
Hash based Frequent Pattern Mining approach to Text
Compression

C. Oswald∗, S. Srinidhi†, K. Sri Vishnu†, T.V.Vishalι, B. Sivaselvan∗

∗Department of Computer Engineering,
Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, India.

{coe13d003, sivaselvanb}@iiitdm.ac.in
†Department of Information Technology, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.

ιDepartment of Computer Science & Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
{srinidhisridharan89, srivishnukumar.k, vishal.vasudevan.vishal}@gmail.com

Abstract. The paper explores the compression perspective of Data Mining. Huffman Encoding is
enhanced through Frequent Pattern Mining, a non-trivial phase in Association Rule Mining(ARM)
technique, in the field of Data Mining. The seminal Apriori algorithm has been modified in such a way
that optimal number of patterns(sequence of characters) are obtained. These patterns are employed in the
Encoding process of our algorithm, instead of single character based code assignment approach of
Conventional Huffman Encoding. Our approach is built on an efficient hash based data structure, which
minimizes the compression time by employing an efficient and novel technique for finding the frequency of
the patterns. Simulation over benchmark corpus clearly shows the efficiency of our proposed work in
relation to Conventional Huffman Encoding in terms of compression ratio and time.

Keywords: Apriori algorithm, Compression Ratio, Frequent Pattern Mining, Huffman Encoding,
Lossless Com-pression

1 Introduction

The Internet, which has changed our lives drastically, involves data in various forms. Mediums that
involve huge data transfer rely on compression and decompression approaches to enhance the efficiency
of the data transfer process. Data can be of various forms namely text, image, audio, video etc. The real
challenge lies in efficiently storing the huge amount of data in a condensed form and reducing their
transfer time. The main aim of compression algorithms is to reduce the storage space of large volumes of
data and the time taken for their transfer. Compression is of two different types namely lossless and
lossy.

The process of reconstructing original data from compressed data is termed as lossless compression.
It is gener-ally applied to text documents and source files. Some of the popular techniques are Huffman
Encoding, DEFLATE, LZ77, Lempel-Ziv-Welch(LZW), LZ78, Prediction by Partial Matching(PPM),
ZIP, Run Length Encoding(RLE), BWT, etc [1]. One of the most commonly used algorithm is Huffman
Encoding [2].

Lossy

Compression

is

a

class

of

data

encoding

method

that

uses

inexact

approximations.

Such

techniques

find

extensive

applications

in

the

transfer,

reproduction

and

storage

of

multimedia

data(image/audio/video)

where

slight

data

loss

might

not

be

noticed

by

the

end

user.

It

achieves

a

better

compression

ratio

as

compared

to

lossless compression. MPEG, MP3, JPEG, JBIG, PGF, WMA

etc. are a few techniques based on this principle
[1]
. Our

work

focuses

primarily

on

text

compression

which

is

strictly

lossless.

Huffman

Encoding,

a

seminal

algo-rithm

for

lossless

data

compression,

developed

by

David

A.

Huffman,

involves

assigning

variable

code

length

to

characters

based

on

their

probability

of

occurences

[2].

In

this

method,

every

character

encoded

can

be

uniquely

decoded

as

the

codes

generated

by

Huffman

Encoding

are

prefix

codes

and

this

property

ensures

lossless

decod-ing.

Compression,

Approximation,

Induction,

Search

and

Querying

are

the

different

perspectives

of

Data

Mining

identified

by Naren Ramakrishnan et al [3]. In

this

research,

we

explore

the

compression

perspective

of

Data

Mining.

The

process

of

data

mining

focuses

on

generating

a

reduced(smaller)

set

of

patterns(knowledge)

from

the

orig-inal

database,

which

can

be

viewed

as

a

compression

technique.

FPM,

a

non

trivial

phase

of

ARM

is

incorporated

in

Huffman

Encoding,

which

is

a

lossless

compression

technique

[2,4].

We

exploit

the

principle

of

assigning

shorter

codes

to

frequently

occurring

patterns(sequence

of

characters)

in

relation

to

single

character

based

approach

of

Huffman

Encoding.

Moreover,

this

work

concentrates

on

employing

an

efficient

data

structure

to

reduce

the

time

to

compress

the

text.

The

benefits

of

the

Data

Mining

approach

to

compression,

resulting

in

an

efficient

and

a

novel

compression

algorithm

is

indicated

by

our

simulation

results.

The

proposed

paper

merits

applications

across

domains

that

employ

text

data

such

as

data

from

Web

based

communication

systems

like

email,

facebook, twitter

etc., protein sequence database from Bioinformatics domain, source code repositories etc.

Frequent Pattern Mining(FPM) is a non-trivial phase of ARM and is formally defined as follows: Let
I = {i1, i2, i3,. . . , in} be a set of items, and a transaction database TD = 〈T1, T2, T3,. . . , Tm〉, where Ti(i
∈ [1...m]) is a transaction containing a set of items in I. The support of a pattern X, where X ⊆ I, is the
number of transactions containing X in TD. A Pattern(X) is frequent if it’s support satisfies a minimum
support(min supp = α) which is user-defined. From Apriori, which is a seminal algorithm in FPM we
use the prior knowledge which is, “All nonempty subsets of a frequent itemset/pattern must also be
frequent” [4, 5]. All possible frequent patterns in the Transaction Database are mined in FPM
algorithms. The rest of the paper is organized as follows. Related studies are presented in Section II. A
formal presentation of the problem is given in Section III. Proposed algorithms are given in Section IV.
In Section V, we present details of the datasets, results and discuss the performance. Conclusion with
further research directions are given in Section VI.

2 Related Work

Shannon-Fano coding, a seminal algorithm in text compression, aims at constructing a prefix code
which is based on a set of symbols and their occurence probabilities but doesnot achieve optimal
codeword length [6]. Huffman Encoding proposed in 1952 is a simple technique which assigns short
codes to frequently occuring symbols and it is prefix free [2]. RLE is a simple compression technique
which encodes sequences of identical characters occurring together and it is effective only for runs of
length ≥ 3 and is more relevant in the domain of images [7]. Arithmetic Encoding developed at IBM is
an optimal entropy coding strategy and assigns integer codes to the individual symbols [8]. Adaptive/
Dynamic Huffman Encoding is normally too slow to be practical [9]. It does not generate optimal results
on most real data. Several variations of Huffman Encoding exist such as Canonical Huffman Encoding
[10], Modified Huffman Encoding [11] etc. PPM is based on an encoder which maintains a statistical
model for the text called the order-N encoder [12]. It gives good results based on some assumptions.
Start/Stop code, Burrow Wheeler Transform, Self-Deleting Codes, Location Based Encoding, Elias
codes, Move to Front Encoding, etc are some of the other techniques [1, 13–15]. These methods exhibit
single character or word based encoding mechanism and the way in which the statistical model is built,
determines the quality of compression. In Tunstall code, which is a fixed length code with reduced
compression size, the demerit is that both encoder and decoder needs to store the complete code [1]. In
Golomb Codes, codes are assigned based on the probabilities [16]. For geometrically distributed data
items, they are best suited for compression, because they are parameterized prefix codes. But if the
value of its parameter ‘p’ is very large, there is almost no compression.

The

family

of

Lempel-Ziv

algorithms

comes

under

the

sliding

window

based

method

of

text
compression

in

which

LZ77

is

the

seminal

work

[1,

17,

18].

Here,

a

static/dynamic

dictionary

is

used

to
encode

each

string.

The

variants

are

LZX,

SLH,

LZR,

LZSS,

Statistical

Lempel-Ziv,

LZB,

LZPP,
LZMA,

ROLZ,

LZH,

LZHuffman,

etc

[1,

17].

Variations

of

LZ77

have

an

assumption

that

patterns
present

in

the

input

text

occur

closely

and

this

is

not

true

always.

In

LZ78

class

of

algorithms,

a

tree

is
used

to

maintain

the

dictionary

where

available

memory

size

is

limited

and

they

have

complex

decoding
than

LZ77

[19].

Other

variations

are

LZT,

LZRW1,

ZIP,

LZP1,

DMC,

Context

Tree

Weighting,

Win
RAR,

RAR,

LZJ,

LZP2,

GZIP,

bzip2,

LZW,

LZFG,

UNIX

Compress,

V.42bis,

CRC

etc

[1,15,17,20–22].
Limitations

such

as

huge

memory

requirement,

low

compression

and

time

inefficiency,

relying

on

word
based

encoding are present in most of these above techniques. [15] has shown that text compression by
frequent

pattern

mining

technique

is

better

than

conventional

Huffman

but

time

taken

to

compress

is
more.

Our

approach

require

lesser

time

than

[15]

using

efficient

hash

based

Frequent

Pattern

Mining
mechanism.

Moving

towards

FPM

algorithms,

all

frequent

itemsets

are

generated

by

Apriori

and

in

one

scan

on
the

TD,

firstly

it

generates

the

set

of

all

frequent

single

length

itemsets

L1.

Candidate

itemsets

Ck

are
iteratively

generated

from

Lk−1

and

those

itemsets

whose

subsets

are

infrequent,

are

pruned.

Until

no
candidate

itemsets

can

be

generated,

this

is

iterated.

The

set

of

all

frequent

itemsets

present

in

the

TD
are

consolidated

at

the

end

[5].

Unlike

the

level

wise

approach

of

Apriori-like

algorithms,

FP-Growth
algorithm

is

based

on

a

divide

and

conquer

approach

[23].

A

FP-Tree

is

generated

and

recursive

mining
with

that

tree

is

performed.

Two

scans

are

enough

to

generate

all

the

frequent

patterns.

For

very

large
datasets,

the

construction

of

the

FP-Tree

takes

huge

space

and

is

tough

to

accommodate

the

entire

tree
in

the

main

memory.

For

these

two

algorithms,

the

transactional

database

that

is represented is
horizontal. Counting interface algorithm is an optimization of the Apriori algorithm [24]. Based on
equivalence relations between frequent patterns, this algorithm is centered. The support count of one
pattern can be determined from an equivalent pattern using these equivalence relations.

When the data is weakly correlated, the performance of this algorithm is very similar to the original Apriori
algorithm. Zaki et al proposed a vertical Transactional Database approach called Equivalence Class
Transformation [25]. All frequent itemsets by simple Tid list intersections are enumerated in this algorithm. A
lattice-theoretic approach is used to partition the data space into smaller pieces which can be processed
independently. The search for patterns can be either Top down, Bottom up or Hybrid. H-Mine is an algorithm
which exploits a hyperlinked data structure called H-Struct [26]. The performance of this algorithm is high,
when the database and its projections are able to fit in the main memory. If the main memory is not
sufficient, a partitioning technique is used. The overall performance of this algorithm is better than
Apriori based algorithms. In FPM, other algorithms include Dynamic Itemset Counting(DIC) [27],
Diffsets [28], Counting Inference [29], Sampling [30], LCM ver.3 [31], RELIM [32], Partitioning [33],
Opportunistic Projection, [34] etc. A detailed survey can be seen in [26, 35].

3 Problem Definition

A few notations introduced in this work are given. For a pattern p in T , absolute frequency(fabs) is
defined as the number of times p occur as a sequence in T . In this work, a sequence is considered to be the
character in an ordered and contiguous manner w.r.t the index. Consider the text ‘adracapadra’ where
‘ara’ is a sequence in conventional terms but in our work, ‘adra’ is only considered as a sequence. The
terms sequence and pattern are used interchangeably in the rest of this work. The set of all patterns with

their respective fabs is in P . Modified frequency(fmod) of a pattern p′ is defined as, |{p′|p′ v T }|, which
denotes the number of times p′ occur in an non-overlapping manner in text T (T is stored as an array A).
P ′ contains the set of all patterns with fmod and |P ′| ≤ |P |. Through fmod, the issue of overlapping
characters between sequences in T is eliminated.

For an example, given T = adracapadra and α = 2, the sequence “a” from P has fabs = 5, but its fmod
= 1. The fmod of a pattern depends on the fmod of it supersequences in the set P ′. The fmod of pattern “a”
is calculated after considering the fmod of pattern “adra” and then deleting “adra” from the array A. If
the frequent pattern “adra” in P ′(also a supersequence of “a”) with fmod = 2 is given priority for
encoding, a’s count has already been considered four times in the pattern “adra”, which leads to fmod of
sequence “a” being 1. A formal definition of Frequent Pattern based Huffman Encoding(FPH) problem
for a Text is, “Given an input file T of size z, we need to generate the set(P) of all patterns(frequent and

candidate) with its respective fabs(≥ α) in T . Classical Huffman Encoding is applied over P ′, which is
constructed from P , to generate the file T ′ of size z′ where z′ << z.”

4 Proposed Hash based Frequent Pattern based Huffman Encoding(FPH)
Algorithm

Our algorithm performs efficient compression by assigning shorter codes to frequently occurring patterns
which are phrases and longer codes to infrequent patterns. This greatly reduces the size of the encoded
text when compared with conventional Huffman Encoding. Our approach prunes patterns which are not
used in the encoding method, thereby reducing the size of the code table significantly. The input text is
stored as a hash data structure, implemented using separate chaining, which minimizes the time to
generate patterns in an efficient way. The size of the Hash Table is 128 ASCII characters, which are
arranged in an ascending order. This is done to access the characters in the Hash Table in an efficient way.
ASCII values are taken as keys, for the location of 1-length characters. T is scanned once and the indices of
the characters are added to their respective separate hash chains. Our FPH strategy is explained in
algorithm 1.

The FP Gen procedure takes text T and α as input and employs Apriori Algorithm to generate the
frequent patterns. We have restricted ourselves with Apriori for use in our proposed technique due to the
advantage of its level wise pruning strategy of infrequent patterns. The reason for not choosing FP growth
and its successors was, those algorithms require expensive operations for pruning infrequent patterns
because of the need to wait for the complete data structure construction which generates the entire set of
frequent patterns. Apriori takes the advantage that, frequent patterns are generated as and when the
levels are formed. All the unique characters are added to the set L1. Further candidate patterns are
generated from two patterns a, b in Lk−1 satisfying the condition such that k − 2 length suffix of a is same
as k − 2 length prefix of b. The new candidate c is generated by concatenating b with the first character of
a.

For example, consider the patterns pla and lan in L3. To generate a candidate pattern of length k = 4,
k − 2 length substrings i.e. k − 2 length suffix of pla and k − 2 length prefix of lan are considered. The
respective substrings are la and la. The new candidate is now obtained by concatenating the strings p and
lan. The pattern plan is a generated candidate pattern. The fabs(absolute count) of the candidate pattern
c in the original text is counted using the find count procedure. For a pattern p, if p.fabs ≥ α, it is added
to the set Lk. All patterns satisfying the condition constitute the set P . A brief illustration with an
example is given in Table 1.

37 19 2

6

11

14

20

24

29

32

0 8

17

27

34

........................... , ’ ’ I a f i l n o p t u y

1

7

33

9

35

10

16

26

36

18

28

4

13

22

31

15

25

12

30

5

23

3

21

Fig. 1: Hash Table for the input text T

Table 1: Frequent patterns present in T
Input Text(T): If you fail to plan, you plan to fail.

α = 2.
Candidate Frequent Patterns(Ck) with its fabs Frequent Patterns(Lk) with its fabs

C1: (1-length characters) =
{.-1 , ,-1 , ′ ′-8, I-1, a-4, f-3, i-2, l-4, n-2, o-4, No pruning in L1

p-2, t-2, u-2, y-2}
C2 = {If-1, f′ ′-1, ′ ′y-2,. . ., pl-2, la-2, ,′ ′-1,. . ., ′ ′f-2, l.-2} L2={′ ′y-2, yo-2, ou-2, u′ ′-2, ′ ′f-2, fa-2, ai-2, il-2, ′ ′t-2,

to-2, o′ ′-2, ′ ′p-2, pl-2, la-2, an-2}
C3={′ ′yo-2, you-2,. . .,u′ ′f-1, ail-2} L3 ={ ′ ′yo-2, you-2, ou′ ′-2, ′ ′fa-2, fai-2, ail-2, to′ ′-2, ′ ′to-2,

′ ′pl-2, pla-2, lan-2}
C4={′ ′you-2, you′ ′-2,. . ., plan-2} L4 ={ ′ ′you-2, you′ ′-2, ′ ′fai-2, fail-2, ′ ′to′ ′-2,

′ ′pla-2, plan-2}
C5 = {′ ′you′ ′-2, ′ ′fail-2, ′ ′plan-2} L5 = {′ ′you′ ′-2, ′ ′fail-2, ′ ′plan-2}

C6 = ∅ L6 = ∅
P (Arranged in the descending order of pattern length and in ascending order of ASCII values) =

Lk≥2 ∪ C1 = {′ ′fail-2, ′ ′plan-2, ′ ′you′ ′-2, ′ ′fai-2, ′ ′pla-2, ′ ′to′ ′-2, ′ ′you -2, fail -2, plan-2, you′ ′-2, ′ ′fa-2,
′ ′pl -2, ′ ′to -2, ′ ′yo -2, ail -2, fai-2, lan -2, ou′ ′ -2, pla -2, to′ ′ -2, you -2,′ ′f-2, ′ ′p -2,′ ′t -2, ′ ′y-2, ai -2, an -2,

fa -2, il -2, la -2, o′ ′ -2, ou -2, pl -2, to -2, u′ ′ -2, yo -2, ′ ′-8, ,-1, .-1, I-1, a-4, f-3, i-2, l-4, n-2, o-4, p-2, t-2, u-2, y-2}

find fmod procedure takes the set of all frequent patterns P = ∪kLk, T and hash table HT as parameters
and generates fmod of the patterns in P . A boolean array delV al of size equal to the size of the input text is
used to indicate whether a pattern(including a single character) has been counted previously or not. All
the values in the boolean array are initialized to 0. The fmod of each pattern is found by scanning T , with
the help of the index of the first character of the pattern which is found using the hash table which is
illustrated in Figure 2 and 3. For example, in P , fabs of pattern f was 3. After the fmod of its superpatterns

are calculated, fmod of f is found. Since, f has occurred two times in its superpattern ′ ′fail, fmod of f will be
3 − 2 = 1.

I f ’ ’ y uo ’ ’ f a i l ’ ’ t o ’ ’ p a nl , ’ ’ y uo ’ ’ p a nl f a i l’ ’ t o ’ ’

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2: Initial Boolean Array deletedV al for find fmod procedure

I f ’ ’ y uo ’ ’ f a i l ’ ’ t o ’ ’ p a nl , ’ ’ y uo ’ ’ p a nl f a i l’ ’ t o ’ ’

1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 3: Boolean Array after counting the pattern I in P

1. For the pattern plan, the index of the first character p is read from the hash table. The character p
occurs at index 15 and so the pattern is searched from index 15. The count is incremented if the pattern
occurs in T starting from index 15.

The patterns in P are arranged in descending order of its length to give priority to longer patterns. If
there is a tie between length, then ascending order of its ASCII value of the characters are considered. find
count procedure makes use of the hash table to find the fabs of a pattern in T . It takes the pattern and hash
table as parameters. The pattern is checked at the index of its first character in T with the help of the hash
table. Consider the hash table in Figure

Algorithm 1 (FP Huffman) Encode given text T using frequent patterns.

Input: An Input Text T and α.

Output: Compressed Text T ′; root: Root of the FP Huffman Tree
Method:
HT ← Create Hash(T) //Creates a Hash Table for the Input Text.

//Generate Patterns using Modified Apriori
Algorithm.

P ← F P Gen(T, HT, α)
P ′ ← find fmod(T, HT, P, α) //Generate Modified frequency and adds the patterns to P

′.F P root ←F P Huffman T ree(P ′) // root of the tree is returned.
code ← NULL // Code for root is NULL.
Assign code(F P root, code, code table〈pattern, code〉) // Codes are stored in the code table
T ′ ← Encode(codetable, T) //T is encoded using the code table.
Return T ′

Procedure 1 Create hash Create a Hash Table for T , implemented using Separate
Chaining.

Input: An Input Text T . |T | = n.
Output: HT : Separate Chaining Hash table for the given
text. Method:

for (each cs(s ∈ [1, . . . , n]) do
Insert(HT [cs], s) // Inserts the index s into the corresponding chain of the

Hash. end for
return HT

added to the set P ′. Figure 4 represents FP Huffman tree for T using patterns from P ′, adopting strategy as
like conventional Huffman Encoding. Patterns in code table are stored in the descending order of pattern
length and for tie in length, in ascending order of ASCII values. The process of decoding is the same as
Huffman decoding.

2

0 0

1

11

1

0

0

0

11 1

2

I f 1.
.

,,, ,
,

4

8

4

0

’ ’you 2

0

2’ ’to

0

1
0

12

4

0

2’ ’fail

0

2’ ’plan

1

1

0

0

0000 0001 0010 0011

010 011

10 11

Fig. 4: FP Huffman Tree for T

5 Simulation Results and Discussion

Simulation is performed on an Intel core i5-3230M CPU 2.26 GHz with 4GB Main Memory and 500GB
Hard disk on Ubuntu 13.04 OS Platform. Using C++ 11 standard, proposed algorithm and
Conventional Huffman Encoding are implemented . Canterbury, UCI Machine Learning Repository,
TREC and de bruijn corpus as given in Table [36–38] are the standard datasets which the algorithms
have been tested over. Table 2 and 3 illustrates the compression ratio of various benchmark corpus
that has been tested.

In Figure 5, the efficiency in terms of Compression Ratio(Cr) of the proposed algorithm in relation
to Conven-tional Huffman at varying α values for bible and Census-Income dataset is highlighted.
The Compression ratio Cr is defined as :

Cr =
Uncompressed size of Text
Compressed size of Text

The sum of the code table size(CTS) and the encoded text size(ES) post FPH compression denotes the
com-pressed size. As a result of reduced frequent patterns at higher α values, degraded compression is
observed from

The fmod is incremented if the pattern gets a match in T and also the corresponding values in the
array delV al representing the characters in the pattern are 0. When a match for a pattern is found, the
values in the array delV al corresponding to the characters of the pattern are updated to 1. The patterns
satisfying the condition fmod>0 is

Procedure 2 FP Gen Efficient Apriori based mining of frequent patterns.

Input: An Input Text T , Hash Table HT and α.
Output: T : Set of frequent patterns along with their fabs.
Method:
Scan T once.
C1 ← Set of all unique characters in T
L1 ← C1

k ← 2
L2 ← (pattern c ∈ C2) ∧ (c.fabs ≥ α)
while (Lk−1 6= φ) do

for (each a ∈ Lk−1) do
for (each b ∈ Lk−1) do

if ((k − 2) length suffix of a = (k − 2) length prefix of b) then
p← a[0] + b //p is a new pattern generated by concatenating b with the first character of a
fabs ← find count(HT , p, T) // finds the count of the pattern p.

end if
if (fabs ≥ α) then
x.fabs ← fabs //x is the new candidate.
x.pattern ← p
Lk ← Lk ∪ x // Add the new candidate x to Lk

end if
end for

end for
end while
return L = ∪kLk

Procedure 3 : find count. Finds the fabs of a pattern p in T

Input: An Input Text T , Hash Table HT , Pattern p.
Output: fabs of a pattern p.
Method:
c← p[0] // Assign first character of pattern p to c
for each (ind ∈ HT [c]) do

//ind is the value of the index present in the chain HT [c].
for (j in 0 to | p | −1) do

if (T [ind+ j] = p[j]) then
len = len+ 1 // Counting the number of characters that match.

end if
end for
if (len = | p |) then
p.fabs++ // Counting the occurrence of the pattern p if all the characters have matched.

end if
end for
return p.fabs

Table 2: Details of the various benchmark datasets
File Size [Bytes] Description Type of data

annhi 17, 154 Medical Records Alphanumeric data
Alphabet 100, 000 English Alphabets in random order English text
alice29 1, 52, 089 Novel Collection English text
bible 4, 047, 392 The King James version of the bible English text

Census-Income 10, 485, 371 Income Census data of the US English text
annhiev 21, 834 Genomics biomedical data Alphanumeric data

de bruijn Sequence 19, 681 Cyclic sequence of a given alphabet numerical
lcet 10 426, 754 Proceedings on workship on electronic texts English text

figures 5 to 12. It is observed from figure 5. for bible and Census corpus, the maximum Cr for FPH
algorithm is 2.86 and 14.90 at α = 0.01% which is against Conventional Huffman ratio of 1.82 and
1.75. The proposed algorithm achieves Cr efficiency of 57.14% and 751.68% respectively in relation
to Conventional Huffman(CH). Cr efficiency is defined as,

Procedure 4 find fmod Finds the modified frequency of patterns present in P using the Hash Table HT

Input: An Input Text T , Hash Table HT , P , α.

Output: P ′ : Set of all patterns and their fmod.
Method:
delV al : An array of size equal to the size of T , which stores boolean values to indicate patterns that have been
counted in T . Initialize all values in deletedV al to 0
for (pi(i ∈ [1, . . . , |P |]) do

temp← p // For every pattern in P
c← temp[0]
for (ind in HT [c]) do

for (j in 0 to | temp | -1) do
if ((T[ind+j] = temp[j]) and (delV al[ind+ j] = 0)) then
len = len+ 1 // Count the number of characters that match.

end if
end for
if (len = length(temp)) then

fmod + + // Counting the occurrence of the pattern temp if all the characters have matched
for (m in ind to ind+length(temp)-1) do
delV al[m]=1

end for
end if
if (fmod > 0) then
p′i. fmod ← fmod
P ′ = ∪p′i // Add the pattern to P ′ if fmod > 0

end if
end for

end for
return P ′

Table 3: Cr for various benchmark corpus

min Conven- Time Cr Effici-
File supp(%) #Patterns # Patterns tional FPH taken ency

Name at in P in P ′ Huffman Cr for (%) of
max Cr Cr FPH(sec) FPH

annhi 0.5 345 91 1.66 3.29 0.3 98.19
Alphabet 0.64 4056 3 1.67 416.66 18.01 24849.70
alice29 0.06 1063 934 1.84 2.17 10.07 25.43
bible 0.01 8718 7548 1.82 2.86 1123.3 57.14

Census-Income 0.01 193300 1925 1.75 14.90 35934 751.68
annhiev 0.2 947 155 1.61 3.45 0.36 114.28

de bruijn Sequence 4 30 8 3.59 8.39 0.04 133.70
lcet10 0.02 3747 3080 1.67 2.21 43.09 32.33

Cr Efficiency(%) =
Cr(FPH)− Cr(CH)

Cr(CH)
× 100

In Figure 6. in alphabet dataset, compression ratio for our approach is 416.66 which is very high as
compared to the conventional Huffman compression ratio of 1.67. This is due to the fact that even though
the original count of patterns are more, modified number of patterns are very less, due to the dense nature of
the dataset where only 4 patterns occur repeatedly. In the range 0.55-0.63%, compression ratio varies
minimally, due to the fact that the number of modified patterns satisfying the condition are same. Efficient
Cr for alphabet dataset for FPH is obtained for α in [0.55%, 0.65%]. From the discussion above, it is very
clear that FPH achieve better Cr than CH. On increasing the min supp, |P | reduces. For decompression, the
Huffman tree is generated using the frequent patterns with their binary codes, which are stored in the code
table. Code table size decreases on increasing λ, because of reduction in the cardinality of the frequent
pattern set, however the increase in ES of input data nullifies the advantage of code table size reduction. In
our approach, P ′ contains patterns of length greater than 1 with fmod > 0 which increases the cardinality of
the pattern set which in turn increases CTS, even though ES decreases slightly. Other datasets also exhibit
the similar trend. Maximum Cr efficiency is obtained in Alphabet corpus

which is 24849.70% because of the dense presence of frequent patterns. The proposed algorithm achieves
efficient compression for support values in [0.01%, 1%].

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Minimum Support(%)

C
om

pr
es

si
on

 R
at

io

Conventional Huffman(bible)
Conventional Huffman(Census)
Proposed FPHuffman(bible)
Proposed FPHuffman(Census)

Fig. 5: min supp vs Compression Ratio for Bible and
Census

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Minimum Support(%)

T
im

e
ta

ke
n(

se
c)

Conventional Huffman(bible)
Conventional Huffman(Census)
Proposed FPHuffman(bible)
Proposed FPHuffman(Census)

Fig. 6: min supp vs Time for Bible and Census

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

Minimum Support(%)

N
o.

 o
f P

at
te

rn
s

us
ed

 fo
r

E
nc

od
in

g

Conventional Huffman(bible)
Conventional Huffman(Census)
Proposed FPHuffman(bible)
Proposed FPHuffman(Census)

Fig. 7: min supp vs |P ′| for Bible and Census

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

4

Minimum Support(%)

C
od

e
T

ab
le

 S
iz

e(
by

te
s)

Conventional Huffman(bible)
Conventional Huffman(Census)
Proposed FPHuffman(bible)
Proposed FPHuffman(Census)

Fig. 8: min supp vs Code table for Bible and Census

The relation between time taken to compress T and Cr is highlighted in figures 6 and 10. In figure 6, for
both bible and Census corpus, for our FPH approach in the support [0.01%, 1%], maximum Cr is attained
at 0.01%with 1123.3 sec and 35934 sec. as opposed to the CH time of 34.37 and 102.56 sec. In figure 10, for
alphabet dataset, time taken by FPH approach is 18.01 as opposed to the time taken by conventional
Huffman which is 0.1 sec. For few α values in Census, FPH takes lesser time than CH which is observed
from figure 6. For support values in [0.01%, 1%] in Census, even though the cardinality of the pattern set is
more than the CH, the encoding time significantly comes down because of capturing lengthier patterns and
hence traversing time for T is also less. The encoding time for T in CH encoding increases, because of the
need to encode individual symbols. In all datasets except few support values in Census, our proposed
algorithm’s time is more than the CH strategy because of the number of patterns generated for encoding

are more. The pattern generation time in P and in P ′

increases because of the m scans in T where m is the maximum length of the frequent patterns
generated. This time overhead comes from the Apriori algorithm to construct P which is O n3 . Even though

()
has time overhead, there is a reduction in polynomial time due to non overlapping count between
patterns(fmod) which is O n . This polynomial time reduction is achieved using the Hash data structure which
helps in efficiently locating the pattern in T . In the worst case, the number of patterns in the set P and in P' can
be n. Other tested dataset except alphabet for FPH in α range 0.01 to 1% also exhibit the same trend.

0.55 0.6 0.65
0

50

100

150

200

250

300

350

400

450

Minimum Support(%)

C
om

pr
es

si
on

 R
at

io

Conventional Huffman
Proposed FPHuffman

Fig. 9: min supp vs Compression Ratio for Alphabet

0.55 0.6 0.65
0

5

10

15

20

25

Minimum Support(%)

T
im

e
ta

ke
n(

se
c)

Conventional Huffman
Proposed FPHuffman

Fig. 10: min supp vs Time for Alphabet

0.55 0.6 0.65
0

5

10

15

20

25

30

Minimum Support(%)

N
o.

 o
f P

at
te

rn
s

us
ed

 fo
r

E
nc

od
in

g

Conventional Huffman
Proposed FPHuffman

Fig. 11: min supp vs |P ′| for Alphabet

0.55 0.6 0.65
0

50

100

150

200

250

300

Minimum Support(%)

C
od

e
T

ab
le

 S
iz

e(
by

te
s)

Conventional Huffman
Proposed FPHuffman

Fig. 12: min supp vs Code table for Alphabet

The relation between α vs |P ′| for bible, Census and alphabet corpus is shown in figures 7 and 11. For
FPH, for alphabet dataset, for α in [0.55%, 0.65%] and for other datasets for α in [0.01%, 1%], |P ′| << |P |.
The reason is, because of fmod, which avoids overlapping of patterns, which stores only patterns which will
be used in the encoding phase. More number of patterns are generated in P because of overlapping between

patterns by fabs. In FPH, for the maximum Cr attained at α = 0.64% for alphabet dataset, |P ′| is reduced to
3 from 4056, which is 99.9% reduction. In bible and Census corpus where the maximum Cr achieved at α =
0.01%, the reduction in the pattern base was 13.42% and 99%. Similar observations can be seen in other

corpus as well. At some higher support values for few datasets |P ′| = |P | or |P ′| is not much lesser than |P |,
because the original count of pattern itself reduces drastically which almost retains the same count in |P ′| as
well. Moreover, |P | and |P ′| converge to the CH strategy since 1-length characters are mostly present. In all
the corpus tested, maximum reduction in |P ′|is obtained at the α value where the maximum Cr is obtained.

The analysis between CTS(in bytes) and α for bible corpus is shown in figure 8. The size occupied by the

patterns in P ′ and its respective codes refers to the code table size. In Figure 8, for bible and Census, for FPH,
for α in [0.01%, 1%], CTS is more than its ES and this is because |P ′|(in FPH) >> |P ′| in CH. In figure 12, in
alphabet, for α in [0.55%, 0.65%], CTS is more than its ES and this is because |P ′|(in FPH) > |P ′| in CH. At
0.01%, where maximum Cr for bible and Census is achieved, CTS is 48022 and 76886 bytes as opposed to CH
Encoding which is 103 and 124 bytes. At α = 0.64%, where maximum Cr for alphabet is achieved, CTS for
FPH is 160 bytes whereas CH is 26 bytes. The reason is, the presence of only individual symbols in CH as
opposed to sequences of characters of length ≥ 1 which occurs frequently in the code table of FPH. The code
table of alphabet is higher than CH, even though |P ′| in FPH is only 4, as opposed to CH which is 26. This is
because code table also stores the patterns and in FPH, these patterns are much lengthier than the 1-length
patterns in CH.

The code table size of our approach for any tested dataset is greater than Conventional Huffman as
observed from figures 8 and 12. The encoded size of T for bible, Census and alphabet corpus in our approach
are 1363933, 626435 and 80 bytes which is very much lesser than the encoded size of Conventional Huffman
strategy which is 2218449, 5989926 and 59615 bytes respectively. In our approach, the CTS is 83.75% more,
but the ES is 99.86%

less than conventional Huffman over Alphabet dataset. This contributes to a greater Cr in our approach for α
in [0.01%, 0.1%] for bible and Census corpus and alphabet in [0.55%, 0.65%]. The same trend is seen in other
corpus as well. This makes FPH approach efficiently than CH approach for all datasets.

6 Conclusion

In this paper, we explored an interdisciplinary and novel text compression algorithm employing FPM in
Con-ventional Huffman Encoding strategy. Efficient pattern counting approach was employed to reduce the
time to compress and to improve the compression ratio. We show that the proposed FPH algorithm achieves
efficient compression ratio, encoded size and execution time. We shall focus on the scope of the FPH
algorithm in other lossless word based compression and lossy compression techniques. The compression
perspective of Data Mining, Approximation and Search perspectives of Data Mining is also planned to
explore.

References

1. David, S.: Data Compression: The Complete Reference. Second edn. (2004)
2. A, H.D.: A method for the construction of minimum redundancy codes. proc. IRE 40(9) (1952) 1098–1101
3. Ramakrishnan, N., Grama, A.: Data mining: From serendipity to science - guest editors’ introduction. IEEE Computer

32(8) (1999) 34–37
4. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)
5. Agarwal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In Bocca, J.B., Jarke, M.,

Zaniolo, C., eds.: VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15,
1994, Santiago de Chile, Chile, Morgan Kaufmann (1994) 487–499

6. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications
Review 5(1) (2001) 3–55

7. Pountain, D.: Run-length encoding. Byte 12(6) (1987) 317–319
8. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Communications of the ACM 30(6)

(1987) 520–540
9. Vitter, J.S.: Design and analysis of dynamic huffman codes. Journal of the ACM (JACM) 34(4) (1987) 825–845

10. Sschwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Communications of the ACM 7(3) (1964) 166–169
11. Bledsoe, R.E.: Data communication with modified huffman coding (October 1987)
12. Moffat, A.: Implementing the ppm data compression scheme. Communications, IEEE Transactions on 38(11) (1990)

1917–1921
13. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. (1994)
14. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme. Communications of

the ACM 29(4) (1986) 320–330
15. Oswald, C., Ghosh, A.I., Sivaselvan, B.: An efficient text compression algorithm-data mining perspective. In: Mining

Intelligence and Knowledge Exploration. Springer (2015) 563–575
16. Golomb, S.: Run-length encodings (corresp.). IEEE Trans. Inf. Theor. 12(3) (September 2006) 399–401
17. Deorowicz, S.: Universal lossless data compression algorithms. Philosophy Dissertation Thesis, Gliwice (2003)
18. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on information theory

23(3) (1977) 337–343
19. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. Information Theory, IEEE Transac-

tions on 24(5) (1978) 530–536
20. Nelson, M.R.: Lzw data compression. Dr. Dobb’s Journal 14(10) (1989) 29–36
21. Ramabadran, T.V., Gaitonde, S.S.: A tutorial on crc computations. IEEE Micro (4) (1988) 62–75
22. : Rar implementation. ttp://www.rarlab.com/rar/unrarsrc-3.5.4.tar.gz. Accessed: 2016-02-22.
23. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree

approach. Data Min. Knowl. Discov. 8(1) (2004) 53–87
24. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference.

SIGKDD Explor. Newsl. 2(2) (December 2000) 66–75
25. Goethals, B.: Survey on frequent pattern mining. manuscript (2003)
26. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Mining and

Knowledge Discovery 15(1) (2007) 55–86
27. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data.

In: ACM SIGMOD Record. Volume 26., ACM (1997) 255–264
28. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM (2003) 326–335
29. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. ACM

SIGKDD Explorations Newsletter 2(2) (2000) 66–75
30. Toivonen, H.: Sampling large databases for association rules. In: VLDB. Volume 96. (1996) 134–145

31. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining.
In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations,
ACM (2005) 77–86

32. Borgelt, C.: Keeping things simple: Finding frequent item sets by recursive elimination. In: Proceedings of the 1st
international workshop on open source data mining: frequent pattern mining implementations, ACM (2005) 66–70

33. Savasere, A., Omicinski, E.R., Navathe, S.B.: An efficient algorithm for mining association rules in large databases.
(1995)

34. Liu, J., Pan, Y., Wang, K., Han, J.: Mining frequent item sets by opportunistic projection. In: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2002) 229–238

35. Borgelt, C.: Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(6)
(2012) 437–456

36. Calgary compression corpus datasets. corpus.canterbury.ac.nz/descriptions/ Accessed: 2015-07-23.
37. UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Census+Income Accessed: 2015-10-05.
38. Trec genomics track data. http://skynet.ohsu.edu/trec-gen/data/2004/ Accessed: 2015-10-05.

