Modelling Business Processes Using Evolutionary
Generated Petri Nets

Jan Plucar?, Ondrej Grunt?, Pandian Vasant?, Ivan Zelinka*
{jan.plucar@vsb.cz %, ondrej.gruntr@vsb.cz?, pvasant@gmail.com?®}

VSB-Technical University of Ostrava,17. listopadu 15, 708 33 Ostraval
Universiti Teknologi PETRONAS,Department of Fundamental and Applied Sciences
32610 Seri Iskandar, Malaysia®

Abstract. Evolutionary algorithms or computations (EC) are commonly used for solving
problems such as optimization and reverse engineering of complex systems. In this
paper, we present bio-inspired approach in a process of evolving design for the workflow
processes. Workflow management systems often offer modelling capabilities to support
construction of business processes. However, constructing formal workflow model for
the extensive business process is a non-trivial task. Workflow process could be described
as bipartite graph and therefore interpreted by Petri Nets. The goal is to describe a
process for evolving and verification of petri nets.

Keywords: Evolving petri nets, Analytic programming, Genetic algorithm

1 Introduction

Every company management is trying to obtain reliable partners in business and make
their company successful and profitable. Many methods and methodologies are used to
achieve this goal. The quality of services offered by the company is a crucial factor when
establishing partnership. In the past, several standards that are trying to assess maturity level
of company were introduced. One such standard is Software Process Improvement and
Capability Determination (SPICE), which is described in the 1SO / IEC 15504 framework.
Thanks to the success of the standard, more specialized versions such as Automotive SPICE,
Medi SPICE or Enterprise SPICE were developed. All these standards have one thing in
common. It is description of company's business processes, which are then evaluated and
improved. Improvement of the business process is always difficult, and initiatives often fail to
achieve better results. Therefore, it is important to understand the initial baseline level of the
process, and re-assess the situation after improvements have been performed.

This article lays the foundation for the possibility of automatic business process creation
with the respect to expected process parameters and outputs. In the first part of this paper,
methods, languages and algorithms that were used are presented. Then visualized overview of
the system is described and proposed solution is discussed.

2 Petri Nets

From this point, we will focus on one business process that will be represented by Petri
net (PN). Such PN will be used as a model of real process. Petri Nets is a modeling language
designed by Carl Adam Petri capable of describing parallel and distributed systems [1]. PN
model is graphically represented by directed bipartite graph consisting of two types of nodes:

— Places: nodes representing current condition of a net normally indicated by circle
symbol.

— Transitions: nodes representing events occurring in the net normally indicated by
bar symbol.

Nodes in PN are connected by directed arcs, which can be divided into three groups: input
arcs, output arcs and inhibitor arcs. Arcs can only connect place to a transition and vice versa.

Places in PN may contain tokens, which are indicated by a number of dots corresponding
to number of tokens present at a place. Tokens move through the net by firing an enabled
transition (transition that has at least one token present at its input place). Distribution of
tokens in the net is called marking. The initial state of the net is then called initial marking.

As basic PN provide only immediate transitions, where token moves immediately after a
transition is enabled, stochastically determined delay can be applied to a transition to reflect
events more accurately [2]. Such transition then fires a token only after it is enabled and
amount of time given by stochastically determined delay passes. This extension of PN
language is called Stochastic Petri nets (SPN) [3,4,5] and was chosen as tool for modelling of
our business process.

Definition 1 A Petri Net is a four-tuple PN = (P,T,F,M0) where:

P is a set of places.

T is a set of transitions.

F,F c(PxT) U (T x P) is a set of arcs.
M, is the initial marking.

~wdE

2.1 PN properties

One of the advantages of PN approach is its ability to analyze resulting PN (or SPN)
model in objective matter by proving properties of the net [6]. Their interpretations then
heavily depend on the purpose of the constructed model. For our PN representation of
business process, following properties were deemed as the most useful in further verification
of the model:

Reachability - Let M, and M, be two different markings in a net. We call marking M;
reachable from marking M; if there is a sequence g, such that Ml-[aM)Mj. Reachability is
used to estimate the probability of a PN model being in a given marking M. All markings that
are reachable from the initial marking then form reachability set RS(M,) of the model (an
example of reachability set is shown in Figure 1).

My = 2p1 + D3

My, = p1 + p2 + p3

My = p; + D5
Ms = p2 + p3 + psa

My, = P2+ D5
Ms = pa + DPs
Mg = p1+ p3 + P4

M; = 2p2 + ps3

Mg = p3 + 2ps

Fig. 1. Reachability set example

However, reachability set only contains information about markings and not about
transitions sequences leading to such markings. To obtain this information, reachability graph
(RG) can be constructed, in which each node represents a marking in reachability set
(i.e.My, My, etc.). These nodes are then connected with directed arcs, each labeled by a
transition that fired (i.e.t,, t;, etc.). An example of resulting graph is shown in Figure 2.

tl
t1

t4
| 'W‘
4

td

A3

¥

¥

N7 M8

Fig. 2. Reachability graph for reachability set from Fig.1

Absence of deadlock - Deadlock is a state of PN in which no transition can fire, thus barring
tokens from moving through the net. A PN model is deadlock-free, if all models resulting
from all possible parametric initial markings do not contain a deadlock. While deadlock-
freeness cannot be defined for PN models, it is possible to determine if PN model can
potentially have a deadlock by examining its graph structure.

Liveness - A transition t is said to be live in PN model if and only if, for each marking M;
reachable from the initial marking M, exists a marking M; reachable from M; such that t is
enabled in M;. PN model is said to be live if all t € T are live in it.

Transition that is not live is said to be dead. For each dead transition t, it is possible to
find marking M such that t is not enabled in none of markings in RS(M).

Important consequence of liveness is that PN model in which at least one transition t is
said to be live cannot contain a deadlock. However, that is not sufficient condition for PN
model to be live, as it can contain some dead transitions as well. Such PN model is then said to
be partially live.

In PN model analysis, liveness relates to the possibility of a transition to fire infinitely
often.

Boundedness - A place p is said to be k-bounded in PN model if and only if, for each
reachable marking M the number of tokens in p < k. PN model is said to be k-bounded if
every p € P is k-bounded.

Boundedness of PN model implies the finiteness of the state space. If PN model comprises of
N places and is k-bounded, the number of states does not exceed (k + 1)".

2.2 Analysis techniques

To prove PN properties, state space analysis techniques are used. State space analysis
techniques are inherently non parametric with respect to the initial marking, since they require
its complete instantiation. These techniques are based on the construction of RS and RG of PN
system and thus are feasible only if RS and RG are finite.

Following the construction of RG, properties of PN system may be proved using graph
analysis algorithms:

Reachability - Marking M; is reachable from marking M; in PN system if its RG
contains directed arc from M; to M;.

Absence of deadlock - Deadlock in PN system may be identified by looking for a node
in RG with no output arcs. Absence of such node is sufficient for the system to be absent of
deadlock.

Liveness - Transition t in PN system is live if and only if the RG contains no dead
marking and t labels some arc of every strongly connected component of RG (i.e. each node in
graph can be reached from every other node).

Boundedness — Place p € P of PN system is k-bounded if and only if

k= o M(p)

MERS

2.3 Workflow nets

PN method is capable of modeling workflow, i.e. process which has clearly distinguished
input place, which has no input arc, and output place, which similarly has no output arc and
that an addition of arc connecting input and output place results in strongly connected net. PN
representing workflow is called Workflow Petri net (WPN) [7].

In terms of important properties mentioned in previous section, WPN has a deadlock and
the deadlock place is reachable from all markings. Connecting input and output place by
directed arc then results in live model.

One important property of WPN is soundness of constructed model. It is believed, that
every well-designed business process can be represented by sound WPN [8, 9, 10]. Let N be
WPN and let N,. be WPN with added arc between input and output place. Then N is sound if
N, is live and k-bounded for some non-infinite k. Soundness property is necessary condition
for the application of learning algorithms to retain correct structure of a net. Properties of
resulting WPN or PN model may then be proved by application of previously mentioned
analysis techniques.

3 Experiment Overview

Petri nets are useful tool for visualisation of the processes. However, constructing and
optimizing PN that describes process with hundreds of possible transitions and places is time
and resources demanding task. Therefore, Evolutionary Petri Nets (EPN) are proposed as a
solution to this task.

Typical feature of evolutionary algorithms is that they are based on working with
populations of individuals. We can represent the population as a matrix M x Nwhere columns
represent the individuals. Each individual represents a solution to the current issue. In other
words, it is set of cost function argument values whose optimal number combination we are
looking for. One of early evolutionary algorithms can be found in Price [11]. The main
activity of evolutionary algorithms is the cyclic creation of new populations which are better
than the previous ones. Better population is a population whose individuals have better fitness.
In our case, it is EPN that generates expected output and demonstrates best properties, see 2.1.
Similar approach was proposed in [12] and [13], where authors used genetic programming
(GP) as a primary tool for PN construction.

Overview of the proposed solution is visualised in Figure 3. There are several aspects
that must be defined before system starts. Most important are PN building blocks, system loop
termination condition and PN outputs. Then initial population of PNs is created and system is
ready to start. Once started, system loops several tasks:

- Every PN in population is simulated in Petri nets simulator. In our research, we have
so far used own simple solution for the simulator software. In the future work, PNs
will be transformed to petri nets modeling language to get access to more
sophisticated simulator tools. Output of the simulator is set of PNs in their final
state.

- Genetic algorithm selects most suitable PN which will be used as a member of new
population. This member is then modified using Analytic programming (AP), that is
described in section 4

A 4
Creste first
popuiation
A 4
Population of Peari rets
Petri Nets in cnulater
inital sate
A
i o 7 [Noj Termination PF:pu;:sOf;_o;
P Snine “-gonditions are met HIA s
proces stae
[Yes]
\ 4

Fig. 3. System overview
4 Analytic programming

Analytic programming was inspired by the numerical methods in Hilbert functional
spaces and by GP. The principles of AP are somewhere between these two philosophies: From
GP stems the idea of the evolutionary creation of symbolic solutions, whereas the general
ideas of functional spaces and the building of resulting function by means of a search process
(usually done by numerical methods such as the Ritz or Galerkin method) are adopted from
Hilbert spaces. Like genetic programming or grammatical evolution, AP is based on a set of
functions, operators and so-called terminals, which are usually constants or independent
variables, for example:

- functions: Sin, Tan, Tanh, And, Or
- operators: +, -, *, /, dt
- terminals: 2.73, 3.14, t

All these ‘mathematical’ objects create a set from which AP tries to synthesize an
appropriate solution. The main principle of AP is based on discrete set handling (DSH).
Discrete set handling itself can be seen as a universal interface between evolutionary
algorithm and the problem to be solved symbolically. That is why AP can be performed using
almost any evolutionary algorithm. In this case, Differential Evolution (DE) has been used,

see section 5. Analytical programming, together with a few basic examples, is discussed in
more detail in [14] and [15].

Briefly, in AP, individuals consist of non-numerical expressions (operators, functions) as
described above, which are in the evolutionary process represented by their integer indexes.
This index then serves as a pointer into the set of expressions and AP uses it to synthesize the
resulting function-program for cost function evaluation.

5 Differential evolution

Differential evolution (DE) is one of the methods used in evolutionary computations. It is
typical for the evolutionary algorithms to work with population of individuals. Each individual
consists of a vector of parameters that represent solution to the problem. DE optimizes a
problem by maintaining a population of candidate solutions and creating new candidate
solutions by combining existing ones according to its simple formulae, and then keeping
whichever candidate solution has the best score or fitness on the optimization problem at hand.

DE is originally due to Storn and Price [16]. Books have been published on theoretical
and practical aspects of using DE in parallel computing, multi objective optimization,
constrained optimization, and the books also contain surveys of application areas. Excellent
surveys on the multi-faceted research aspects of DE can be found in journal articles like [11,
17,18, 19].

For I = 0 to Generation do
For j = 0 to NP do
Select j-individual
Select three random individuals from population
Breed new individual
Compute the new individual fitness
Choose a better one from both individuals to new
population
End
End

Where input parameters are:

- NP, F, CR, N: described in section 6
- X:initial population (vector)
- feost: function returning fitness of current solution

For our purposes the DE/rand/1 algorithm mutation has been choosen. The notation
DE/rand/1 specifies that the vector v to be perturbed is randomly chosen and the perturbation
consists of one weighted vector.

v= erl,j + Fx(xrgz,j - er3,}') 1)

Due to this mutation, new individuals are not affected by the temporary best individual
from generation and space of possible solutions is searched through uniformly. More detailed
description of Differential Evolution can be found in Price [11].

6 Experiment design

Our model was evolved using combination of analytic programming and differential
evolution. Proposed solution was implemented in C# programming language. DE uses fitness
function in order to breed more suitable individuals. This fitness function was represented as a
rate of difference between expected outputs and EPN output. We have tried various different
configurations of DE parameters. Values of these constants were chosen empirically based on
the performance of DE algorithm. These values are shown in the Table 1. Other parameters
like number of generations and population size for both methods were determined from the
literature [16, 20]. Most promising result is shown in Fig. 4. This EPN reflects mobile phone
switching between networks during upload process of files between server and mobile phone
in the environment comprising of 2G, 3G and 4G networks. Evolution of EPN fitness is
depicted in Fig. 5.

Table 1. Parameters setting

Parameter name Value
Number of generations 50

NP 100

F 1

CR 0.5

N 2

Where parameters are:

- NP: population size

- F: mutational constant

- CR: crossover threshold
- N: dimension of problem

B B E B B]

NoSwitch 2 Switch_32 NoSwitch_3 Switch_43 NoSwitch_4 Switch_24
expp 2G expp 2G expp 3G expp 3G expp 4G expp 4G

Switch_23 ; Switch_34 ; Switch_42
NWOIk_2G oo 30 NeWOMK 3G oonge Netork 4G o ne
jets =0 - jets =1 - Jets =0 -
Fig. 4. Evolved petri net

0.025
0.02

0.015

Fitness

0.005

25 30 35 40 a5
Generations

-——DE1l ==——DE2 -———DE3 DE4 ———DE5 -————DE6 =———=DE7 ==——=DE8 ==———DE9 ———DE10

Fig. 5. Fitness evolution

7 Conclusion

In this article, we have outlined the basic elements of the experiment, which aims to
define process for petri nets evolution. One of the advantages of PN approach is its ability to
analyze resulting PN (or SPN) model in objective matter by proving properties of the net. We
have described properties that are being analysed in early stage of experiment and many more

may be introduced later. In section 6 we have mentioned basic parameters setup of the system
and one of the resulting EPNs. More technical description along with experiment performance
measurements and other examples will be presented in future papers. Analytic programming
proved promising results, its potential has to be however verified on larger amount of evolved
petri nets.

Acknowledgment

This work was supported by The Technology Agency of the Czech Republic TACR
TF01000091 and SGS No. SGS 2016/175, VSB-Technical University of Ostrava.

References

[1] Peterson, James L.:Petri Nets. ACM Computing Surveys 1977; 9 (3), pp. 223--252.

[2] Symons, Fred J.W.: Description And Definition Of Queueing Systems By Numerical
Petri Nets. ATR, Australian Telecommunication Research 1980; 13 (2), pp. 20--31.

[3] Florin, G., Long, P., Natkin, S.: Evaluation of Functional Reliability of Information
Systems by Stochastic Petri Nets. 1980.

[4] Molloy, M. K.: Discrete Time Stochastic Petri Nets. IEEE Transactions on Software
Engineering 1985; SE-11 (4), pp. 417--423.

[5] Florin, G., Natkin, S.: Les reseaux de Petri stochastiques. Technique et Science
Informatiques 1985; 4(1).

[6] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:Modeling with
Generalised Stochastic Petri Nets. Universita degli Studi di Torino, 1994.

[7] Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. Fundamenta
Informaticae -- Applications and Theory of Petri Nets and Other Models of Concurrency
2010; 113 (3-4), pp.205--228.

[8] Yang, X., Yu, T., Xu, H.: A Novel Framework of Using Petri Net to Timed Service
Business Process Modeling. International Journal of Software Engineering and Knowledge
Engineering 26 (4), pp. 633--652 (2016).

[9] Pang, S., Yan, B., Liu, X., Jia, H.: A novel approach for dynamic business processes
and process changes with Petri net. Journal of Computational and Theoretical Nanoscience
12 (7), pp. 1457--1461 (2015).

[10] De Rezende, L.P., Julia, S., Cardoso, J.: Possibilistic WorkFlow nets for dealing with
cancellation regions in business processes. ICEIS 2016 - Proceedings of the 18th
International Conference on Enterprise Information Systems 2, pp. 126--133 (2016).

[11] Price, K.: Differential evolution: a fast and simple numerical optimizer. In: Proc. 1996
Biennial Conference of the North American Fuzzy Information Processing Society, pp.
524-527. |IEEE Press, New York (1996)

[12] Nobile, M. S., Besozzi, D., Cazzaniga, P., Mauri, G.:The Foundation of Evolutionary
Petri Nets.CEUR Workshop Proceedings, 988, pp. 60-7 (2013)

[13] Nummela, J., Juistrom, B.A., Evolving, petri nets to represent metabolic pathways,
GECCO 2005 - Genetic and Evolutionary Computation Conference (2005)

[14] Zelinka, 1., Oplatkova, Z., Nolle, L., Analytic programming - Symbolic regression by
means of arbitrary evolutionary algorithms, International Journal of Simulation: Systems,
Science and Technology, 6 (9), pp. 44-56, (2005)

[15] Senkerik, R., Kominkova Oplatkova, Z., Pluhacek, M., Zelinka, I., Analytic
programming—a new tool for synthesis of controller for discrete chaotic Lozi map, Lecture
Notes in Electrical Engineering 307, pp. 137-152 (2014)

[16] Price, K., Storn, R.: Differential Evolution — A simple evolutionary strategy for fast
optimization. Dr. Dobb’s Journal 264, 18-24 and 78 (1997).

[17] Price, K.: Genetic Annealing. Dr. Dobb’s Journal, 127-132 (October 1994)

[18] Malamura, E., Murata, T.: Hybrid system modeling and operation schedule
optimization for gas transportation network based on combined method of DE, GA and
hybrid petri net.Proceedings - 2016 5th 1Al International Congress on Advanced Applied
Informatics, pp. 1032--1035, (2016)

[19] Letia, T.S., Kilyen, A.O.: Evolutionary synthesis of hybrid controllers. Proceedings -
2015 IEEE 11th International Conference on Intelligent Computer Communication and
Processing, pp. 133--140 (2015)

[20] Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 79-108. McGraw-Hill, London (1999)

