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Abstract 

Over the years Radial Basis Function (RBF) Kernel Machines have been used in Machine Learning tasks, but there 
are certain flaws that prevent their usage in some up-to-date applications (e.g., some Kernel Machines suffer from 
fast growth number of learning parameters whilst predicting data with large number of variations). Besides, Kernel 
Machines with single hidden layer have no mechanisms for features selection in multidimensional data space, and 
machine-learning task becomes intractable with enlargement of the data available for analysis. To address these 
issues, this paper investigates the usage of a framework for “deep learning” architecture composed of multilayered 
adaptive non-linear components – Multilayer RBF Kernel Machine. To be precise, three different approaches of 
features selection and dimensionality reduction to train RBF based on Multilayer Kernel Learning are explored, and 
comparisons between them in terms of accuracy, performance and computational complexity are made. As opposed 
to the “shallow learning” algorithm with usually single layer architecture, results show that the multilayered system 
produces better results with large and highly varied data. In particular, features selection and dimensionality 
reduction, as a class of the multilayer method, shows results that are more accurate. This paper proposes a novel 
scheme based on deep Multilayer RBF Kernel Machine learning for sleep apnea detection and quantification using 
statistical features of ECG signals. The results obtained show that the newly proposed approach provides significant 
accuracy improvements compared to state-of-the-art methods. Because of its noninvasive and low-cost nature, this 
algorithm has the potential for numerous applications in sleep medicine. 
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1. Introduction

In the recent decades the sufficient amount of techniques 
for different machine learning tasks including 
classification, regression, function approximation 
clustering and feature transformation were developed with 
help of the class of non-linear functions – radial basis 
functions (rbf) [1,2]. One of the interesting idea is radial 
basis functions networks and their generalization kernel 
networks. In this work, the special emphasis is given to the 
application of these networks to the problem of data 
classification. 
Radial basis functions are the special kind of functions, 
which have a characteristic feature to monotonically 

decrease or increase with increase of the distance from the 
central point.  The center, the distance scale and particular 
shape could vary for different models [1]. The most 
commonly used example is the Gaussian function 𝑓 𝑥 =

	𝑒&
(()*),

-, 	and multi-quadratic function 𝑓 𝑥 =

	 .,/(()*),

.
 while, of course, many possible variations. 

Another way to think about rbf networks is as kernel 
machines with specific type of kernel.  Kernel machines are 
special machine learning methods which allow the usage 
of regular machine learning techniques developed to learn 
linear functions in the problems with non-linear 
dependencies. This goal is achieved via transformation 
(mapping) of input feature space into the Hilbert space.  
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The first kernel machines were a natural extension of the 
Support Vector Machine proposed by Vapnik for 
classification of the linearly separable data points.  The 
goal of the algorithm was to find the hyperplane, which will 
divide two datasets and will have maximum distance 
(margin) between itself and closest points from two classes. 
This hyperplane can be presented as the linear combination 
of the training samples lying on that margin (support 
vectors):	𝐻 𝑥 = 	 (𝛼2𝑦2 𝑥2, 𝑥 ) +	𝛼62 . The
algorithm finds the optimal values for the parameters	𝛼. 
The extension for the  non-linear separable case exploits so 
called feature mapping function g with the hyperplane of 
the form: 𝐻 𝑥 = 	 (𝛼2𝑦2 𝑔(𝑥2), 𝑔(𝑥) ) +	𝛼62 .
The function 𝐾 𝑥2, 𝑥  which satisfies the conditions of
the Mercer’s theorem can be presented in the form 
𝐾 𝑥2, 𝑥 = 𝑔(𝑥2), 𝑔(𝑥)  in the Hilbert space is called
kernel. If the kernel function is selected appropriately the 
data points can become separable in the new feature space 
can become separable. This method is usually referred to 
in the literature as the “kernel trick”.  In this case the 
method for linear SVM training could be applied.  The 
Gaussian radial basis function is one of this kernels, so the 
support vector learning could be applied as learning 
method for radial basis function network with support 
vectors being the centers of radial basis functions [7,8]. 
Paper [9] provides the idea of the extension of the support 
vector machine algorithm to the multiclass classification 
problem with usage of different weights for different 
outputs and selection of the class which produces the 
maximum value. 
RBF networks and kernel machines in general have proven 
their effectiveness in different machine learning tasks, and 
there have been an extensive development from the 
theoretical and algorithmic point of view in this field since 
they were first introduced. However, it turned out that this 
method has some flaws which prevent its usage in some up-
to-date applications. Like other methods (for example, 
kNN) relying on the data smoothness and locality (meaning 
that similar points should lie close in the feature space) the 
kernel machines suffer from the fast growth of the number 
of learning parameters while predicting data with large 
number of variations [24].  
Another problem is that the kernel machines with single 
hidden layer have no mechanisms for features selection in 
the multidimensional data space and completely rely on the 
user in this part. The optimal selection of features for 
particular method becomes more and more complicated 
with enlargement of the data available for analysis. To 
solve this problem common for many machine learning 
algorithms the paradigm of deep learning has recently 
emerged. The idea of this approach is based on the 
assumptions that learning model should not only provide 
the prediction results but also learn an optimal data 
representation required for this task. 
The notion of the good data representation usually includes 
several points [23]: smoothness and natural clustering – 
similar data points should lie close to each other in the 
learned feature space; expressiveness of explanatory 

factors – the learned feature space should be of reasonable 
space but still be able to explain multiple variations of data; 
a hierarchical organization of explanatory factors – it will 
be useful to have a hierarchical structure of features/ 
concepts where more abstract features will be defined in 
the terms of less abstract features located lower in the 
hierarchy; shared factors across tasks – it is common that 
the same concepts can be used to explain different events, 
so it will be useful to be able to use the same features to 
predict different parameters; sparsity -  only small number 
of factors should be relevant for each of the particular 
observations; simplicity – it is desirable for many 
algorithm to have a simple (in the best case linear) 
dependencies between factors.  
The term of “deep” learning was coined in the contrast to 
the “shallow” learning algorithms, which have fixed 
usually single layer architecture. The “deep” learning 
architectures are compositions of many layers of adaptive 
non-linear components [27]. It is expected that by analogy 
with the mammal brain capable to store information on the 
several layer of different abstractions multi-layer 
architectures will bring the improvement to the learning 
algorithms. However simple training of the neural 
networks with multiple hidden layers has shown an 
improvement only up to the certain number of layers (2 or 
3). And further increase in this number didn’t provide any 
significant improvement and in some case results even 
have become worse [28].  The existing algorithms have 
faced the problem of local minimum and it is being 
reported that the generalization of such gradient-based 
methods become worse with larger number of layers. 
Several papers have also shown that supervised training of 
each separate layer also does not give significant 
improvement in results compared to regular multilayer 
learning. Later development has gone in the direction of the 
intermediate feature representation for each new layer. 
Deep learning networks and training algorithms using this 
approach have achieved significant results in the multiple 
real life applications [23] including computer vision, audio 
signal processing, and natural language processing and so 
on. In some fields of study they are still considered among 
the best available approaches. 
The successful examples of the deep neural networks for 
supervised learning mainly exploit two different 
approaches and their possible combinations: special 
structure of the network in terms of neuron connections and 
hierarchically organized feature transformations applied to 
their results (i.e. convolutional neural networks) and 
multilayer networks with feature representations for each 
layer learned with  unsupervised learning technique which 
is followed by parameters tuning of the network with 
regular supervised learning technique. 

2. Methodology

This work shows how kernel methods can be extended to 
hierarchical structures without required complicated 
machinery. Three algorithms using RBF kernel are 
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explored, and the main differences between them in terms 
of how to define the transformation through the 
combination of linear mapping and nonlinear activation 
function are studied after training and testing. In this 

section, a brief on the methodological steps is provided. 
Error! Reference source not found. presents overview of 
the proposed methodology. 

Figure 1. Methodology Overview 
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    Figure. Multilayer kernels machine (MKMs) for the three different transformations 

2.1. Multilayer RBF kernel machine based 
on Kernel PCA 

This Emphatically, the main concept in MKMs is the 
sequential transformation of input information using 
supervised feature selection, kernel PCA and unsupervised 
dimensionality reduction. This cycle above has meanwhile 
implemented the combined algorithm with unsupervised 
dimensionality reduction, iterate many times to formulate 
resulting multilayer kernel machines which incorporates 
unsupervised regression algorithm into kernel PCA to 
discard unwanted features. 

Cho et al. (2009) described the first approach of multilayer 
kernel machine used in this work when he was developing 
an arc-cosine kernel that mimics the projections of a 
randomly initialized neural network. 
This algorithm works in three processes: nonlinear 
transform by RBF kernel, unsupervised dimensionality 
reduction by kernel principal component analysis (PCA) 
and feature section by mutual information and this cycle is 
repeated multiple times to construct the feature hierarchy 
of MKM. 
Below is a summary on how we implemented the 

Multilayer RBF machine based 

on Kernel PCA and shown in Error! Reference source 
not found.. 

1. Let N be the number of layers we would like to use.
2. Prune the features by ranking method removing

redundant features.
3. Select appropriate kernels and kernel parameters

(cross-validation or otherwise) –Apply kernel PCA
algorithm and make the result be next layer set of
features.

4. Determine number of features to extract prune the
redundant features from the resulting.

5. If number of iterations exceeds N go to step 6,
otherwise go to step 2.

6. Feed the feature representations to the classifier to
make final decision.

The steps in the above procedures are standardized 
approach, but with novel combination. The promising 
outcome of the procedure is a justification to establish its 
implementation. We present below detailed discussion of 
the steps. 

In kernel PCA, iterative application is employed to realize 
deep 
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learning in MKMs. Kernel PCA has been in existence since 
over ten years ago and now more newly inspired in an 
unsupervised approach through deep belief nets pre-
training. The kernel PCA features in MKMs is used as 
input for next layer features. Meanwhile, in this case we 
select appropriate kernels and its parameters and apply 
from layer to the other. However, while nonlinear 
transform by arc-cosine kernel can be utilized in kernel 
PCA in MKMs, an RBF kernel that mimics the projections 
of a randomly initialized neural network is regarded an 
alternative approach, which is used in this work.  
The idea of Cho (2012) is to implement unsupervised 
dimensionality reduction and supervised feature selection 
techniques into the multilayer arc-cosine kernels. 
However, in this work, the implementation of unsupervised 
dimensionality to reduce feature selection to exclude 
unwanted features or input into the next layer. 
Kernel PCA features are best selected using ranking 
method in which redundant features are discarded. The 
ranking method is used to prune away inappropriate or 
unwanted features at each layer in the MKM. 
Naturally, the method helps to focus on the kernel PCA 
for deep learning. We prune features in just one-step, 
and then apply kernel PCA algorithm to produce a 
result that can be used as input for the next layer. Even 
from the obtained result, an optional option to prune 
selected features is employed to further minimize 
features redundancy. From the first step, we determine 
N number of layers to be used, and in step 6 we set loop 
of steps as long as the N number is not exceeded the 
second step of the algorithm will continue to iterate. We 
compute the result of the algorithm and feed the feature 
representations to the classifier to make final decision. 

2.2. Multilayer RBF kernel machine based 
on supervised kernel regression 

This algorithm is extended from the first one by applying 
supervised kernel regression and removing the optional 
step of feature selection because it is done along with 
projection. Yger’s (2011) assume that it will give better 
computation time. For the latent arable regression, the 
feature extraction will also be incorporated in the 
regression step but it would be based not on the output but 
on the input. The author claims to overcome the drawback 
which is the step of feature selection by learning each 
hidden layer using Kernel Partial Least Squares regression 
(KPLS).  
Below is a summary on how we implemented the 
Multilayer RBF machine based on supervised kernel 
regression and shown in Error! Reference source not 
found.. 

1. Let N be the number of layers we would like to
use.

2. Select appropriate kernels and kernel parameters
(cross-validation or otherwise) – not described in
the work

3. Apply supervised regression to extract next
feature value and corresponding Eigen value.

4. If Eigen value is greater than selected threshold go
to step 3 otherwise, use all the extracted features
as input to the next layer.

5. If number of iterations exceeds N go to step 6,
otherwise go to step 2.

6. Feed the feature representations to the classifier to
make the final decision.

In this algorithm, feature selection methods and 
unsupervised dimensionality reduction is incorporated into 
supervised regression algorithm. In MKMs, deep learning 
approach is achieved through repetitive iteration of 
supervised regression algorithm sequentially list above. 
The use of this mean is however not new in this context, 
what is new here is how we apply the supervised regression 
with Eigen value to extract appropriate feature 
representative. Using the first algorithm, we have made a 
major contribution by replacing supervised regression with 
kernel PCA. We retained selection of appropriate kernel 
and kernel parameters, as they are already place from the 
existing algorithm. Since supervised training only occurs 
in the last layer in MKMs, this makes features selection 
method very important. From the first step, we determine 
N number of layer for this process. Like in the first 
algorithm for kernel PCA where ranking method is used to 
prune feature for appropriate selection. We then apply 
supervised regression to the pruned features. In supervised 
regression, the use of LMKMs is used to inspire deep 
learning training architectures. This is more specifically 
important achievement of the supervised regression 
algorithm used to extract next feature value and 
corresponding Eigen value. 

The Eigen value is computed and determined through the 
algorithm steps any value greater than the threshold 
discarded. While appropriate value are all extracted as 
input for the next layer. The N number of layer we intend 
to use continue to iterate until number is greater than N. 
We feed the feature representations to implement the 
Multilayer RBF machine based on supervised kernel 
regression. 

2.3. Multilayer RBF kernel machine based 
on unsupervised kernel regression 

This proposed algorithm based on unsupervised latent 
space and the motivation behind this claim is that 
unsupervised methods work well with the regular neural 
networks and unsupervised learning focusing on important 
patterns from data regardless of their labels as it reduces 
the input dimensionality of data without losing crucial 
information. In this algorithm we use the idea of 
unsupervised methods that is describe in Memisevic work 
(2003), which is Kernel parameters selection and 
dimensionality selection as shown in figure 3. 
Let us say that we have data in q-dimensional space:     𝑌 ∈
𝑅< (observable space), and we want to find the 
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representation of this data in the d-dimensional space q>d: 
𝑋 ∈ 𝑅> (latent space). Let us say we have N data points. 
There are 2 types of unsupervised kernel regression for this 
purpose: 

1. Optimize an error in the observable
space.

𝐸@AB 𝑋 = 	 𝑦2-
𝐾(𝑥2, 𝑥D)𝑦DE

DFG

𝐾(𝑥2, 𝑥H)E
HFG

IE

2FG
• Advantages:
− We can use any kernel bandwidth h because it is 

easily replaced by the scale of the X. 
• Disadvantages:
− We have very computationally consuming 

optimization problem with large number of 
parameters (N).  

− We do not have explicit representation of x in 
terms of y which we will need to proceed with 
classification of new points. 

2. Optimize an error in the latent space.

𝐸JKL 𝑋 = 	 𝑥2-
𝐾(𝑦2, 𝑦D)𝑥DE

DFG

𝐾(𝑦2, 𝑦H)E
HFG

IE

2FG
• Advantages:

− There is an efficient way to solve this 
problem via eigen value decomposition. 
− We have explicit representation of x in 

terms of y: 𝑥 = 	
M(N,NO)PO

Q
ORS

M(N,NT)Q
TRS

, the 

solution depends on the selected kernel 
bandwidth which can be explained in the 
following steps : 

1. For train set Y, find the solution X which
optimizes error in the latent space. 

2. For particular X and Y solve the
optimization problem to find optimal X 
scaling S (X:=X*S) which optimizes 
error in observable space.  

3. Identify the optimal range for the h
(kernel bandwidth) based on the graph 
connectivity algorithm. 

4. Perform the algorithm of traversing
through different values of h to identify 
the optimal one. 

5. Select appropriate number of parameters
d. 

6. Write the code to incorporate method
into classification. 

7. Run the tests.
8. Add the special constraints concerning

distances between different classes in the
optimization problem to better fit the
data for further classification. Adapt the
optimization solution.

9. If results are unsatisfactory try the
optimization in the observable space:

a. Determine X for train Y

b. Find the model for finding X for
new points Y.

The idea of unsupervised kernel dimension reduction has 
been applied in [52] focusing on both linear and nonlinear 
unsupervised kernel dimension reduction. However, this 
current work has considered non-linear unsupervised 
kernel dimension reduction inspired by [52]. 
The kernel choice from [29] which is a Multilayer kernel 
machine (MKM), a kernel based model is adopted for the 
three algorithms experimented in this work. Particularly, 
MKM is introduced in the first algorithm to integrate 
unsupervised dimensionality reduction with supervised 
feature selection methods into kernel PCA algorithm. 

Below is a summary of how we implement the 
Multilayer RBF machine based on unsupervised kernel 
regression and shown in Error! Reference source not 
found.. 

1. Let N be the number of layers we would like
to use.

2. Apply unsupervised regression to extract
latent variables which better represent the
input parameters. (Kernel parameters
selection and dimensionality selection is
embedded in this step) based on the ideas
described in the Memisevic work in
Memisevic (2003)
- Learning of optimal latent space

representation with input data 
- Learning of transformation from

observable to latent space. 
- Selection of the kernel parameters and

optimal dimensionality of the latent 
space 

3. Use extracted latent variables as input to the
next step. 

4. If number of iterations exceeds N go to step
6, otherwise go to step 2. 

5. Feed the feature representations to the
classifier to make the final decision. 

This algorithm combined both KPCA and supervised 
regression algorithm. This is done to achieve a more 
reliable input and consequently, results. An unsupervised 
regression algorithm is embedded with supervised feature 
selection and unsupervised dimensionality reduction. 
The idea of multilayer kernel machines (MKMS) 
implemented in this work is to help filter only feature 
relevant input, to be fed into developed unsupervised 
regression algorithm, and construct an infinite dimensional 
representation. Additionally, to help obtain result, 
unsupervised dimensionality reduction is implemented 
with feature space. 
The attempt to adopt this approach is considered to be high 
level implementation concept of MKMs through the use of 
different machine learning techniques, which is this case a 
combination of two is used to develop another. 
The implementation of the multilayer RBF machine based 
on kernel PCA is not new. However, in this algorithm, we 
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have replaced PCA with unsupervised kernel regression. 
The idea of unsupervised regression application is 
suggested by Memisevic (2003). The steps involved in the 
above algorithm are discussed. Based on Memisevic 
(2003) idea, this work combined feature selection with 
unsupervised regression. Unlike supervised regression 
procedure, latent variables are extracted instead using 
unsupervised regression method. In this work, we extract 
these variables my applying the input to obtain even better 
input parameters. This is equally based on three key steps 

from Memisevic (2003). As usual, we determine N number 
of layer we want to use. As we are dealing with number of 
layers, previous output of the extracted latent variables are 
used as input to next layer. This process continues until the 
N number is reached. We then feed the feature 
representations to implement the multilayer RBF machine 
based on this algorithm for unsupervised kernel regression. 
The procedure of unsupervised regression method 
provided below in 

Figure 1. 

Figure 1: The procedure of unsupervised regression (before improvement) 

Unfortunately, after model training and evaluation of 
the three algorithms; the unsupervised method did not 
give a good accuracy as expected. In order to improve 
performance, the unsupervised latent regression with 
projection method is suggested. 

The classifier based on this method is built by the following 
steps: 

1. The whole training dataset is subdivided into
several groups based on the data class labels.

2. For each group individually we train the following
model:

a. 𝑥 = 𝑔 𝑦 =
M(N,NO)∙PO

Q
ORS

M(N,NT)Q
TRS

; = 𝑓 𝑥 =
M(P,PO)∙NO

Q
ORS

M(P,PT)Q
TRS

 , where 𝐾 𝑎, 𝑏  is a kernel 

function. 
b. The kernel is selected from the class of

the multilayer RBF kernels.

c. The 1-layer RBF kernel is: 𝐾 𝑥, 𝑦 =

	𝑒-
S

,∙X,
P-N ,

, the combination of the RBF 
kernel K(𝑥, 𝑦)with kernel 𝐾G(𝑥, 𝑦) will

be 𝐾 𝑥, 𝑦 = 	 𝑒G&
S
X,
MS(P,N)	. The goal of

the training is to define the values of the
hyper parameters for each kernel.

d. The optimal values of the particular
kernel are defined via eigenvalues
decomposition problem as previously
was done for the unsupervised latent
regression. Then for these computed
values the observable space error is
defined as: 𝐸 = 𝑦2-𝑓(𝑔 𝑦2 )E

2FG , the
built in cross-validation is used, meaning
that 𝑦2 and 𝑥2 are excluded from the
prediction stage. 𝑓 𝑥2 =

M(PY,PO)∙NO
Q
ORS,OZY

M(PY,PT)Q
TRS,TZY

, 𝑔 𝑦2 =

M(NY,NO)∙PO
Q
ORS,OZY

M(NY,NT)Q
TRS,TZY

. 
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3. The points for which we want to predict the class
label are processed via model  𝑓(𝑔 𝑦 ) to find the
projection error for each group. The class giving
minimum projection error is selected as a class
label.

3. Practical Implementation

In this section we plan to compare multilayer kernel 
machines with different approaches for feature selection 
and dimensionality reduction. That means we will change 
steps 3 and 4 of the described method (supervised feature 
selection and unsupervised dimensionality reduction) and 
see how these changes affect the performance of the 
classification. 
The major points for comparison: 

1. Overall classification accuracy on different
dataset: we are going to compare machines
with same number of layers and equivalent
kernel parameters.

2. Compare change of the classification
performance with increased number of layers
to answer these questions:

- How much the performance 
improves with addition of each new 
layer?  

- What the limit number of layers the 
performance stops improving? 

3. Compare how performance varies depending
on the number of training examples. 

4. Compare computational complexity.
In order to achieve these goals; some requirements have 
been followed: 

1. We use the same classification algorithm for
all 3 methods: k-nearest neighborhood 
(KNN) classification algorithm with 
Mahalanobis distance metric learning used in 
[1] and described in [4]. 

2. We perform k-fold cross-validation: the input
data are subdivided into k pieces on each 
iteration single piece of data is used for 
validation while other data are used for 
training in all 3 algorithms. As a result, a 
precision and recall was computed for all 
methods and number of selected features. 

3. We change different parameters of the
method to see how the results of classification 
will change: 
- Number of layers (How much the 

performance improves with addition of 
each new layer; are there any limits for 
number of layers: the number of layers 
after which the performance stops 
improving). 

- Number of training examples 

4. Experimental Results

4.1. Dataset Description 
In these experiments, we work with three different datasets 
to assess the approach that has been proposed to make 
result comparison. The adopted datasets are; 

1. The Apnea-ECG Database
This dataset obtained from Apnea-ECG database is with 
ECG signals for sleep apnea annotations. It has been 
selected also to validate the proposed approach in this 
work. The dataset in Apnea-ECG database contains 70 
recordings of ECG for different patients with the range of 
7 to 10 hours altogether. Meanwhile, just 35 recordings out 
of the 70 has minutes-wise apnea annotations. This 
suggests that apnea maybe occurs during each minute of 
ECG-data. However, only these 35 have been considered 
in the research.    

4.2. Performance Metrics 
In order to achieve the robustness of the results we used the 10-
fold cross validation. All the points from the dataset selected for 
evaluation were: 

1. Randomly permutated
2. Subdivided into 10 groups of equal size. The

prediction algorithms were sequentially applied to
each of these 10 groups while the others 9 were
used to train the prediction model.  The quality
metrics were computed for each iteration and the
averaged in order to achieve final results.

The following metrics are measured to evaluate the performance: 
• Accuracy: is the ratio of correctly classified

data points to the total number of data points 
• Mean squared error (MSE):is the ratio of

misclassified data to total number of data 
points 

• Training time: is time in seconds which were
solely used to train the model on specific 
amount of data with predefined number of 
layers. 

• Prediction time: is the time in seconds spent
solely on the prediction step with pre-trained 
model containing specific number of steps 
with fixed amount of training data. 

4.3. Results Discussion and Analysis 
The Apnea-ECG data set 
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For the Apnea-ECG database, we observe no significant 
change in both specificity and sensitivity values for all 5 
layers.  The impressive time results shown for training 
and validation times means this appears to be the best 
algorithm for best result in this respect. The improvement 
in the time parameters is achieved through limiting the 
number of features selected after projection. Unlike the 
previous two datasets, the Cohen kappa shows unaffected 
values through the 5 layers. 
Figure 2 below presents the accuracy values for the four 
algorithms according to variation in number of layers. 

Figure 2: Accuracy vs. number of layers when 
applying the four algorithms for Apnea dataset 

Figure 3 below presents the MSE values for the four 
algorithms according to variation in number of layers. 

Figure 3: MSE vs. number of layers when applying the 
four algorithms for Apnea dataset 

Figure 4 below presents the sensitivity values for the four 
algorithms according to variation in number of layers. 

Figure 4: Sensitivity vs. number of layers when 
applying the four algorithms for Apnea dataset 

Figure 5 below presents the specificity values for the four 
algorithms according to variation in number of layers. 
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Figure 5: Specificity vs. number of layers when 
applying the four algorithms for Apnea dataset 
Figure 6 below presents the Cohen’s Kappa values for the 
four algorithms according to variation in number of 
layers. 

Figure 6: Cohen’s Kappa vs. number of layers when 
applying the four algorithms for Apnea dataset 
Figure 7 below presents the Training time values for the 
four algorithms according to variation in number of 
layers. 

Figure 7: Training time (sec) vs. number of layers 
when applying the four algorithms for Apnea dataset 

Figure 8 below presents the Validation time values for the 
four algorithms according to variation in number of 
layers. 

Figure 8: Validation time (sec) vs. number of layers 
when applying the four algorithms for Apnea dataset 

5. conclusion
In conclusion, the multilayered systems generally show relatively 
better results with large and highly varied data, as compared with 
“shallow learning” algorithms with usually single layer 
architecture. Moreover, amongst the multilayer algorithms, 
Supervised Regression tends to produce more stable and accurate 
results. As such, the usage of this particular algorithm should be 
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given greater consideration when conducting machine learning 
tasks involving large data sets and non-linear functions. 
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