
Genetic Algorithms-based Techniques for Solving Dynamic

Optimization Problems with Unknown Active Variables and

Boundaries

AbdelMonaem F.M. AbdAllah, Daryl L. Essam, and Ruhul A. Sarker

School of Engineering and Information Technology, University of New South Wales Canberra

(UNSW Canberra@ADFA), Canberra 2600, Australia
a.abdallah@student.adfa.edu.au,

{d.essam,r.sarker}@adfa.edu.au

Abstract. In this paper, we consider a class of dynamic optimization problems in which

the number of active variables and their boundaries vary as time passes (DOPUAVBs).

We assume that such changes in different time periods are not known to decision makers

due to certain internal and external factors. Here, we propose three variants of genetic

algorithm to deal with a dynamic problem class. These proposed algorithms are compared

with one another, as well as with a standard genetic algorithm based on the best of feasible

generations and feasibility percentage. Experimental results and statistical tests clearly

show the superiority of our proposed algorithms. Moreover, the proposed algorithm, which

simultaneous addresses two sub-problems of such dynamic problems, shows superiority to

other algorithms in most cases.

Keywords: active, best of feasible generations, dynamic optimization problems, feasibility

percentage, genetic algorithms, mask detection.

1 Introduction

Optimization is one of the essential research fields that directly relates to everyday decision

making problems, such as planning, transportation and logistics. There are different classes of

optimization problems, such as static that do not change over time [1], or dynamic, where at

least one part of a problem changes over time [2]. In many real-life situations, problems change

as time passes, such as the demand and the capacity at different nodes and arcs in transportation

systems. In Dynamic Optimization Problems (DOPs), at least one part of the problem, such as

its objective function or constraints change over time. Therefore, for DOPs solving algorithms,

it is important to not only locate optimal solutions, but to also track changes as time passes [3,

4]. As a result, DOP has become a challenging topic in computer science and operations

research.

In the literature, most of the research carried out in DOPs deals with changes in the objective

functions and/or constraints [3, 4]. However, the CEC2009 competition presented dynamic

problems which are the only attempt that considers changes in problem dimensionality. In that

 Corresponding Author.

competition, the number of variables is simply increased or decreased by adding or eliminating

a variable from the end of the problem vector. So, to the best of our knowledge, there is not a

detailed study taking into consideration changes in active variables and boundaries.

In an earlier work, we defined dynamic optimization problems with unknown active variables

and also proposed a type of algorithm to solve such problems [5]. Furthermore, we conducted

research on an initial version of dynamic optimization problems with known changeable

boundaries [6].

Here, in this paper, we introduce a DOP with unknown active variables and boundaries

(DOPUAVBs), in which both the active variables and their boundaries change as time passes.

Therefore, a DOPUAVB consists of two sub-problems: DOPs with unknown active variables

(DOPUAVs) and DOPs with unknown dynamic boundaries (DOPUBs). To solve such a

dynamic problem, we develop three variants of genetic algorithms (GAs). The first algorithm

considers the activeness of variables. The second considers the changeable boundaries of the

variables, and the third simultaneously considers both sub-problems. The proposed algorithms

were compared with one another, as well as with a simple GA (SGA), on the basis of the average

of the feasible generations and percentage.

This paper is organized as follows. In section 2, dynamic optimization problems with

unknown active variables and boundaries are introduced and described, and a framework is

provided for generating its test problems. Section 3 introduces three proposed GA-based

techniques to solve such dynamic problems, along with SGA. Section 4 includes experimental

results and comparisons among all GA-based techniques. Finally, conclusions and directions

for future work are presented in Section 5.

2 Dynamic optimization problems with unknown active variables and

boundaries (DOPUAVBs)

In this section, we propose a new type of dynamic problem, called dynamic optimization

problem with unknown active variables and boundaries (DOPUAVB). In such dynamic

problems, the activeness of variables and their boundaries change as time passes. Therefore, a

DOPUAVB consists of two sub-problems: a DOP with unknown active variables (DOPUAV)

and a DOP with unknown dynamic boundaries (DOPUD). In a DOPUAV, active variables

change, while in a DOPUD, the boundaries of variables change as time passes. Without loss of

generality, this paper considers minimization problems.

To generate an instance for the DOPUAVB, its two sub-problems are considered. First, for a

DOPUAV, active variables affect a decision during the time slot, while inactive variables do

not. To simulate such dynamic problems, a mask with variable coefficients of 0s and 1s is

randomly generated to determine inactive and active variables respectively. Let us consider a

simple example of an absolute function with 5 variables: abs(x1 + x2 + x3 + x4 + x5); the minimal

value for this function is when x1: x5 equal 0. Suppose that two of these variables are inactive;

let x2 and x5 be chosen to be inactive (its mask value is set equal to 0) while the others are active

(1). In such a case, the optimal occurs when x1, x3 and x4 converge to 0s, while x2 and x5 have

any other values. This is because the values of the inactive variables, x2 and x5, are ignored; to

do this they are always evaluated as 0. Moreover, due to mutation, crossover and lack of

selection pressure processes, x2 and x5 tend to diverge to different random values. Hence, the

efficiency of an algorithm for solving DOPUAVs depends on how active and inactive variables

are handled as time passes. In [1], to solve DOPUAVs, it is suggested that an algorithm needs

to periodically detect the mask of the problem every a specified number of generations. Here in

this paper, to save fitness evaluations, the solving algorithm tries to detect whether or not the

problem has changed before detecting the problem mask.

Second, in DOPUD, the original/default boundaries of the variables are [-5, +5] with initial

width equal to 10, and are shifted randomly inside these boundaries by a range of [-3, +3]; where

“-3” and “+3” shifts the dynamic/feasible/changeable/shifted boundaries to the left and right by

3 steps respectively, while maintaining a minimum width of these dynamic/feasible boundaries

being 2. Then, if any of the variable values of a solution are within current feasible boundaries,

the fitness function will be assigned its actual fitness value; otherwise, a maximum value

(DBL_MAX) will be assigned. This is because for such an infeasible solution, the objective

function does not have any function value or information about infeasible areas. In this problem,

in contrast to constrained optimization problems, in DOPUD the objective function cannot

assign any constraint violation value to the infeasible solution(s). Moreover, the objective

function cannot tell which variable is outside of its feasible boundaries. Note that for evaluating

either feasible or infeasible solution, the number of conducted fitness evaluations is increased

by 1.

3 Genetic-based Algorithms for solving DOPUAVBs

In this paper, four genetic algorithms (GAs) are used to solve dynamic optimization problems

with unknown active variables and boundaries (DOPUAVBs). These GA-based techniques are

presented as follows:

3.1 SGA

The first GA is a simple GA (SGA), in which its operators work normally without any

modifications. In other words, processes of selection, crossover and mutation deal with the

original boundaries for all variables without any consideration of variables activeness and/or

their current dynamic boundaries. Fig. 1 shows the basic structure of SGA.

Fig. 1. The basic structure for SGA.

3.2 GAUAV

The second GA deals with unknown active variables (GAUAV). This GA considers the first

sub-problem (DOPUAV). The GAUAV consists of two processes as follows:

Problem change detection. This process is used to detect whether or not a problem has

changed. For problem change detection, some experiments were conducted. From those

experiments, to reduce the probability of false problem change detection, a

nonZeroNotEqualAbsChromosome is used. A nonZeroNotEqualAbsChromosome is a

chromosome that has non-zero, not-equal and unique absolute values, for example, if there is a

chromosome with five genes, it might be (1, 2, 5, 4, 3). This chromosome is re-evaluated every

generation, if its fitness is changed, then a change is detected. Once a change is detected, the

GAUAV tries to detect the current problem mask using the mask detection process.

Mask detection process. This process is used to detect the mask of the inactive and active

variables. Here, mask detection is done by using the single-sample mask detection procedure as

follows:

 Choose a random chromosome.

 Calculate its actual fitness, let it be F1.

 Then for each variable, its value is replaced by a new random value within its boundary

which is generated, where the absolute value of this new value is not equal to its old value:

o The fitness is re-calculated, let it be F2.

o If F1 equals F2, then this variable is assumed to be inactive (its detected mask value

is equal to 0); otherwise, it is assumed to be active (its detected mask value is equal

to 1).

Fig. 2 shows the basic structure of GAUAV.

Fig. 2. The basic structure for GAUAV.

3.3 GAUB

The third GA deals with unknown dynamic boundaries (GAUB). This GA tries to detect and

use feasibility during the course of a search process. To do this, the GAUB keeps track of the

feasible boundaries for feasible chromosomes, where the current lower and upper boundaries of

the feasible area is the minimum and maximum variable values of feasible chromosomes

respectively. Then, GAUB uses the detected feasible boundaries to evaluate infeasible

chromosomes, by considering the distance between them and the centroid of the detected

feasible boundaries as a degree of constraint violation. This is to guide GAUB during its

selection process; it is calculated as follows:

 𝑋𝑖 (𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑑(𝑋𝑖𝑗 , 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑗),𝑁
𝑗=1 (1)

where Xi is an infeasible chromosome, N is the number of variables, and d is the distance

metric. Fig. 3 shows the basic structure of GAUB.

Fig. 3. The basic structure for GAUB.

Here an illustrative example is used to show how GAUB computes the constraint violation

value of an infeasible solution. Suppose we used the Manhattan distance as the distance metric

and there is a problem consists of 2 variables that have boundaries [-5, 5]. An infeasible solution

(-2, 2) is exist, and the currently detected feasible boundaries are [-1, -3] and [2, 0], so the

feasible centroid is (1, -1). So, using Equation 1, the constraint violation of this infeasible

solution equals (abs (-2 - (1)) + abs (2 - (-1))) = (3 + 3) = 6, where abs is the absolute function.

3.4 GAUAVB

The fourth GA is a hybrid GA of the second and the third GAs (GAUAVB). This GA tries to

solve the complex DOPUAVB by simultaneously considering its sub-problems. It is shown in

Fig. 4. Furthermore, it considers only active variables when calculating the constraint violation

value as follows:

𝑋𝑖 (𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑑(𝑋𝑖𝑗 , 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑗), 𝑖𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒𝑁
𝑗=1 , (2)

Using the previously used example in section 3.3, suppose that the first variable is detected

as an inactive variable. In this case, the distance violation of the first variable is excluded from

the constraint violation calculations, So, using Equation 2, the constraint violation of this

infeasible solution equals (abs (2 - (-1))) = 3.

Fig. 4. The basic structure for GAUAVB.

Note that for GAUAV and GAUAVB, when variables are detected as inactive, they are

prevented from being mutated. Furthermore, the tournament selection in both GAUB and

GAUAVB is adapted by using feasibility rules [2]. It works as follows:

1) If two compared solutions are both feasible, select the solution based on the minimum

value of the fitness function.

2) If one of the two compared solutions is a feasible and the other is infeasible, the feasible

solution is selected.

3) If both solutions are infeasible, select solutions based on the constraint violation (the

distance between the solution and the centroid of the current feasible boundaries). The

solution with the lowest violation wins.

4 Experimental setup, analysis and discussion

To test the performance of the previously presented genetic algorithms (GAs)-based techniques

for solving DOPUAVBs, real-coded GA-based algorithms with the same processes were

implemented. The crossover is one-point, mutation is uniform and the selection is tournament.

In this paper, a set of unconstrained benchmark functions, namely Sphere, Rastrigin,

Weierstrass, Griewank, Ackley, Rosenbrock, Levy and NeumaierTrid are used to form these

functions. Of these functions, five are completely separable problems, and three functions are

non-separable. The five separable problems, namely, Sphere, Ackley, Griewank, Restrigin and

Weierstrass, were used in previous test suites of dynamic problems [3], while the other three

non-separable functions, namely, Levy, Rosenbrock and Trid, are taken from Surjanovic and

Bingham (2015) [4, 5].

The compared algorithms were tested under different settings of DOPUAVB as follows:

1) The frequency of change (FOC), which determines how often a problem changes; was

varied as 500, 2000 and 8000 fitness evaluations. This is used to test how the number of

fitness evaluations might affect the algorithm performance.

2) The number of inactive variables/the number of variables that have shifted boundaries

(NOV); was varied as 1/1, 5/1, 1/5 and 5/5, where the first number represents the number of

inactive variables and the second number represents the number of shifted boundaries of

variables. This is used to test how the number of the active variables and changeable

boundaries might affect the algorithm performance.

Experimental settings are shown in Table 1. Here, Manhattan distance [6] is used to calculate

the degree of constraint violation. Note that fitness evaluations that are used in problem change

detection and mask change detection are included in the budget of all of the algorithms. The

algorithms were all coded in Microsoft C++, on a 3.4GHz/16GB Intel Core i7 machine running

the Windows 7 operating system. Finally, for a fair comparison, all GAs had the same initial

population at the beginning of each run with a total of 25 independent runs.

Table 1. Experimental settings.

Parameter Value

Population size 50

Tournament size 2

Selection pressure 0.90

Elitism percentage 2

Crossover rate 0.90

Mutation rate 0.15

Number of variables 20

4.1 Comparison based on the quality of solutions

To compare the quality of solutions, a variation of the Best-of-Generation measure was used,

where best-of-generation values were averaged over all generations [7]. However, in

DOPUAVBs, due to the change in the feasible boundaries, solving techniques might have

infeasible generations, so we consider only feasible generations in these calculations. To do this,

we propose a new variation of the Best-of-Generation measure, which is the average best-of-

feasible-generation (ABOFG) and it is calculated as follows:

𝐹𝐵𝑂𝐹𝐺 =
1

𝐹𝑖
∑ 𝐹𝐵𝑂𝐹𝐺𝑖𝑗

(
1

𝑁
∑ 𝐹𝐵𝑂𝐹𝐺𝑖𝑗

𝑁
𝑗=1) , where generation 𝑖 is feasible𝐺

𝑖=1 , (3)

where 𝐹𝐵𝑂𝐹𝐺 is the mean best-of-feasible-generation fitness, G is the number of generations,

N is the total number of runs and 𝐹𝐵𝑂𝐹𝐺𝑖𝑗
 is the best-of-feasible-generation fitness of generation

i of run j of an algorithm on a problem [8]. As solved functions have different scales for their

objective functions values, a normalized score is used so as to be able to sum obtained values

of different functions to analyze the performance of compared algorithms. Note that lower

values are better and the lowest are shown as bold and shaded entries. Table 2 shows the results

of normalized ABOFGs for the compared techniques in regards to the number of variables

(NOV).

Table 2. Normalized ABOFGs of compared algorithms in regards NOV.

NOV SGA GAUAV GAUB GAUAVB

1/1 0.7444 0.1743 0.8111 0.2220

1/5 0.8412 0.3795 0.5727 0.1730

5/1 0.8898 0.0893 0.8226 0.1795

5/5 0.8559 0.2848 0.7030 0.0828

Average 0.8328 0.2320 0.7273 0.1643

From Table 2, it is first clearly observed that GAUAV performed better, especially when

the number of unknown variables increased (5/1 and 5/5). Second, GAUB slightly performed

better than SGA when the number of shifted boundaries increased (1/5 and 5/5). Third,

GAUAVB outperformed all GAs in most cases. Presumably, GAUAV and GAUAVB

performed better as they prevented inactive variables from being mutated, as this helps GAs to

effectively converge to better solutions.

Table 3. Normalized ABOFGs of compared techniques in regards to FOC.

FOC SGA GAUAV GAUB GAUAVB

500 0.7889 0.2540 0.6733 0.2671

2000 0.8447 0.2264 0.7273 0.1587

8000 0.8648 0.2156 0.7814 0.0672

Average 0.8328 0.2320 0.7273 0.1643

From Table 3, it is clearly observed that GAUAV performed better than other GAs except

GAUAVB. However, GAUAVB outperformed other GAs, especially when the frequency of

changes (FOC) increased.

The Wilcoxon signed rank test [9] was also used to statistically judge the difference between

paired scores, this was done because as obtained values of compared algorithms are not normally

distributed, a non-parametric statistical test is used. As a null hypothesis, it is assumed that there

is no significant difference between obtained values of two samples, whereas the alternative

hypothesis is that there is a significant difference at the 5% significance level. Based on the

obtained results, one of three signs (+, -, and ≈) is assigned when the first algorithm was

significantly better, worse than, and no significance different with the second, respectively.

Here, GAUAVB was paired to be compared with other GA-based variations to see how it

effectively solved DOPUAVBs. In Table 4, Wilcoxon tests were applied on the total number of

changes in regards to the number of variables; in this paper, there are 8 problems, and each has

10 types of changes, and each change has 3 frequency of changes, with a total of 240 values.

Table 4. Wilcoxon signed test the compared techniques in regards to NOV.

NOV Comparison Better Worse Significance

1/1

GAUAVB-to-SGA 197 43 +

GAUAVB-to-GAUAV 123 117 ≈

GAUAVB-to-GAUB 208 32 +

1/5

GAUAVB-to-SGA 215 25 +

GAUAVB-to-GAUAV 150 90 +

GAUAVB-to-GAUB 198 42 +

5/1

GAUAVB-to-SGA 225 15 +

GAUAVB-to-GAUAV 93 147 -

GAUAVB-to-GAUB 220 20 +

5/5

GAUAVB-to-SGA 232 8 +

GAUAVB-to-GAUAV 161 79 +

GAUAVB-to-GAUB 228 12 +

From Table 4, it is clear that GAUAVB was statistically better than other GAs in most cases,

especially when the problem was more complex 5/5. The performance of GAUAV was

statistically better for 5/1 test problems, as the number of inactive variables increases with

limited changes in dynamic boundaries.

In Table 5, Wilcoxon test were again applied on the number of changes. In regards to the

frequency of changes; in this paper, there are 8 problems, each has 10 changes, and each change

has 4 variations of the number of variables, which gives a total of 320 values.

Table 5. Wilcoxon signed test the compared techniques in regards to FOC.

FOC Comparison Better Worse Significance

500

GAUAVB-to-SGA 268 52 +

GAUAVB-to-GAUAV 149 171 ≈

GAUAVB-to-GAUB 255 65 +

2000

GAUAVB-to-SGA 288 32 +

GAUAVB-to-GAUAV 177 143 +

GAUAVB-to-GAUB 285 35 +

8000

GAUAVB-to-SGA 313 7 +

GAUAVB-to-GAUAV 201 119 +

GAUAVB-to-GAUB 314 6 +

From Table 5, it is clear that GAUAVB was statistically better than the other GAs in most

cases, especially when frequency of change increases.

Finally, in order to statistically compare and rank the algorithms altogether, the non-

parametric Friedman test, which is similar to the ANOVA parametric, is used with a confidence

level of 95% (α = 0.05) was used [10, 11]. The null hypothesis was that there is no significant

differences among compared algorithms. The computational value of the p-value was less than

0.00001. Consequently, there were significant differences among the compared algorithms.

Finally, Table 6 shows Freidman test ranks; it supports above mentioned observations.

Table 6. Freidman test average ranks for compared techniques.

Algorithm SGA GAUAV GAUB GAUAVB

Average rank 3.34 1.86 3.14 1.66

4.2 Comparison based on feasibility

In this section, the behaviors of the used algorithms are compared, based on the feasibility of

the population. To do this, the average feasibility (AFP) was calculated for each algorithm. AFP

indicates how an algorithm can guide its population into the changeable feasible region. Table

7 summaries the obtained AFPs, higher values are better and the best are shown as bold and

shaded entries.

Table 7. AFPs of compared techniques in regards to the NOV.

NOV SGA GAUAV GAUB GAUAVB

1/1 77.50% 77.39% 89.74% 90.26%

1/5 45.64% 46.63% 67.15% 68.83%

5/1 86.13% 86.78% 92.23% 93.03%

5/5 38.33% 40.39% 64.96% 67.31%

Average 61.90% 62.80% 78.52% 79.86%

Table 8. AFPs of compared techniques in regards to the FOC.

FOC SGA GAUAV GAUB GAUAVB

500 58.96% 60.29% 71.82% 73%

2000 62.90% 62.91% 79.53% 80.24%

8000 63.96% 64.19% 83.74% 84.61%

Average 61.94% 62.46% 78.36% 79.28%

From tables 7 and 8, it is clearly observed that GAUAVB achieved higher AFPs, compared

with other GAs. GAUAV also slightly achieved better AFPs than SGA when the number of

shifted boundaries increased (1/5 and 5/5). It is clear that GAUB and GAUAVB achieved higher

AFPs, as they guided the infeasible solution(s) towards the feasible area, by assigning a

constraint violation value that guided the selection process. Also, it is clear that the founding

feasible area while solving DOPUAVB is getting more complex and harder when NOV

increases, especially when the number of changed boundaries increase (Table 7), and the FOC

decreases (Table 8).

5 Conclusions and Future work

Motivated by the literature [11, 12], in this paper we proposed a new type of dynamic

optimization problem: single objective unconstrained dynamic optimization problems with

unknown active variables and boundaries (DOPUAVBs). In such problems, both the active

variables and boundaries of the variables change as time passes. Therefore, DOPUAVB consists

of two sub-problems: DOP with unknown active variables (DOPUAV) and DOP with unknown

boundaries (DOPUB).

Moreover, we proposed three genetic algorithms (GA)-based techniques to solve

DOPUAVBs. These techniques are GAUAV (GA that deals with unknown active variables),

GAUB (GA that deals with unknown changeable boundaries) and GAUAVB (GA that

simultaneously deals with unknown active variables and dynamic boundaries). These

techniques were compared with each another, as well as with a simple GA (SGA). Based on the

quality of obtained solutions and the average of feasibility, as well as statistical tests, results

showed that the proposed GAUAVB, that simultaneously considered both sub-problems, was

superior to others. This is because GAUAVB had the ability to detect active variables, while

also keeping track of feasible boundaries during the course of a search process. Hence it

effectively solved DOPUAVBs. The advantages of the proposed technique is using the detected

information of the population during the search process to solve the dynamic problem, e.g. the

detected feasible boundaries and active variables. However, the disadvantage of GAUAVB is

needing for existing of detected feasible boundaries and this would be difficult if the change in

boundaries is rapid and has much shift rate.

There are several possible directions for future work. One direction is comparing our

proposed algorithms with previously used GAs for DOPs, such as random immigration (RIGAs)

and hyper-mutation (HyperM). Regarding sub-problems, we intend to solve each of them in

more effective ways. For example, designing an algorithm that would implicitly detect active

variables by keeping track of active variables, rather than using the mask process, as it consumes

fitness evaluations. This is because the number of fitness evaluations it uses is 2N, where N is

the number of variables.

References

[1] AbdAllah, A.F.M., D.L. Essam, and R.A. Sarker. Solving Dynamic Optimisation Problem

with Variable Dimensions. in SEAL 2014. 2014. Dunedin, New Zealand: Springer International

Publishing.

[2] Coello Coello, C.A. and E. Mezura Montes, Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Advanced Engineering Informatics,

2002. 16(3): p. 193-203.

[3] Li, C., S. Yang, T.T. Nguyen, E.L. Yu, X. Yao, Y. Jin, H.-G. Beyer, and P.N. Suganthan,

Benchmark Generator for CEC'2009 Competition on Dynamic Optimization.

[4] Surjanovic, S. and D. Bingham. Virtual Library of Simulation Experiments: Test functions

and Datasets. 2015 January 2015 [cited 2016 April 20]; Available from:

http://www.sfu.ca/~ssurjano.

[5] Adorio, E.P. and U.P. Diliman, MVF - Multivariate Test Functions Library in C for

Unconstrained Global Optimization.

[6] Padhye, N., K. Deb, and P. Mittal, An Efficient and Exclusively-Feasible Constrained

Handling Strategy for Evolutionary Algorithms.

[7] Morrison, R.W., Performance Measurement in Dynamic Environments, in GECCO

Workshop on Evolutionary Algorithms for Dynamic Optimization Problems. 2003. p. 5–8.

[8] Yang, S., T.T. Nguyen, and C. Li, Evolutionary Dynamic Optimization: Test and Evaluation

Environments, in Evolutionary Computation for Dynamic Optimization Problems, S. Yang and

X. Yao, Editors. 2013, Springer Berlin Heidelberg. p. 3-37.

[9] Corder, G.W. and D.I. Foreman, Nonparametric Statistics for Non-Statisticians: A Step-by-

Step Approach. 2009: John Wiley & Sons.

[10] García, S., D. Molina, M. Lozano, and F. Herrera, A study on the use of non-parametric

tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005

Special Session on Real Parameter Optimization. Journal of Heuristics, 2009. 15(6): p. 617-644.

[11] Cruz, C., J.R. González, and D.A. Pelta, Optimization in dynamic environments: a survey

on problems, methods and measures. Soft Computing, 2011. 15(7): p. 1427-1448.

[12] Nguyen, T.T., S. Yangb, and J. Branke, Evolutionary dynamic optimization: A survey of

the state of the art. Swarm and Evolutionary Computation, 2012. 6: p. 1-24.

http://www.sfu.ca/~ssurjano

