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Abstract

Scaled Largest Eigenvalue (SLE) detector stands out as the optimal single-primary-user detector in uncertain
noisy environments. In this paper, we consider a multi-antenna cognitive radio system in which we aim at
detecting the presence/absence of a Primary User (PU) using the SLE detector. By the exploitation of the
distributions of the largest eigenvalue and the trace of the receiver sample covariance matrix, we show that
the SLE could be modeled using the standard Gaussian function. Moreover, we derive the distribution of the
SLE and deduce a simple yet accurate form of the probability of false alarm and the probability of detection.
Hence, this derivation yields a very simple form of the detection threshold. Correlation coefficient between the
largest eigenvalue and the trace is also considered as we derive a simple analytical expression. These analytical
derivations are validated through extensive Monte Carlo simulations
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1. Introduction
In Cognitive Radio (CR) networks, Spectrum Sensing
(SS) is the task of obtaining awareness about the
spectrum usage. Mainly it concerns two scenarios of
detection: (i) detecting the absence of the Primary User
(PU) in a licensed spectrum in order to use it and (ii)
detecting the presence of the PU to avoid interference.
Hence, SS plays a major role in the performance of the
CR as well as the performance of the PU networks that
coexist. In this context, an extreme importance for a CR
network is to have an optimal SS technique with high
probability of accuracy in uncertain environments. The
Scaled Largest Eigenvalue detector (SLE) is an efficient
technique that is proved to be the optimal detector
under Generalized Likelihood Ratio (GLR) criterion
and noise uncertainty environments [1, 2].

SLE is among the detectors that use the eigenvalues
of the receiver sample covariance matrix. Such detectors

∗Corresponding author. Email: hussein.kobeissi.87@gmail.com

are known as the Eigenvalue Based Detectors (EBD) and
include, in addition to SLE [1–7], other detectors like
the Largest Eigenvalue detector (LE) and the Standard
Condition Number detector (SCN)[8–12]. In a scenario
with perfect knowledge of the noise power, the LE
detector is the optimal detector [10]. However, in
practical systems the noise power may not be perfectly
known. In this case, the SLE and SCN detectors
outperform the LE detector due to their blind nature.
Moreover, the SLE is proved to be the optimal detector
under GLR criterion [1, 2] and outperforms the SCN
detector.

In literature, results on the statistics of the SLE,
defined as the ratio of the largest eigenvalue to the
normalized trace of the sample covariance matrix,
are relatively limited. They are based on tools from
random matrix theory [2–4] and Mellin transform [4–
6]. SLE was proved, asymptotically, to follow the LE
distribution (i.e. Tracy-Widom (TW) distribution) [2].
However, a non-negligible error still exists and a new
form is derived based on TW distribution and its second
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derivative [3]. Using Mellin transform, The distribution
of the SLE was derived by the exploitation of the
distribution of LE and the distribution of the trace [4–
6]. However, all the findings on SLE are too complex
to be considered in real-environments and hence are
no easily scalable. This is due to either a complexity in
the original distributions used to model the SLE (e.g.
TW distribution) or in the methods used to derive the
thresholds. Hence, there is a necessity to propose novel
yet simple forms in both SS cases (presence and absence
of PU activity).

In this paper, we are interested in finding a simple
form for the Cumulative Density Function (CDF)
and Probability Density Function (PDF) of the SLE.
We consider the following hypotheses: (i) H0: there
is no primary user and the received signal is only
noise; and (ii) H1: the primary user exists. Based
on the distribution of the ratio of jointly Gaussian
random variables, we show that the SLE, under both
hypotheses, could be modeled using the standard
Gaussian function. Accordingly simple forms for the
Probability of False-alarm (Pf a), the Probability of
detection (Pd) as well as the detection threshold could be
derived. Moreover, we derive the correlation coefficient
between the Largest Eigenvalue and the trace in
both cases, as it is needed in the derivation of the
detection analysis. In the following, we summarize the
contributions of this paper:

• Derivation of the distribution of the trace of a
complex sample covariance matrix for both H0
and H1 hypothesis.

• Derivation of the distribution of the SLE detector
for both hypotheses.

• Derivation of a simple form for the correlation
coefficient between the largest eigenvalue and the
trace under both hypotheses.

• Derivation of a simple form for the probability of
false-alarm, Pf a, the detection probability, Pd , and
the threshold for detection.

The rest of this paper is organized as follows. Section
2 studies the system model. In section 3, we recall the
distribution of the LE and we derive the distribution of
the trace of complex sample covariance matrix. SLE is
considered in section 4 as we derive its distribution.
The performance probabilities and the threshold are
also addressed. In section 5, we consider the correlation
coefficient between the largest eigenvalue and the trace.
Theoretical findings are validated by simulations in
section 6 while the conclusion is drawn in section 7.

Notations. Vectors and Matrices are represented,
respectively, by lower and upper case boldface.
The symbols |.| and tr(.) indicate, respectively, the

determinant and trace of a matrix while (.)T , and (.)†

are the transpose, and Hermitian symbols respectively.
In is the n × n identity matrix. Symbols ∼ stands for
"distributed as", E[.] for the expected value and ‖.‖ for
the Frobenius norm.

2. System Model
Consider a multi-antenna cognitive radio system and
denote by K the number of received antennas. Let N
be the number of samples collected from each antenna,
then the received sample from antenna k = 1 · · ·K at
instant n = 1 · · ·N under the two hypotheses is given by

H0 : yk(n) = ηk(n), (1)

H1 : yk(n) = s(n) + ηk(n), (2)

with ηk(n) is a complex circular white Gaussian noise
with zero mean and unknown variance σ2

η and s(n) is
the received signal sample including the channel effect.

After collecting N samples from each antenna, the
received signal matrix, Y , is given by:

Y =


y1(1) y1(2) · · · y1(N )
y2(1) y2(2) · · · y2(N )
...

...
. . .

...
yK (1) yK (2) · · · yK (N )

 , (3)

Without loss of generality, we suppose that K ≤ N then
the sample covariance matrix is given by W = Y Y †.
Denote the eigenvalues of W by λ1 ≥ λ2 ≥ · · · ≥ λK > 0.

H0 Analysis. Under H0, the received samples are
complex circular white Gaussian noise with zero mean
and unknown variance σ2

η . Consequently, the sample
covariance matrix is a central uncorrelated complex
Wishart matrix denoted as W ∼ CWK (N, σ2

η IK ) where
K is the size of the matrix, N is the number of Degrees
of Freedom (DoF), and σ2

η IK is the correlation matrix.

H1 Analysis. Under H1, we suppose the existence of
single PU and the channel is constant during sensing
time for simplicity. Consequently, the sample covari-
ance matrix is a non-central uncorrelated complex
Wishart matrix denoted as W ∼ CWK (N, σ2

η IK ,ΩK )
where ΩK is a rank-1 non-centrality matrix.

Denote the effective correlation matrix by Σ̂K =
σ2
η IK + ΩK/N and its vector of ordered eigenvalues by σ =

[σ1, σ2, · · · , σK ]T . Accordingly, W , under H1, could be
modeled as a central semi-correlated complex Wishart
matrix denoted as W ∼ CWK (N, Σ̂K )[13]. Since ΩK is a
rank-1 matrix, then Σ̂K belongs to the class of spiked
population model with all but one eigenvalue of Σ̂K are
still equal to σ2

η while σ1 is given by:

σ1 = σ2
η + ω1/N , (4)
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whereω1 is the only non-zero eigenvalue of ΩK . Denote
the channel power by σ2

h and the signal to noise ratio by

r =
σ2
s σ

2
h

σ2
η

, then it can be easily shown that:

ω1 = tr(ΩK ) = NKr. (5)

3. Distributions of the largest eigenvalue and of
the trace
This section considers the distributions of the LE and
of the trace under H0 and H1 hypothesis. We prove
that the LE and the trace follow Gaussian distributions
for which the means and variances are formulated.
Since the SLE does not depend on the noise power, we
suppose, in this section, that σ2

η = 1. Based on results of
this section, we derive the distribution of the SLE in the
next section.

3.1. Distribution of the LE
Let λ1 be the maximum eigenvalue of the Wishart
matrix W . In the following, we give its distribution for
H0 and H1 cases.

H0 Case. Denote the centered and scaled version of
λ1 of the central uncorrelated Wishart matrix W ∼
CWK (N, IK ) by:

λ′1 =
λ1 − a(K,N )
b(K,N )

(6)

with a(K,N ) and b(K,N ), the centering and scaling
coefficients respectively, are defined by:

a(K,N ) = (
√
K +
√
N )2 (7)

b(K,N ) = (
√
K +
√
N )(K−1/2 +N−1/2)

1
3 (8)

then, as (K,N )→∞ with K/N → c ∈ (0, 1), λ′1 follows
a Tracy-Widom distribution of order 2 (TW2) [14].
However, it was shown that, for a fixed K and as N →
∞, λ1 follows a normal distribution [15]. The mean and
the variance of λ1 could be approximated using TW2
and they are, respectively, given by :

µλ1
= b(K,N )µTW2 + a(K,N ), (9)

σ2
λ1

= b2(K,N )σ2
TW2, (10)

where µTW2 = −1.7710868074 and σ2
TW2 =

0.8131947928 are, respectively, the mean and variance
of TW distribution of order 2. This approximation is
very efficient and it achieves high accuracy for K as
small as 2 [15].

H1 Case. Denote the centered and scaled version of
λ1 of the central semi-correlated Wishart matrix W ∼
CWK (N, Σ̂K ) by:

λ′′1 =
λ1 − a2(K,N, σ )√

b2(K,N, σ )
(11)

with a2(K,N ) and b2(K,N ), the centering and scaling
coefficients respectively, are defined, respectively, by:

a2(K,N, σ ) = σ1(N +
K

σ1 − 1
) (12)

b2(K,N, σ ) = σ2
1 (N − K

(σ1 − 1)2 ) (13)

then, as (K,N )→∞ with K/N → c ∈ (0, 1) and r > rc =
1/
√
KN , λ′′1 follows a standard normal distribution

(λ′′1 ∼ N (0, 1))[16]. Thus, λ1 follows a normal distribu-
tion with mean and variance given by (12) and (13)
respectively. However, if r < rc, then λ1 follows the same
distribution as in H0 Case [16]. Accordingly, the PU
signal has no effect on the eigenvalues and could not
be detected.

3.2. Distribution of the Trace
As shown earlier, the distribution of λ1 converges to the
Gaussian distribution. On the other hand, let T =

∑
λi

be the trace of the Wishart matrixW then the following
theorem holds:

Theorem 1. Let T be the trace of W ∼ CWK (N,Σ) where
the vector of eigenvalues of Σ, not necessary equal, are
given by [σ1, σ2, · · · , σK ]. Then, as N →∞, T follows
Gaussian distribution as follows:

P (
T −N

∑K
i=1 σi√

N
∑K
i=1 σ

2
i

≤ x) =
1
√

2π

∫ x

−∞
e−

u2
2 du, (14)

Proof. Let D be an orthogonal matrix that diagonalizes
Σ, then we write:

T = tr(Y Y †) = tr(DDT Y Y †) = tr(DT Y Y †D)

= tr(ZZ †) =
K∑
i=1

 N∑
j=1

|zi,j |2
 (15)

with zi,j is the (i, j)-th element of matrix Z = DT Y .
Let Z = [z1 z2 · · · zN ] with zj = [z1j z2j · · · zKj ]T . Since
the vectors z1, z2, · · · zN are independent and zj ∼
CN K (0,DTΣD) then the elements zij are independent
and form a circularly symmetric complex normal
random variable (zi,j ∼ CN (0, σi)). Accordingly, the
square of the norm, |zi,j |2, is exponentially distributed
with parameter σ−1

i and hence, the mean and variance
are σi and σ2

i respectively.
According to CLT, as N →∞ the term in the square

bracket of (15) follows Gaussian distribution with mean
and variance are Nσi and Nσ2

i respectively.

To the best of the authors’ knowledge, the result in
Theorem 1 is new.

Now, we consider each hypothesis as follows:
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H0 Case. The distribution of the trace T of ofW under
H0 is given by the following Corollary:

Corollary 1. Let T be the trace of W ∼ CWK (N, σ2
η IK ).

Then, as N →∞, T follows Gaussian distribution as
follows:

P (
T −NKσ2

η√
NKσ4

η

≤ x) =
1
√

2π

∫ x

−∞
e−

u2
2 du, (16)

Proof. It follows from Theorem 1.

H1 Case. The distribution of the trace T of ofW under
H1 is given by the following Corollary:

Corollary 2. Let T be the trace of W ∼ CWK (N, Σ̂K ). Then,
as N →∞, T follows Gaussian distribution as follows:

P (
T −N (σ1 + (K − 1)σ2)√
N (σ2

1 + (K − 1)σ2
2 )
≤ x) =

1
√

2π

∫ x

−∞
e−

u2
2 du,

(17)

Proof. All the eigenvalues of Σ̂K are equal except σ1.
Then, the result follows from Theorem 1.

Normalized Trace. Let Tn = 1
K T be the normalized trace.

Then Tn, following Theorem 1, is Normally distributed.
From Corollary 1, Tn is Normally distributed with

mean and variance given respectively, when σ2
η = 1, by:

µTn = N, (18)

σ2
Tn = N/K, (19)

From Corollary 2, Tn is Normally distributed with
mean and variance given respectively, when σ2

η = 1, by:

µTn =
N
K

(σ1 + K − 1), (20)

σ2
Tn =

N

K2 (σ2
1 + K − 1), (21)

4. SLE Detector
Let W be the sample covariance matrix at the CR
receiver, then the SLE of W is defined by:

X =
λ1

1
K

∑K
i=1 λi

=
λ1

Tn
(22)

Denoting by α the decision threshold, then the
false alarm probability (Pf a), defined as the probability
of detecting the presence of PU while it does not
exist, and the detection probability (Pd), defined as the
probability of correctly detecting the presence of PU,
are, respectively, given by:

Pf a = P (X ≥ α/H0) = 1 − F0(α), (23)

Pd = P (X ≥ α/H1) = 1 − F1(α), (24)

where F0(.) and F1(.) are the CDFs of X under H0 and
H1 hypotheses respectively. If the expressions of the
Pf a and/or Pd are known, then a threshold could be
set according to a required error constraint. Hence, it
is important to have a simple and accurate form for the
distribution of X.

4.1. SLE distribution
This section provides a new formulation for the SLE
distribution for H0 and H1 hypotheses as follows:

H0 Case. Under H0, both the LE and the normalized
trace follow the Gaussian distribution as N →∞ which
is realistic in practical spectrum sensing scenarios.
Herein, we show that the SLE could be formulated using
standard Gaussian function as stated by the following
theorem:

Theorem 2. Let X be the SLE of W ∼ CWK (N, σ2
η IK ).

Then, for a fixed K and as N →∞, the CDF and the
PDF of X are, respectively, given by:

FX(x) = Φ(
xµTn − µλ1√

σ2
λ1
− 2xc + x2σ2

Tn

) (25)

fX(x) =
µTnσ

2
λ1
− cµλ1

+ (µλ1
σ2

Tn − cµTn )x

(σ2
λ1
− 2xc + x2σ2

Tn )
3
2

× φ(
xµTn − µλ1√

σ2
λ1
− 2xc + x2σ2

Tn

) (26)

with

Φ(v) =
∫ v

−∞
φ(u)du and φ(u) =

1
√

2π
e−

u2
2 (27)

where µλ1
, µTn and σ2

λ1
, σ2

Tn are, respectively, the
mean and the variance of λ1 and Tn given by (9), (18)
and (10), (19) respectively. The parameter c is given
by c = σλ1

σTnρ where ρ is the correlation coefficient
between λ1 and Tn.

Proof. Let λ1 and Tn be two normally distributed
random variables with µλ1

, µTn , σ2
λ1

and σ2
Tn their

means and variances and let ρ be their correlation
coefficient. Denote by g(λ, t) the joint density of λ1 and
Tn then the PDF of X is fX(x) =

∫ +∞
−∞ |t|g(xt, t)dt and the

result is found in [17], however, since W is positive
definite then P r(Tn > 0) = 1 and the CDF of X could be
written as:

FX(x) = P r(λ/t < x) = P r(λ1 − xt < 0) (28)

and thus, its CDF is given by (25) and the PDF is its
derivative in (26) [18].
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H1 Case. Under H1, the normalized trace follows
the Gaussian distribution as N →∞ whereas the LE
follows the Gaussian distribution as (K,N )→∞ with
K/N → c ∈ (0, 1) and r > rc = 1/

√
KN . Accordingly, the

distribution of the SLE is given by the following
Theorem:

Theorem 3. Let X be the SLE of W ∼ CWK (N, Σ̂K ).
Then, as (K,N )→∞ with K/N → c ∈ (0, 1) and r > rc =
1/
√
KN , the CDF and PDF of X are, respectively, given

by (25) and (26). However, µλ1
, µTn and σ2

λ1
, σ2

Tn
are, respectively, the mean and the variance of λ1 and
Tn given by (12), (20) and (13), (21) respectively. The
parameter c is defined by c = σλ1

σTnρ where ρ is the
correlation coefficient between λ1 and Tn.

Proof. Same as the proof of Theorem 2.

4.2. Performance Probabilities and Threshold
Using (23) and (25), then Pf a is given by:

Pf a(α) = Q(
αµTn − µλ1√

σ2
λ1
− 2αc + α2σ2

Tn

) (29)

where Q(.) is the Q-function. µλ1
, σ2

λ1
, µTn and σ2

Tn
are given respectively by (9), (10), (18) and (19). Pd is
derived the same way using H1 hypothesis.

Using Pf a and Pd , the threshold could be set according
to a required error constraint. For example, and based
on (29), we can derive a simple and accurate form for
the threshold as a function of the means and variances
of the LE and Tn and the correlation coefficient between
them as well as the false alarm probability. That is, for
a target false alarm probability, P̂f a, the equation of the
threshold of the SLE detector will be:

α =
µ12 − β2ρσ12 + β

√
mv − 2ρµ12σ12 + β2σ2

12(ρ2 − 1)

µ2
Tn
− β2σ2

Tn
(30)

where µ12 = µλ1
µTn , σ12 = σλ1

σTn , mv = µ2
Tn
σ2
λ1

+ µ2
λ1
σ2
Tn

and β = Q−1(P̂f a) with Q−1(.) is the inverse Q-function.

5. Correlation Coefficient ρ
Theorem 2 gives the form of the distribution of the SLE
as a function of the mean and the variance of λ1 and Tn
as well as the correlation coefficient between them (ρ).
Consequently, Pf a, Pd and the threshold are a functions
of these same parameters.

The mean and the variance of λ1 and Tn are provided
in Section 3. In this section, we will give a simple
analytical form to calculate the correlation coefficient,
ρ, between the largest eigenvalue and the trace of
Wishart matrix based on the mean of the SLE. In the
following, we calculate the mean of SLE in two different
ways such that a simple form for ρ could be derived.

5.1. Mean of SLE using λ1 and Tn
Under both hypotheses (H0 and H1), the mean of the
SLE could be computed using the means of λ1 and Tn as
follows:

H0 case: using independent property. Under H0, the SLE
and the trace of central uncorrelated Wishart matrices
are proved to be independent [19]. Accordingly, and
using (22), the mean of λ1 could be written as:

E[λ1] = E
[
X × Tn

]
= E[X] · E[Tn] (31)

Recall that the mean of λ1 and the mean of Tn are
given respectively by (9) and (18), then based on (31),
the mean of the SLE is given by:

µX =
µλ1

µTn
=
b(K,N ) · µTW2 + a(K,N )

N
(32)

H1 case: using Taylor series. The bi-variate first order
Taylor expansion of the function X = g(λ1, Tn) = λ1/Tn
about any point θ = (θλ1

, θTn ) is written as [20]:

X = g(θ) + g ′λ1
(θ)(λ1 − θλ1

) + g ′Tn(θ)(Tn − θTn ) +O(n−1),
(33)

with g ′(.) is the partial derivative of g over (.).
Let θ = (µλ1

, µTn ), then the mean is given by [20]:

µX =
µλ1

µTn
=
σ1(N + K

σ1−1 )
N
K (σ1 + K − 1)

, (34)

It is worth mentioning that it is more accurate to use
higher order Taylor series. However, this will increase
the complexity with a slightly more accurate values
which is not necessary. Equation (35) provides the
expression of the mean using 2nd order bi-variate Taylor
series so that the reader could compare the results.

µX =
µλ1

µTn
− Cov(λ1, Tn)

µ2
Tn

+
σ2

Tnµλ1

µ3
Tn

(35)

5.2. Mean of SLE using variable transformation
Using SLE distribution, it is difficult to find numerically
the mean of the SLE, however, it turns out that a simple
and accurate approximation could be found.

An approximation of the mean of the ratio (u +
Z1)/(v + Z2) could be found when u and v are positive
constants and Z1 and Z2 are two independent standard
normal random variables. It is based on approximating
formula for E[1/(v + Z2)] when v + Z2 is normal variate
conditioned by Z2 > −4 and v + Z2 is not expected to
approach zero as follows [18]:

E

[
1

v + Z2

]
=

1
1.01v − 0.2713

(36)
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By using the transformation of the general ratio of
two jointly normal random variable λ1/Tn into the ratio
(u + Z1)/(v + Z2), which has the same distribution, we
have:

λ1

Tn
∼ 1
q

(
u + Z1

v + Z2
) + s (37)

with s = ρ
σλ1
σTn

, v =
µTn
σTn

and

u =
µλ1
− ρ µTn ·σλ1

σTn

(±σλ1

√
1 − ρ2)

(38)

q =
σTn

(±σλ1

√
1 − ρ2)

(39)

where one chooses the ± sign (in both u and q) so that u
and v have the same sign (i.e. positive). As the left-side
and the right-side of (37) must have the same mean, we
can write:

E[
λ1

Tn
] =

u
q
E[

1
v + Z2

] + s (40)

therefore the mean of the SLE could be approximated
as follows:

µX =
µλ1

+ δ µTn
θ

+ δ (41)

with δ = ρ
σλ1
σTn

and θ = 1.01µTn − 0.2713σTn .
This practical approximation shows high accuracy;

however, it could be noticed from (40) that as u
increases the error due to this approximation increases.

5.3. Deduction of the Correlation coefficient ρ
Based on these results, the correlation coefficient (ρ)
under H0 and H1 hypotheses is considered as follows:

H0 case. Using (41), then ρ, after some algebraic
manipulation, is given by:

ρ =
σTn
σλ1

·
θ µX − µλ1

θ + µTn
(42)

where µλ1
, µTn and µX are respectively the means of the

LE, the normalized trace and the SLE given by (9), (18)
and (32) respectively. σλ1

and σTn are respectively the
standard deviations of the LE and the normalized trace
and are the square root of (10) and (19) respectively.

H1 case. Under H1 hypothesis, results show the u
increases as K or N increases because of the high
correlation between λ1 and Tn. Accordingly, results
show a small error in the value of the mean of SLE with
respect to the true value. Consequently, and using (41),
then ρ is given by:

ρ =
σTn
σλ1

·
θ (µX + ε) − µλ1

θ + µTn
(43)

where µλ1
, µTn and µX are respectively the means of the

LE, the normalized trace and the SLE given by (12), (20)

Table 1. The Empirical and Approximated value of the correlation
coefficient ρ under H0 hypothesis for different values of {K,N }.

K ×N 2 × 500 4 × 500 2 × 1000 4 × 1000 50 × 1000

ρ-Emp. 0.849 0.6974 0.839 0.6915 0.3353

ρ-Ana. 0.8548 0.6957 0.8623 0.6967 0.3356

and (34) respectively. σλ1
and σTn are respectively the

standard deviations of the LE and the normalized trace
and are the square root of (13) and (21) respectively.
Finally, ε is a variable used to model the mean error.

6. Numerical validation

In this section, we discuss the analytical results
through Monte-Carlo simulations. We validate the
theoretical analysis presented in sections 3, 4 and 5.
The simulation results are obtained by generating 105

random realizations of Y .
Table 1 shows the accuracy of the analytical

approximation of the correlation coefficient (ρ) of the
SLE in (42). The results are shown for K = {2, 4, 50}
antennas and N = {500, 1000} samples per antenna.
Table 1 shows that the accuracy of this approximation
is higher as the number of antennas increases, however,
we can also notice that we have very high accuracy
even when K = 2 antennas. Also, as expected, it is
easy to notice that the correlation between the largest
eigenvalue and the trace decreases as the number of
antenna increases, however, this correlation could not
be ignored even if the number of antennas is large.

Figure 1 shows the accuracy of the mean of the
SLE as well as the correlation coefficient between
the largest eigenvalue and the trace. The results are
shown for different values of K where N = 500 and
r = −10dB. Figure 1(a) plots the empirical mean and its
corresponding Taylor series approximation in (34). In
addition, the figure shows the mean error (ε) between
the Taylor approximation and the mean expression
provided using variable transformation in (41). the
results show a high accuracy in the approximation of
the mean using Taylor series, however, it also shows a
small error, ε, that increases as K increases. Another
important point here concerns the error value epsilon.
Indeed, one can easily observe the epsilon is small
however its effect on correlation coefficient rho is
relatively high as shown in Fig. 1(b) , hence corrective
action should be taken to yield correct results. The
corrected version is considered (i.e. Fig. 1(a)) then the
results show high accuracy. We should mention that
this is out of the scope of this paper but it is worth
mentioning it for future research.
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Figure 1. Empirical and Analytical mean of SLE (µSLE) and
correlation coefficient between largest eigenvalue and trace (ρ)
under H1 hypothesis for different values of K where N = 500
sample and r = −10dB.
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Figure 2. Empirical CDF of the SLE under H0 hypothesis and
its corresponding Gaussian approximation for different values of
K with N = 1000.
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Figure 3. Empirical CDF of the SLE under H1 hypothesis and
its corresponding proposed approximation for different values of
K = 50 with N = {500, 100} and r = −10dB.
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Figure 4. Empirical probability of false alarm for the SLE
detector and its corresponding proposed form in (29) for different
values of K with N = 500 samples.

Figure 2 shows the empirical CDF of the SLE and
its corresponding approximation under H0 hypothesis
given by Theorem 2. The results are shown for
K = {2, 4, 10, 20} antennas and N = 1000 samples per
antenna. Results show a perfect match between the
empirical results and our Gaussian formulation.

Figure 3 shows the empirical CDF of the SLE and
its corresponding approximation (before and after
mean correction) given by Theorem 3. The results are
shown for K = 50 antennas, N = {500, 1000} samples
per antenna and r = −10dB. Again, the results show a
perfect match between the empirical results and the
proposed approximation after the mean correction in
(43). However if the we consider ε = 0, results show a
slight difference between empirical and the proposed
distributions in comparison with the big error in ρ (see
Fig. 1(b) when K = 50 and N = 500).

Figure 4 shows the accuracy of the proposed false
alarm form proposed in (29). Here, we have considered
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multi-antenna CR with different number of antennas
and N = 500 samples. The considered number of
antennas is as small as K = 2 and as large as K =
50. Simulation results show a high accuracy in our
proposed form which increases as K increases. It is
worth reminding the reader, that in addition to the
accuracy, the form given in (29) is a simple Q-function
equation.

7. Conclusion
In this paper, we have considered the SLE detector due
to its optimal performance in uncertain environments.
We proved that the SLE could be modeled using
standard Gaussian function and we have derived
its CDF and PDF. The false alarm probability, the
detection probability and the threshold were also
considered as we derived new simple and accurate
forms. These forms are simple functions of the means
and variances of the LE and the trace as well as
the correlation function between them. The correlation
between the largest eigenvalue and the trace is studied
and simple expressions are provided. Simulation results
have shown that the proposed simple forms achieve
high accuracy. However, the approximation of the
correlation coefficient under H0 shows high accuracy.
Moreover, underH1 hypothesis, small mean error must
be corrected to achieve high accuracy. In addition,
results have shown that the correlation between the

largest eigenvalue and the trace, under H0, decreases
as the number of antenna increases but it could not be
ignored even for large number of antennas.
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