
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

 

 

Hybridizing Bat Algorithm with Modified Pitch-Adjustment 

Operator for Numerical Optimization Problems 

Waheed Ali H. M. Ghanem1, 2, 3 and Aman Jantan1 

1School of Computer Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia 
2Faculty of Education-Saber, University of Aden, Aden, Yemen 

3Faculty of Engineering, University of Aden, Aden, Yemen 

Email: waheed.ghanem@gmail.com 

Email: aman@cs.usm.my 

Abstract. This article introduces a new metaheuristic approach that is a hybrid of two 

known algorithms, for solving global optimization problems. The proposed algorithm is 

based on the Bat Algorithm (BA), which is inspired by the micro-bat echolocation phe-

nomenon, and addresses the problems of local-optima trapping and low precision using an 

adjusted mutation operator from the Harmony Search (HS) algorithm. The proposed Hy-

brid Bat Harmony (HBH) algorithm attempts to balance the good exploitation process of 

BA with a fast exploration feature inspired by HS. The design of HBH is introduced and 

its performance is evaluated against fourteen of the standard benchmark functions, and 

compared to that of the standard BA and HS algorithms and to another recent hybrid algo-

rithm (HS/BA). The obtained results show that the new HBH method is indeed a promising 

addition to the arsenal of metaheuristic algorithms and can outperform the original BA and 

HS algorithms. 

Keywords: Bat algorithm; Harmony search algorithm; Global Optimization problem; 

Pitch adjustment operator. 

1 Introduction 

Innumerous problems in the real life involve a set of possible solutions, from which the one 

with the best quality is termed as the optimal solution, and the process of searching for such a 

solution is known as (mathematical) optimization. The quality of solutions is represented by the 

ability to maximize or minimize a certain function, called the objective function, while the pool 

of possible solutions that can satisfy the required objective is called the search space. One can 

traverse all possible solutions, examine the result of the objective function in each case, and 

select the best solution. However, many real problems are intractable using this exhaustive 

search strategy. In these problems, the search space expands exponentially with the input size, 

and exact optimization algorithms are impractical. The historical alternative in such situations 

is to resort to heuristics, similar to simple rules of thumb that humans would utilize in a search 

process. Heuristic algorithms implement such heuristics to explore the otherwise prohibitively 

large search space, but they do not guarantee finding the actual optimal solution, since not all 



areas of the space are examined. However, a close solution to the optimal is returned, which is 

“good enough” for the problem at hand.  

The next step would be to generalize those heuristics in higher level algorithmic frameworks 

that are problem independent, and that provide strategies to develop heuristic optimization al-

gorithms. The latter are known as metaheuristics [1]. Early metaheuristics were based on the 

concept of evolution, where the best solutions among a set of candidate solutions are selected 

in successive iterations, and new solution are generated by applying genetic operators such as 

crossover and mutation to the parent solutions.  

Similar to and including evolutionary algorithms, many metaheuristics were based on a meta-

phor, inspired by some physical or biological processes. Many recent metaheuristics mimic the 

biological swarms in performing their activities; in particular, the important tasks of foraging, 

preying and migration. Popular examples of developed metaheuristic algorithms in this category 

include Particle Swarm Optimization (PSO) [2], which is inspired by the movement of swarms 

of birds or fishes; Ant Colony Optimization (ACO) [3, 4], which is inspired by the foraging 

behavior of ants, where ants looking for food sources in parallel employ the concept of phero-

mone to indicate the quality of the found solutions; and Artificial Bee Colony (ABC) algorithm, 

inspired by the intelligent foraging behavior of honey bees [5, 6]. 

The idea of deriving metaheuristics from natural-based metaphors proved so appealing that 

much more of such algorithms have been, and continue to be developed. A few more examples 

include Cuckoo Search (CS) [7, 8], Biogeography-Based Optimization (BBO) [9], Animal Mi-

gration Optimization (AMO) [10], Chicken Swarm Optimization (CSO) [11], Grey Wolf Opti-

mization (GWO) [12], Krill Herd (KH) [13], and Monarch Butterfly Optimization (MBO) [14]. 

The Bat Algorithm (BA) [15] also belongs to the metaheuristics that are based on animal be-

havior; inspired by the echolocation behavior of bats in nature. On the other hand, several met-

aphor-based metaheuristics are derived from physical phenomena such as Simulated Annealing 

(SA) [16] which is inspired by the annealing process of a crystalline solid. The Harmony Search 

(HS) algorithm [17] belongs to this category, and is inspired by the process of improvising mu-

sical harmonies by musicians in an orchestra.  

The aforementioned metaheuristics are classified as stochastic optimization techniques. To 

avoid searching the whole solution space, they include a randomization component to explore 

new solution areas. Though these random operators are essential, they can introduce two types 

of problems. First, if the randomization is too strong, the metaheuristic algorithm might keep 

moving between candidate solutions, loosely examining each localized region and failing to 

exploit promising solutions and find the best solution. Second, if the search process is too local-

ized, exploiting the first found good solutions very well but failing to explore more regions, the 

algorithm might indeed miss the real optimal solution (called the global optimum), and trap into 

some local optima.  

The perfect balance between exploitation and exploration is essential to all metaheuristics. In 

fact, it is whether and how this balance is achieved that distinguishes most metaheuristics from 

each other, and forms a source of new attempts to improve existing algorithms, possibly by 

hybridizing ideas from more than one metaheuristic strategy. The work in this paper follows 

this path, focusing on two of the known metaheuristics: the BA and the HS algorithms. The 

most similar attempt in the literature is the hybrid metaheuristic method of Harmony Search/Bat 

Algorithm (HS/BA) [18]. HS/BA tries to improve the tendency of BA to trap into local optima 
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by adding a pitch adjustment operation in HS serving as a mutation operator during the process 

of the bat exploration, in an attempt to increase its diversity [18]. 

Motivated by the mutation operator and by the HS/BA algorithms, we introduce in this work a 

new hybrid algorithm that improves the diversity of BA by adding a mutation operator. Unlike 

HS/BA we do not employ the same pitch adjustment as the original HS algorithm. Rather, we 

employ a custom operator that we consistently found superior to other mutations in our research, 

during numerous experiments with the algorithms. We name the resulting algorithm the Hybrid 

Bat Harmony (HBH) algorithm, and evaluate its performance compared to the original BA, HS, 

and HS/BA. 

The rest of this article is organized as follows. Section 2 introduces the proposed HBH method, 

while Section 3 explains the setup of experimental evaluation. Section 4 presents and discusses 

the obtained results, and finally Section 5 concludes the paper. 

2 The Hybrid Bat Harmony Algorithm 

This section introduces the Hybrid Bat Harmony (HBH) algorithm, which is based on the stand-

ard BA [15] and HS [17] algorithms. The main idea behind the new algorithm is to augment the 

BA with a very effective operator from the HS algorithm. In particular, the principle of pitch 

adjustment in HS is further modified and fine-tuned to increase the diversity of BA and allow 

for more mutations in the BA search, in order to jump out of potential local-optima traps.  

In the standard BA all bats use echolocation to sense distance, and they also ‘know’ the differ-

ence between prey and obstacles in some way. Bats fly randomly with velocity vi at position xi 

with a frequency fi, varying the wavelength λ and loudness A0 to search for prey. They can 

automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of 

pulse emission r ∈ [0, 1], depending on the proximity of their target. It is also assumed that the 

loudness varies from a large (positive) A0 to a minimum constant value Amin. The critical 

aspect of metaheuristic search mechanisms in solving optimization problems is the correct bal-

ance between exploitation and exploration as discussed in the introduction. The standard BA 

controls the capability of the exploration process by Equations (1), (2) and (3), and the capability 

of the exploitation process by Equation (4): 

 𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (1) 

Where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform distribution. 

 𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗)𝑓𝑖 (2) 

Where 𝑥∗ is the current global best location (solution), which is located after comparing all the 

solutions among all the bats. 

 𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑥𝑖
𝑡 (3) 

Initially, each bat is randomly given a frequency which is drawn uniformly from [𝑓min, 𝑓max]. 

For the local search part, once a solution is selected among the current best solutions, a new 

solution for each bat is generated locally using random walk where 𝜀 ∈ [−1, 1] is a scaling factor 

which is a random number, while 𝐴𝑡 = < 𝐴𝑖
𝑡 > is the average loudness of all the bats at time 

step 𝑡. 
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 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡 (4) 

Furthermore, the loudness 𝐴𝑖 and the rate r𝑖 of pulse emission are updated as follows: 

 𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 ,        𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)] (5) 

Where α and γ are constants.  

 

However, BA at times falls in the trap of local optima after a quick convergence into a promising 

area. The main improvement by adding an operator from HS algorithm is to introduce more 

mutation into the elements of the current solution, either drawing from features of a previous 

good solution or from a random distribution according to the value of a random parameter called 

the Memory Consideration Rate (HMCR), which is inspired from the HS algorithm. Further, 

depending on another parameter called the Pitch Adjustment Rate (PAR), the algorithm might 

pull the search back to better position with respect to the best and worst solutions recorded so 

far, which proves very useful in case the BA traps in a local optimum. The modification of the 

pitch adjustment operator is listed in Algorithm 1 and in Equations (6) and (7): 

   𝑥𝑛𝑒𝑤(𝑑) = 𝑥𝑜𝑙𝑑(𝑑) + 𝑏𝑤×(𝑥𝑤𝑜𝑟𝑠𝑡(𝑑) − 𝑥𝑜𝑙𝑑(𝑑))×(2×𝑟𝑎𝑛𝑑 − 1) (6) 

 𝑥𝑛𝑒𝑤(𝑑) = 𝑥𝑜𝑙𝑑(𝑑) + 𝑏𝑤×(𝑥𝑜𝑙𝑑(𝑑) − 𝑥𝑏𝑒𝑠𝑡(𝑑))×(2×𝑟𝑎𝑛𝑑 − 1) (7) 

In the equations above, 𝑥𝑛𝑒𝑤  is a new bat solution, 𝑥𝑜𝑙𝑑 is the current solution, while variables  

𝑥𝑤𝑜𝑟𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡 represent the worst and best solutions ever found, respectively. d refers to a 

single dimension of the solution (an element of the solution vector). The bw is the control pa-

rameter called bandwidth, which is an arbitrary distance bandwidth for each generation, and 

rand is a random uniform real number between [0, 1]. 

Algorithm 1 

Modified Pitch Adjustment Operation (Mutation Operator) 

For 𝑑 = 1: 𝐷 
 If (rand < HMCR) then          //memory consideration 

  If (rand < PAR) then        //pitch adjustment 

   xnew(d)=xold(d)+2bw(xworst(d)-xold(d))*(rand-1)   // Eq(6) 

  Else 

   xnew(d)=xold(d)+2bw(xold(d)-xbest(d))*(rand-1)     // Eq(7) 

  End if 

 Else        

  𝑥new(𝑑)=𝑥min(d)+rand×(𝑥max(d)−𝑥min(d))  //random selection 

 End if 

End for 𝑑 

The introduced mutation maintains the attractive features of the original bat algorithm, espe-

cially in terms of fast convergence, while allowing the algorithm to make use of more mutation 

towards a better diversity. Based on the aforementioned analyses, the pseudocode of the HBH 

algorithm is shown in Algorithm 2. 

Algorithm 2 

Begin 

Stage 1: Initialization stage 

 Initialize the population of NP bats; 

Set the generation counter 𝑡 = 1; define loudness 𝐴𝑖, frequency 𝑓𝑖 position 𝒙𝑖 

and the initial velocities v𝑖; set pulse rate 𝑟𝑖 (𝑖 = 1, 2… NP); 
 Set the parameters and initialize the HM, HMCR, PAR and bw; 

 Evaluate the quality 𝑓 for each bat determined by the objective function (𝑥); 



Stage 2: Update stage 

 While (𝑡 < Maximum Generation) 
 for𝑖 = 1: NP (all bats) do 
 Generate a new solution by adjusting frequency, and updating velocity and 

position by (3), (4), and (5); 

 I f (rand >𝑟𝑖)  

  Select a solution among the best solutions; 

  Generate a local solution around the selected best solution; 

 End if 

 Algorithm 1              // mutation operator 

 Generate a new solution by flying randomly 

 If (rand <𝐴𝑖 & 𝑥𝑖 <𝑓 (𝑥∗))  

  Accept the new solution; 

  Increase 𝑟𝑖 &reduce 𝐴𝑖; 

 End if 

 Rank the bats and find the current best 𝑥∗; 

 End for 

 𝑡 = 𝑡   + 1; 
 End while 

 Process the results and visualize them  

End. 

3 Experimental Evaluation 

In this section, we layout the experimental setup through which we have evaluated the proposed 

algorithm, HBH. 

3.1 General setup 

Hardware and software implementation 

All the experiments were conducted on a laptop with an Intel Core 5i processor running at 2.4 

GHz, and 8 GB of RAM. The software implementation of the proposed HBH algorithm was 

based on the implementation of BA and HS in [15, 17] and the description of HS/BA in [18].All 

software is compiled using MATLAB R2009b (V7.9.0.529) running under Windows 7. 

Compared algorithms 

To put the performance of HBH in perspective and illustrate its merits among similar metaheu-

ristic methods, we compare its performance with the three closest techniques: the original BA 

and HS algorithms, which are the basic components of the proposed method, and HS/BA, which 

is the most related previous work on hybridizing BA with HS. This set of comparisons is bench-

marked using a group of 14 global optimization functions. 

Parameters  

Table 1 lists the set of parameters used in all experiments. The listed parameters include those 

for the compared methods for the sake of reproducibility. 

Table 1.  Set of used parameters in all experiments 

Metaheuristic Parameter Symbol / Abbr. Value 

HBH Loudness A 0.95 

file:///E:/2016/Original-HBH.docx%23_ENREF_15
file:///E:/2016/Original-HBH.docx%23_ENREF_27


BA 

HS 

HS/BA 

Pulse rate r 0.6 

Harmony memory consideration rate HMCR 0.95 

Pitch adjustment rate PAR 0.1 

Bandwidth bw 0.9 

In all cases, the population size NP was set to 50, function dimension was set to 20, 50 and 100 

in three sets of experiments and the maximum number of generations was 50. To mitigate the 

impact of randomness in individual runs, we report the results over a 100 implementation runs 

for each algorithm on each benchmark function (Tables 2).  

3.2 Benchmark Function 

This paper uses a set of 14 test functions for global numerical optimization. These functions are 

listed in Table 2 alongside their respective equations and properties.  

Table 2. Benchmark global numerical functions used for evaluating optimization methods 

No. Equation Low Up Opt 

F01 𝑓(𝑥) =  ∑ ⌊|𝑥𝑖|⌋
𝑛

𝑖=1
 -100 100 0 

F02 𝑓(𝑥) =  ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ 𝑟𝑎𝑛𝑑[0,1) -1.28 

1.2

8 
0 

F03 𝑓(𝑥) = ∑ [𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 + 10]

𝑛

𝑖=1
 -5.12 

5.1

2 
0 

F04 𝑓(𝑥) =  
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 -600 600 0 

F05 
𝑓(𝑋) =

𝜋

𝑛
×{10𝑠𝑖𝑛2(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2

𝑛−1

𝑖=1

[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2}

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)
𝑛

𝑖=1
 

-50 50 0 

F06 𝑓(𝑥) =  ∑ (𝑥𝑖 − 1)2 − ∑ 𝑥𝑖𝑥𝑖 − 1
𝑛

𝑖=2

𝑛

𝑖=1
 -100 100 0 

F07 𝑓(𝑥) =  − ∑ sin (𝑥𝑖)𝑠𝑖𝑛2𝑚(𝑖𝑥𝑖
2 𝜋⁄

𝑛

𝑖=1
) 0 

3.1

416 
-9.7 

F08 𝑓(𝑥) = ∑ 𝑥𝑖
2 + (∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)

2𝑛

𝑖=1
+ (∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)

4

 -5 10 0 

F09 𝑓(𝑥) = ∑ |𝑥𝑖|𝑖+1
𝑛

𝑖=1
 -1 1 0 

F10 
𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]×[30

+ (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1
2 − 48𝑥2 + 36𝑥1𝑥2 + 27𝑥2

2)] 
-2 2 3 

F11 𝑓(𝑥) = − cos(𝑥1) cos(𝑥2) 𝑒𝑥𝑝(−(𝑥1 − 𝜋)2 − −(𝑥2 − 𝜋)2) -100 100 -1 

F12 𝑓(𝑥) = 0.5 + 𝑠𝑖𝑛2(𝑥1
2 − 𝑥2

2) − 0.5 [1 + 0.001(𝑥1
2 + 𝑥2

2)]2⁄  -100 100 0 

F13 𝑓(𝑥) = − ∑ (∑ (𝑥𝑗 + 𝑐𝑗𝑖)
2

+ 𝛽𝑖

4

𝑗=1
)

−1𝑚

𝑖=1
 0 10 -10.5 

F14 𝑓(𝑥) =  − 1 1.94⁄ [2.58 + ∑ 𝛼𝑖

4

𝑖=1
𝑒𝑥𝑝 (− ∑ 𝐴𝑖𝑗

6

𝑗=1
(𝑥𝑗 − 𝑃𝑖𝑗)

2
)] 0 1 -3.3 



4 Results  

Table 3 lists the optimization results when applying the 14 optimization test functions to HS, 

BA, HS/BA and our HBH methods. The listed values are the optimal value of the objective 

function achieved by each algorithm after iterating 50 generations. The Mean values in the table 

are averaged over 100 runs (each run constitutes 50 iterations) and listed along the standard 

deviation. The Min values, however, are the best results achieved by each algorithm at all. By 

the “best result” we mean the closest result to the actual optimal value of the function, as per 

Table 2. 

It is evident from Table 3 that the HBH algorithm can reach a better optimum on average; at 

least with respect to the set of benchmark functions used in the experiments (HBH has better 

average results in the case of 12 out of 14 test functions). For ease of recognition, the best aver-

age result is marked with bold font and bordered cell. The Min values are shaded in grey to 

identify the absolute best minimum achieved for each function. Note that this value is meaning-

ful because it happened that the minimum achieved values by the algorithms for the selected 

benchmark functions are closest to the real optimum. With respect to the set of test functions 

used in our evaluations, HBH could achieve the best result in 12 out of 14 cases. 

On another perspective, we also graphed the optimization process of each algorithm (for each 

benchmark function) as the value of the so-far best solution versus the current iteration. That is, 

to show the search path in terms of selected best solution per iteration. The curve of this kind is 

expected to decline overall at a slope that reflects the convergence speed of the algorithm (there 

is no degradation during the process of any included metaheuristic algorithm, as the best solu-

tion is either improved or kept unchanged at all iterations). Therefore, these graphs can be called 

the convergence plots of the algorithms. Because of the large number of plots, we include hereby 

a representative samples of the convergence plots in Figure 1, which compares the convergence 

of HBH with the three most related metaheuristic techniques: BA, HS and HS/BA.   

Table 3. The min, mean and standard deviation of test function values found by HS, BA, HS/BA and the 

proposed HBH algorithms, averaged over 100 experimental run. The best mean for each function is marked 

in bold font and bordered. The MIN value is the best optimization result found by each algorithm (closest 

value to the global optimum over all runs), and is shaded in grey. Functions are set with 20, 50 and 100 

dimensions. 

F
u

n
ct

io
n

 

D
im

 HS BAT HS/BA HBH 

Min Mean Std. dev Min Mean Std. dev Min Mean Std. dev Min Mean Std. dev 

F1 

20 9.9E+02 2.1E+03 5.7E+02 1.3E+04 3.8E+04 6.1E+03 4.1E-16 7.1E-01 7.0E+00 7.5E-23 2.5E+01 7.6E+01 

50 1.5E+04 2.1E+04 2.6E+03 3.3E+04 1.2E+05 1.3E+04 4.1E-16 7.1E-01 7.0E+00 0.0E+00 2.0E-01 9.3E-01 

100 6.6E+04 8.4E+04 6.8E+03 5.2E+04 2.7E+05 2.5E+04 1.9E-09 3.7E+01 2.9E+02 0.0E+00 6.0E-01 3.6E+00 

F2 

20 6.5E+00 8.3E+00 6.4E-01 1.8E+01 4.5E+01 9.2E+00 4.4E+00 5.9E+00 4.8E-01 4.7E+00 5.9E+00 4.3E-01 

50 3.6E+01 5.0E+01 5.4E+00 5.9E+01 3.9E+02 6.2E+01 4.4E+00 5.9E+00 4.8E-01 1.6E+01 1.8E+01 6.2E-01 

100 2.4E+02 3.3E+02 3.9E+01 2.0E+02 1.8E+03 2.3E+02 3.8E+01 4.0E+01 9.4E-01 3.6E+01 4.0E+01 1.0E+00 

F3 

20 3.0E+01 4.6E+01 8.0E+00 1.2E+02 1.7E+02 2.1E+01 6.3E-13 1.1E+01 1.2E+01 0.0E+00 7.4E+00 1.2E+01 

50 1.7E+02 2.6E+02 2.4E+01 4.4E+02 5.9E+02 3.6E+01 6.3E-13 1.1E+01 1.2E+01 0.0E+00 9.8E-01 6.3E+00 

100 1.7E+02 2.6E+02 2.4E+01 4.4E+02 5.9E+02 3.6E+01 6.3E-13 1.1E+01 1.2E+01 0.0E+00 9.8E-01 6.3E+00 

F4 

20 1.1E+01 2.0E+01 4.7E+00 1.1E+02 3.5E+02 5.1E+01 1.0E-14 3.9E+00 8.5E+00 0.0E+00 6.0E-01 8.1E-01 

50 1.5E+02 1.9E+02 2.1E+01 2.6E+02 1.1E+03 1.1E+02 1.0E-14 3.9E+00 8.5E+00 0.0E+00 1.3E-01 6.2E-01 

100 5.8E+02 7.5E+02 6.2E+01 6.2E+02 2.4E+03 2.2E+02 1.7E-10 2.9E+00 6.2E+00 0.0E+00 6.1E-02 3.1E-01 



F5 

20 4.0E+03 2.3E+05 2.3E+05 1.3E+07 2.6E+08 8.6E+07 1.5E-15 1.7E+00 3.3E+00 3.0E-23 6.8E-01 2.1E+00 

50 1.1E+07 3.4E+07 1.0E+07 9.4E+06 1.0E+09 2.1E+08 1.5E-15 1.7E+00 3.3E+00 9.4E-33 2.4E-03 2.0E-02 

100 1.7E+08 3.0E+08 5.8E+07 1.6E+08 2.7E+09 3.7E+08 3.1E-11 3.1E-01 9.4E-01 4.7E-33 7.3E-04 3.6E-03 

F6 

20 6.2E+02 2.8E+03 9.7E+02 8.8E+03 3.0E+04 5.7E+03 -3.9E+02 -3.8E+02 3.5E+01 -4.5E+02 -3.9E+02 1.9E+01 

50 1.8E+04 2.8E+04 4.3E+03 3.2E+04 1.0E+05 1.3E+04 -3.9E+02 -3.8E+02 3.5E+01 -2.6E+03 -2.5E+03 2.5E+01 

100 8.1E+04 1.0E+05 9.6E+03 6.5E+04 2.4E+05 2.4E+04 -9.9E+03 -9.9E+03 2.3E+01 -1.0E+04 -9.9E+03 1.5E+02 

F7 

20 -1.8E+01 -1.6E+01 5.4E-01 -1.2E+01 -8.6E+00 1.2E+00 -1.1E+01 -8.3E+00 7.4E-01 -1.4E+01 -1.0E+01 1.6E+00 

50 -3.5E+01 -3.1E+01 1.5E+00 -2.3E+01 -1.8E+01 2.2E+00 -1.1E+01 -8.3E+00 7.4E-01 -2.0E+01 -1.7E+01 2.2E+00 

100 -5.4E+01 -4.8E+01 2.1E+00 -3.8E+01 -3.0E+01 2.7E+00 -4.0E+01 -2.9E+01 7.4E+00 -4.0E+01 -2.8E+01 4.3E+00 

F8 

20 8.9E+01 1.9E+02 4.3E+01 1.5E+02 4.8E+06 2.2E+07 5.0E-12 4.9E+00 3.5E+01 1.6E-19 2.9E+00 2.4E+01 

50 5.1E+02 7.2E+02 1.1E+02 9.8E+02 1.3E+11 1.5E+11 5.0E-12 4.9E+00 3.5E+01 4.4E-38 4.5E-02 3.2E-01 

100 1.3E+03 2.5E+03 5.2E+03 1.7E+04 1.4E+14 8.0E+13 9.3E-03 2.2E+05 1.1E+06 4.0E-32 2.8E+02 2.7E+03 

F9 

20 2.2E-05 1.3E-03 1.7E-03 6.9E-06 1.8E-02 1.7E-02 1.2E-19 1.6E-11 3.5E-11 1.6E-24 7.1E-12 3.7E-11 

50 5.4E-04 5.1E-03 3.9E-03 7.3E-06 6.6E-02 5.8E-02 1.2E-19 1.6E-11 3.5E-11 3.3E-48 9.7E-07 8.3E-06 

100 1.8E-03 8.6E-03 5.5E-03 2.2E-05 1.1E-01 8.6E-02 6.1E-10 1.8E-05 3.2E-05 7.4E-46 1.8E-07 1.8E-06 

F10 2 3.0E+00 1.1E+01 1.3E+01 3.0E+00 1.2E+01 1.8E+01 3.0E+00 9.0E+00 1.1E+01 3.0E+00 8.7E+00 1.5E+01 

F11 2 -9.9E-01 -9.5E-02 2.3E-01 -1.4E-05 -1.5E-07 1.4E-06 -1.0E+00 -3.0E-01 4.4E-01 -1.0E+00 -3.7E-01 4.7E-01 

F12 2 1.7E-04 8.2E-02 6.4E-02 1.5E-04 2.1E-01 1.1E-01 6.4E-15 7.1E-02 9.4E-02 4.4E-15 4.5E-02 6.8E-02 

F13 4 -9.3E+00 -3.7E+00 1.4E+00 -7.7E+00 -1.8E+00 1.1E+00 -1.1E+01 -6.9E+00 3.0E+00 -1.1E+01 -7.6E+00 3.4E+00 

F14 6 -3.0E+00 -3.0E+00 2.3E-02 -3.0E+00 -3.0E+00 4.5E-02 -3.0E+00 -3.0E+00 5.9E-02 -3.0E+00 -3.0E+00 3.9E-02 
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(b) 

 
(c) 

 
(d) 

Fig.1. Performance of BA, HS, HS/BA and HBH algorithms for (a) F01 STEP, (b) F02 QUARTIC, (c) F03 

RASTRIGIN and (d) F04 GRIEWANK benchmark functions. 

Figures 1 (a-d) show that the HBH algorithm enjoys not only a superior overall performance in 

terms of the quality of the found optimal solution, but also a faster convergence especially in 

the earlier stages. Although the starting points of the algorithms are close to each other in the 

plots of the four testing functions in the figure, the proposed HBH method does not trap into a 

quick local optimum, unlike the original BA and HS algorithms for example. 



5 Conclusion  

This paper presented a new metaheuristic, combining the original Bat Algorithm with a mutation 

operator to increase its diversity. The introduced operator resembles the pitch adjustment oper-

ator from the Harmony Search metaheuristic but is modified so as to allow for a larger mutation 

rate while preserving the strength of BA in swift and efficient exploitation. Experimental eval-

uations against a set of 14 benchmark numerical optimization functions showed that the pro-

posed HBH algorithm converges faster than other metaheuristics and achieve better or at least 

competitive performance in most cases. We believe that these results are very promising and 

hope to further explore the specific applications that will benefit from the merits of HBH the 

most, which is left for future experimentation.  
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