachability set 𝑅𝑆(𝑀0) of the model (an 

example of reachability set is shown in Figure 1).  

 



 

 

 

 

 

Fig. 1. Reachability set example 

However, reachability set only contains information about markings and not about 

transitions sequences leading to such markings. To obtain this information, reachability graph 

(RG) can be constructed, in which each node represents a marking in reachability set 

(i.e.𝑀0, 𝑀1, etc.). These nodes are then connected with directed arcs, each labeled by a 

transition that fired (i.e.𝑡0, 𝑡1, etc.). An example of resulting graph is shown in Figure 2.  

 

 

Fig. 2. Reachability graph for reachability set from Fig.1 

Absence of deadlock - Deadlock is a state of PN in which no transition can fire, thus barring 

tokens from moving through the net. A PN model is deadlock-free, if all models resulting 

from all possible parametric initial markings do not contain a deadlock. While deadlock-

freeness cannot be defined for PN models, it is possible to determine if PN model can 

potentially have a deadlock by examining its graph structure. 



 

 

 

 

Liveness -  A transition t is said to be live in PN model if and only if, for each marking 𝑀𝑖  

reachable from the initial marking 𝑀0 exists a marking 𝑀𝑗 reachable from 𝑀𝑖 such that t is 

enabled in 𝑀𝑗. PN model is said to be live if all 𝑡 ∈ T are live in it.  

Transition that is not live is said to be dead. For each dead transition t, it is possible to 

find marking M such that t is not enabled in none of markings in RS(M).  

Important consequence of liveness is that PN model in which at least one transition t is 

said to be live cannot contain a deadlock. However, that is not sufficient condition for PN 

model to be live, as it can contain some dead transitions as well. Such PN model is then said to 

be partially live. 

In PN model analysis, liveness relates to the possibility of a transition to fire infinitely 

often. 

 

Boundedness - A place p is said to be k-bounded in PN model if and only if, for each 

reachable marking M the number of tokens in 𝑝 ≤ 𝑘. PN model is said to be k-bounded if 

every 𝑝 ∈ 𝑃 is k-bounded.  

 

Boundedness of PN model implies the finiteness of the state space. If PN model comprises of 

N places and is k-bounded, the number of states does not exceed (𝑘 + 1)𝑁. 

 

2.2   Analysis techniques 

 

To prove PN properties, state space analysis techniques are used. State space analysis 

techniques are inherently non parametric with respect to the initial marking, since they require 

its complete instantiation. These techniques are based on the construction of RS and RG of PN 

system and thus are feasible only if RS and RG are finite. 

Following the construction of RG, properties of PN system may be proved using graph 

analysis algorithms: 

 

Reachability -  Marking 𝑀𝑗 is reachable from marking 𝑀𝑖 in PN system if its RG 

contains directed arc from 𝑀𝑖 to 𝑀𝑗. 

Absence of deadlock -  Deadlock in PN system may be identified by looking for a node 

in RG with no output arcs. Absence of such node is sufficient for the system to be absent of 

deadlock. 

Liveness - Transition t in PN system is live if and only if the RG contains no dead 

marking and t labels some arc of every strongly connected component of RG (i.e. each node in 

graph can be reached from every other node). 

Boundedness – Place 𝑝 ∈ 𝑃 of PN system is k-bounded if and only if  

 

𝑘 =  𝑚𝑎𝑥
𝑀∈𝑅𝑆

 M(p) 

 

2.3   Workflow nets 

 

PN method is capable of modeling workflow, i.e. process which has clearly distinguished 

input place, which has no input arc, and output place, which similarly has no output arc and 

that an addition of arc connecting input and output place results in strongly connected net. PN 

representing workflow is called Workflow Petri net (WPN) [7].  



 

 

 

 

In terms of important properties mentioned in previous section, WPN has a deadlock and 

the deadlock place is reachable from all markings. Connecting input and output place by 

directed arc then results in live model.  

One important property of WPN is soundness of constructed model. It is believed, that 

every well-designed business process can be represented by sound WPN [8, 9, 10]. Let N be 

WPN and let 𝑁𝑟 be WPN with added arc between input and output place. Then N is sound if  

𝑁𝑟 is live and k-bounded for some non-infinite k. Soundness property is necessary condition 

for the application of learning algorithms to retain correct structure of a net. Properties of 

resulting WPN or PN model may then be proved by application of previously mentioned 

analysis techniques. 

3   Experiment Overview 

Petri nets are useful tool for visualisation of the processes. However, constructing and 

optimizing PN that describes process with hundreds of possible transitions and places is time 

and resources demanding task. Therefore, Evolutionary Petri Nets (EPN) are proposed as a 

solution to this task. 

Typical feature of evolutionary algorithms is that they are based on working with 

populations of individuals. We can represent the population as a matrix 𝑀 × 𝑁where columns 

represent the individuals. Each individual represents a solution to the current issue. In other 

words, it is set of cost function argument values whose optimal number combination we are 

looking for. One of early evolutionary algorithms can be found in Price [11]. The main 

activity of evolutionary algorithms is the cyclic creation of new populations which are better 

than the previous ones. Better population is a population whose individuals have better fitness. 

In our case, it is EPN that generates expected output and demonstrates best properties, see 2.1. 

Similar approach was proposed in [12] and [13], where authors used genetic programming 

(GP) as a primary tool for PN construction.  

Overview of the proposed solution is visualised in Figure 3. There are several aspects 

that must be defined before system starts. Most important are PN building blocks, system loop 

termination condition and PN outputs. Then initial population of PNs is created and system is 

ready to start. Once started, system loops several tasks: 

 

- Every PN in population is simulated in Petri nets simulator. In our research, we have 

so far used own simple solution for the simulator software. In the future work, PNs 

will be transformed to petri nets modeling language to get access to more 

sophisticated simulator tools. Output of the simulator is set of PNs in their final 

state. 

- Genetic algorithm selects most suitable PN which will be used as a member of new 

population. This member is then modified using Analytic programming (AP), that is 

described in section 4 

 

 



 

 

 

 

 

Fig. 3. System overview 

4   Analytic programming 

Analytic programming was inspired by the numerical methods in Hilbert functional 

spaces and by GP. The principles of AP are somewhere between these two philosophies: From 

GP stems the idea of the evolutionary creation of symbolic solutions, whereas the general 

ideas of functional spaces and the building of resulting function by means of a search process 

(usually done by numerical methods such as the Ritz or Galerkin method) are adopted from 

Hilbert spaces. Like genetic programming or grammatical evolution, AP is based on a set of 

functions, operators and so-called terminals, which are usually constants or independent 

variables, for example: 

- functions: Sin, Tan, Tanh, And, Or 

- operators: +, -, *, /, dt 

- terminals: 2.73, 3.14, t 

All these ‘mathematical’ objects create a set from which AP tries to synthesize an 

appropriate solution. The main principle of AP is based on discrete set handling (DSH). 

Discrete set handling itself can be seen as a universal interface between evolutionary 

algorithm and the problem to be solved symbolically. That is why AP can be performed using 

almost any evolutionary algorithm. In this case, Differential Evolution (DE) has been used, 



 

 

 

 

see section 5. Analytical programming, together with a few basic examples, is discussed in 

more detail in [14] and [15]. 

 

Briefly, in AP, individuals consist of non-numerical expressions (operators, functions) as 

described above, which are in the evolutionary process represented by their integer indexes. 

This index then serves as a pointer into the set of expressions and AP uses it to synthesize the 

resulting function-program for cost function evaluation. 

 

5   Differential evolution 

Differential evolution (DE) is one of the methods used in evolutionary computations. It is 

typical for the evolutionary algorithms to work with population of individuals. Each individual 

consists of a vector of parameters that represent solution to the problem. DE optimizes a 

problem by maintaining a population of candidate solutions and creating new candidate 

solutions by combining existing ones according to its simple formulae, and then keeping 

whichever candidate solution has the best score or fitness on the optimization problem at hand. 

DE is originally due to Storn and Price [16]. Books have been published on theoretical 

and practical aspects of using DE in parallel computing, multi objective optimization, 

constrained optimization, and the books also contain surveys of application areas. Excellent 

surveys on the multi-faceted research aspects of DE can be found in journal articles like [11, 

17, 18, 19]. 

 
For I = 0 to Generation do 

 For j = 0 to NP do 

  Select j-individual 

Select three random individuals from population 

  Breed new individual  

  Compute the new individual fitness 

Choose a better one from both individuals to new 

population 

End 

End 

 

Where input parameters are: 

 

- NP, F, CR, N: described in section 6 

- X: initial population (vector) 

- fcost: function returning fitness of current solution 

 

For our purposes the DE/rand/1 algorithm mutation has been choosen. The notation 

DE/rand/1 specifies that the vector v to be perturbed is randomly chosen and the perturbation 

consists of one weighted vector. 

 

𝑣 =  𝑥𝑟1,𝑗
𝐺 + 𝐹×(𝑥𝑟2,𝑗

𝐺 − 𝑥𝑟3,𝑗
𝐺 )   (1) 

 



 

 

 

 

Due to this mutation, new individuals are not affected by the temporary best individual 

from generation and space of possible solutions is searched through uniformly. More detailed 

description of Differential Evolution can be found in Price [11]. 

 

6   Experiment design 

Our model was evolved using combination of analytic programming and differential 

evolution.  Proposed solution was implemented in C# programming language. DE uses fitness 

function in order to breed more suitable individuals. This fitness function was represented as a 

rate of difference between expected outputs and EPN output. We have tried various different 

configurations of DE parameters. Values of these constants were chosen empirically based on 

the performance of DE algorithm. These values are shown in the Table 1. Other parameters 

like number of generations and population size for both methods were determined from the 

literature [16, 20]. Most promising result is shown in Fig. 4. This EPN reflects mobile phone 

switching between networks during upload process of files between server and mobile phone 

in the environment comprising of 2G, 3G and 4G networks. Evolution of EPN fitness is 

depicted in Fig. 5. 

 

Table 1.  Parameters setting 

Parameter name Value 

Number of generations 50 
NP 100 
F 1 
CR 0.5 
N 2 

 

Where parameters are: 

- NP: population size 

- F: mutational constant 

- CR: crossover threshold 

- N: dimension of problem 

 

 

 



 

 

 

 

 

Fig. 4. Evolved petri net 

 

Fig. 5. Fitness evolution 

 

7   Conclusion 

In this article, we have outlined the basic elements of the experiment, which aims to 

define process for petri nets evolution. One of the advantages of PN approach is its ability to 

analyze resulting PN (or SPN) model in objective matter by proving properties of the net. We 

have described properties that are being analysed in early stage of experiment and many more 



 

 

 

 

may be introduced later. In section 6 we have mentioned basic parameters setup of the system 

and one of the resulting EPNs. More technical description along with experiment performance 

measurements and other examples will be presented in future papers. Analytic programming 

proved promising results, its potential has to be however verified on larger amount of evolved 

petri nets. 
 

Acknowledgment 

This work was supported by The Technology Agency of the Czech Republic TACR 

TF01000091 and SGS No. SGS 2016/175, VSB-Technical University of Ostrava. 

References 

[1] Peterson, James L.:Petri Nets. ACM Computing Surveys 1977; 9 (3), pp. 223--252.  

[2] Symons, Fred J.W.: Description And Definition Of Queueing Systems By Numerical 

Petri Nets. ATR, Australian Telecommunication Research 1980; 13 (2), pp. 20--31. 

[3] Florin, G., Long, P., Natkin, S.: Evaluation of Functional Reliability of Information 

Systems by Stochastic Petri Nets. 1980. 

[4] Molloy, M. K.: Discrete Time Stochastic Petri Nets. IEEE Transactions on Software 

Engineering 1985; SE-11 (4), pp. 417--423. 

[5] Florin, G., Natkin, S.: Les reseaux de Petri stochastiques. Technique et Science 

Informatiques 1985; 4(1). 

[6] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:Modeling with 

Generalised Stochastic Petri Nets. Universita degli Studi di Torino, 1994. 

[7] Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. Fundamenta 

Informaticae -- Applications and Theory of Petri Nets and Other Models of Concurrency 

2010; 113 (3-4), pp.205--228.  

[8] Yang, X., Yu, T., Xu, H.: A Novel Framework of Using Petri Net to Timed Service 

Business Process Modeling. International Journal of Software Engineering and Knowledge 

Engineering 26 (4), pp. 633--652 (2016). 

[9] Pang, S., Yan, B., Liu, X., Jia, H.: A novel approach for dynamic business processes 

and process changes with Petri net. Journal of Computational and Theoretical Nanoscience 

12 (7), pp. 1457--1461 (2015). 

[10] De Rezende, L.P., Julia, S., Cardoso, J.: Possibilistic WorkFlow nets for dealing with 

cancellation regions in business processes. ICEIS 2016 - Proceedings of the 18th 

International Conference on Enterprise Information Systems 2, pp. 126--133 (2016). 

[11] Price, K.: Differential evolution: a fast and simple numerical optimizer. In: Proc. 1996 

Biennial Conference of the North American Fuzzy Information Processing Society, pp. 

524–527. IEEE Press, New York (1996) 

[12] Nobile, M. S., Besozzi, D., Cazzaniga, P., Mauri, G.:The Foundation of Evolutionary 

Petri Nets.CEUR Workshop Proceedings, 988, pp. 60-7 (2013) 

[13] Nummela, J., Juistrom, B.A., Evolving, petri nets to represent metabolic pathways, 

GECCO 2005 - Genetic and Evolutionary Computation Conference (2005) 

[14] Zelinka, I., Oplatkova, Z., Nolle, L., Analytic programming - Symbolic regression by 

means of arbitrary evolutionary algorithms, International Journal of Simulation: Systems, 

Science and Technology, 6 (9), pp. 44-56, (2005) 

[15] Senkerik, R., Kominkova Oplatkova, Z., Pluhacek, M., Zelinka, I., Analytic 

programming—a new tool for synthesis of controller for discrete chaotic Lozi map, Lecture 

Notes in Electrical Engineering 307, pp. 137-152 (2014) 



 

 

 

 

[16] Price, K., Storn, R.: Differential Evolution – A simple evolutionary strategy for fast 

optimization. Dr. Dobb’s Journal 264, 18–24 and 78 (1997). 

[17] Price, K.: Genetic Annealing. Dr. Dobb’s Journal, 127–132 (October 1994) 

[18] Malamura, E., Murata, T.: Hybrid system modeling and operation schedule 

optimization for gas transportation network based on combined method of DE, GA and 

hybrid petri net.Proceedings - 2016 5th IIAI International Congress on Advanced Applied 

Informatics,  pp. 1032--1035, (2016) 

[19]  Letia, T.S., Kilyen, A.O.: Evolutionary synthesis of hybrid controllers. Proceedings - 

2015 IEEE 11th International Conference on Intelligent Computer Communication and 

Processing, pp. 133--140 (2015) 

[20]  Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., 

Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) 

 


