
RoutineSense: A Mobile Sensing Framework for the
Reconstruction of User Routines

Jean-Eudes Ranvier Michele Catasta Matteo Vasirani Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
{firstname.lastname}@epfl.ch

ABSTRACT
Modern smartphones are powerful platforms that have be-
come part of the everyday life for most people. Thanks to
their sensing and computing capabilities, smartphones can
unobtrusively identify simple user states (e.g., location, per-
formed activity, etc.), enabling a plethora of applications
that provide insights on the lifestyle of the users. In this
paper, we introduce routineSense: a system for the auto-
matic reconstruction of complex daily routines from sim-
ple user states, implemented as an incremental processing
framework. Such framework combines opportunistic sens-
ing and user feedback to discover frequent and exceptional
routines that can be used to segment and aggregate multi-
ple user activities in a timeline. We use a comprehensive
dataset containing rich geographic information to assess the
feasibility and performance of routineSense, showing a near
threefold improvement on the current state-of-the-art.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition Model]: Model

Keywords
activity modeling, routine detection, mobile sensing

1. INTRODUCTION
The ever-increasing sensing and computing capabilities of

modern smartphones are enabling new unobtrusive ways to
collect the digital trails of users, organise them and extract
meaningful information regarding their activities. Thanks to
sensors such as GPS, accelerometer and microphone, several
user-centric smartphones applications have been recently de-
veloped to sense and understand the way we live and the
world that surrounds us [1]. These applications typically fo-
cus on recognising specific aspects of the user life and creat-
ing long sequences of user-related states, such as the physical
activity (e.g., walking, standing, running, etc.) or the vis-

ited locations (e.g., home, workplace, etc.). However, how
to identify complex patterns, or routines, from sequences of
simple user states is still an ongoing challenge. Applications
that could benefit from routineSense range from elder care
with the monitoring of patients’ routines, to personalized
recommendations (e.g., fitness advices, activity suggestions,
reminders, etc.) based on the user’s routine.

In this paper, we introduce an incremental processing
framework for fusing sensors data into simple states, which
can be further aggregated into complex routines. The pro-
posed framework combines opportunistic sensing, unsuper-
vised pattern generation and user feedback to discover and
rank frequent and exceptional routines in an incremental
way, following an established human memory model. We
evaluate our framework using a comprehensive data set con-
taining rich geographic information. The evaluation is both
in terms of computational requirements of the routine recon-
struction and accuracy of the segmentation of the sequence
of states. Furthermore, we also implement a state-of-the-art
algorithm to assess the accuracy of our approach.

The contributions of this paper are the following: (i) we
define a theoretical framework for the generation of simple
states and the reconstruction of complex patterns based on
the cognitive model of episodic memory proposed by Con-
way [2], according to which single atomic events, or episodic
elements (EE), are grouped into simple episodic memories
(SEM); (ii) we propose two models based, respectively on
frequent pattern mining and on finite state machines, to
generate in an unsupervised way sets of SEMs (each of them
corresponding to complex patterns) from sequences of EEs.

The organization of the rest of the paper is as follows.
In Section 2, we present approaches taken for related prob-
lems. In Section 3, we present the details of our framework
and more specifically in Section 4, we describe the two ap-
proaches taken to generate routines. In Section 5, we eval-
uate these two approaches against a real life dataset and
compare their accuracy again the T-pattern algorithm. We
conclude with a summary in Section 6.

2. RELATED WORK

2.1 Mobile Activity Recognition
Mobile sensing and mobile activity recognition have al-

ready been studied in multiple context. In [3], Zheng et al.
describe a supervised learning approach to augment a time-
line of raw GPS coordinates with the different inferred trans-
portation modes. This system is part of a larger project [4]
which proposes storage and search mechanism for these aug-

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260055

mented GPS trajectories. The transportation mode detec-
tion problem is also studied in [5]. A transfert of technology
resulting from these research works enabled an implementa-
tion of the transportation mode detection in recent mobile
operating systems such as the activity recognition API of
Android.

Several approaches have been taken in [6], [7], [8] and [9],
to structure the data gathered via mobile sensors and to in-
fer the context in which this data was acquired, in term of
activity, location, etc. In particular, [10] proposes the cre-
ation of a diary of the whereabouts of the user based on
GPS traces. Closely related, in [11], the authors develop a
diary containing the stay points of the users collected from
smartphones and augmented with external information from
Google map and Yelp in order to allow for searchable loca-
tions. In [12], Guo et al. propose to harness mobile sensing
in order to improve the recall of human memory. To this
purpose, they extract contact information and memory cues
from physical and virtual sensors and structure these con-
tact information in order to facilitate their recall through
the appropriate cues. However, all these operation are usu-
ally performed on single or pairs of activities. Abstracting
groups of activities into routines allows us to discover larger
scale patterns.

2.2 Bounded-States Routine Detection
The aggregation of simple activities into high-level rou-

tines has also been explored in previous works. In [13],
the authors propose a method to discover complex activities
based on smart home sensors. They use a latent Dirichlet
allocation(LDA) and frequent sequence mining algorithm to
build complex activities. In this context, the number of sen-
sors and the number of activities that can be tracked are
limited. This limitation allows the authors to fix before-
hand the number of topics used in LDA. In [14], the authors
also aim at detecting a finite set of activities based on ac-
celerometer data. The K-mean algorithm is used first to
cluster sensors data into low level events which are then
processed by a boosted set of classifiers to determine which
high level activity is performed. However, K-mean necessite
the apriori knowledge of the number of events that can be
detected, making this method not suitable for problems in
which the number of states or activities is unbounded. The
authors of [15] and [16] use a similar representation of states
(home, work, out, no information) to perform a 4-class clas-
sification. Farrahi et al. [15] segment the user’s location
trace into a timeseries of labels before modeling it using
LDA augmented with the author-topic model, to define rou-
tines. Conversely, Eagle et al. [16] capture the behavior of
users using the notion of eigenbehaviors, the principal com-
ponents of a behavioral space. Once again, these approaches
are restricted to the detection of a finite set of states. While
combinations of these states can lead to multiple routines,
it does not allow for a fine grain distinction between them.

2.3 Unbounded-States Routine Detection
The notion of T-pattern presented in [17] describes fre-

quent behaviors both in term of space and time. T-patterns
are mined from GPS traces by first establishing a list of
dense regions traversed by the users. These regions are
then analysed from a temporal perspective in order to ex-
tract frequent temporal patterns. This method accepts an
unbounded number of states and can generate an infinite

number of patterns. However, this method focuses on the
GPS representation of the data and therefore does not ben-
efit from additional semantic information. Furthermore, it
focuses on sequential patterns, disregarding potential tem-
poral swapping of events.

The same way the human brain structures memories in
a hierarchical fashion, we propose a framework which ag-
gregates low level sensor readings into more abstract mul-
timodal states which can be, in turn, aggregated into high
level representation of the user routine. It improves upon
existing work by allowing for an unbounded set of states
defined by their semantic representation. These states can
then be aggregated into an unbounded set of routines. The
algorithms used by the framework are essentially incremen-
tal. This allows for periodic processing of the increments as
well as energy efficiency, which are both required for mobile
applications.

3. ARCHITECTURE
RoutineSense generates a high-level representation of a

user’s life based on his smartphone sensor readings. Inspired
by the episodic memory model proposed by Conway [2], we
structure our framework based on his representation of the
human memory responsible for storing and recollecting past
experiences. Figure 1 depicts the resulting approach taken
by routineSense.

3.1 Episodic memory model
The atomic elements of the episodic memory model are

episodic elements (EE). They represent events or summary
of events. We translate this concept into the digital world as
a 3-dimensional entity containing the answers to the ques-
tions When?, Where? and What? (e.g. At 10am I went
jogging by the lake side). The when relates to the tempo-
ral nature of the memories and correspond to the instant
at which an event occurs. It is naturally represented in our
system as the timestamp at which this event happened. The
where corresponds to the location at which the event hap-
pened. While GPS coordinates would be a natural candidate
to represent this dimension, they lack interpretability. We
propose to augment these coordinates with a semantic rep-
resentation of the venue. The what represent the activity
being carried out by the user. The representation of the ac-
tivity also follows a semantic approach setting the base for
comparison and querying of activities.

Still according to Conway’s model, episodic elements can
be aggregated into simple episodic memories (SEM). These
entities represent higher level activities and last a longer
timespan (e.g. going to a restaurant and then going to the
opera can be aggregated as going on a date). We emulate
this behavior in our system by allowing the user to manu-
ally group EE to create SEM and by discovering recurring
patterns of EEs in the past activities. The advantage of this
approach is that EEs and SEMs encourage composability
of memories, while at the same time the cognitive burden
while interacting with the system is reduced, hence facilitat-
ing higher memory recall.

3.2 Generation of Episodic Elements
RoutineSense defines two types of episodic elements. The

first one is related to the opportunistic sensing of the user’s
whereabouts. Opportunistic episodic elements contains the
following information: the time of the activity, the staypoint

Generation of
Episodic Elements

Jogging in
Hyde park

Lunch at
Thai rest.

Phone call
with Alice

Creation of
Simple Episodic

Memories

Morning
jogging

Lunch with
Alice

Representation of
Simple Episodic

Memories

Opportunistic
sensing

Physical
sensors

 Hyde park
(running)

Thai rest.
(still)

Staypoint
detection
(ESOINN)

Virtual
sensors

User-triggered
sensing

Phone call
with Alice

Storyline view Monthly overview

Routine
reconstruction

(FSM, FPM, etc.)

Figure 1: The architectural pipeline of routineSense. First, the Episodic Elements are generated by an algo-
rithm for staypoint detection (based on ESOINN), and by the virtual sensors in the phone (e.g., phone calls,
SMS, etc.) Then, the routine are reconstructed directly from the Episodic Elements. Finally, our prototype
application (embedding routineSense) shows the routines at different granularity levels.

at which the event occurs and the description of the activity
the user is performing.

The time of the activity is represented by the timestamps
at which the activity started and ended. Staypoints are de-
fined as the locations at which the user stayed for a minimum
amount of time to perform an activity. They are generated
based on a finite state machine using geofencing and GPS
data to determine the state of the user. Due to the im-
precision in GPS readings and the continuous nature of the
spatial domain, staypoints need to be clustered in order to
detect recurrent visits of the same place. The clustering
will allow in a second time to avoid having to character-
ize a new staypoint if it belongs to an already characterized
cluster. This problem is handled by using the ESOINN algo-
rithm [18] to cluster staypoints. ESOINN possesses several
suitable features to this purpose such as being incremental,
unsupervised and does not require to know apriori the num-
ber of clusters. The output of the algorithm represents the
unique places visited by the user. However, some modifica-
tions were required to better fit the needs of routineSense.
These modifications include the removal of the forgetting
mechanism of ESOINN in order to retains all the data, modi-
fication of the density function in order to simplify the com-
putation, therefore making it suitable for mobile comput-
ing, and generation of consistent cluster labels to reuse from
one increment to another. Once the staypoints are acquired
and clustered, we enrich them semantically by attributing a
venue to each cluster. The attribution is done by querying
location-based services such as Foursquare or Google places
to get a list of the k-closest venues. The venues are then
ordered based on the frequency of past visits of the user.
While this order requires a bootstrap phase involving user
feedback, it will eventually converge to a user-specific order-

ing. The description of the activity is composed of a verb
and a complement. In order to semantically structure the
description, verbs and complements are selected from the
wordnet database. This approach allows for consistency in
the descriptions and facilitates the definition of a distance
between two description. As for the staypoints characteri-
zation, routineSense makes use of the history of the user’s
activities to generate a list of potential descriptions based
on the frequency of activities at the specific staypoint.

The second type of episodic elements generated by routi-
neSense is based on the virtual sensors of the phone. They
represent the interaction that the user had with the phone
and are therefore called user-triggered. They encompass
calls and sms received and given by the user, calendar events,
pictures taken and social interactions. Some of these EEs are
not necessarily geo-localizable (i.e. sms, calls) and therefore
it would be difficult to attribute them a meaningful loca-
tion. However, they all contain a timestamp and an activ-
ity, which allow us to fuse them in the timeline therefore
diversifying the information collected about the user.

4. GENERATION OF SIMPLE EPISODIC
MEMORIES

Once the EEs are generated, they can be aggregated, ac-
cording to the episodic memory model, into simple episodic
memories. When a new SEM is created, the user can provide
the framework with a label which will be reused when pos-
terior instances of the SEM are detected. In the framework
presented in this paper, we fix the granularity of SEMs by as-
suming that they have the timespan of a day. This assump-
tion simplifies the research problem at hand while keeping
it realistic: weddings, week days, excursions can be seen as

s0

Time

Space

s1

s2 s3

s4Home

Shop

Home:5

Home:2
s5

Home:2

s6

Shop:2
Home:2

Gym s7
Home:1

Gym:1

O�ce

O�ce:5

O�ce:5

Figure 2: Example of finite state machine.

an aggregation of multiple EEs over a day. The generaliza-
tion of SEM of variable length is left as future work. In the
following section we propose two concurrent approaches to
generate SEMs. The first one is based on Finite State Ma-
chine generation while the second one leverages on frequent
itemset mining and frequent sequence mining.

4.1 Finite state machine model
Finite state machine (FSM) is a mathematical model de-

signed to model different states and the possible transition
between these states. The first step towards the creation of
simple episodic memories using the FSM model is creating
sequences of episodic elements, corresponding to one day of
the life of the user. To do that, we discretize the time di-
mension into k buckets. For each bucket, there is a single
episodic element, corresponding to the most representative
activity occurred in the time bucket. In case that more than
one episodic element have been generated for that bucket,
we select the most representative one with the majority rule.
Therefore, at the end of one day in the user life, a sequence
{ee1, ee2, . . . , eek} is generated by the system. Each episodic
element eej is defined as < `, t >, where ` ∈ L is the location
type, L is the set of location types, and t ∈ T = {1, . . . , k}
is the time bucket.

A simple episodic memory (SEM) is modeled as a finite
state machine < S, s0,Σ,Λ, T >, where S is the set of states,
s0 is the initial state, Σ is the input alphabet, Λ is the output
alphabet, and T : S × Σ → S × Λ is the transition/output
function. In our modelling, S is the set of all possible loca-
tion type-time pairs, S ⊆ L×T , the input alphabet Σ is the
set of location type L, and the output alphabet Λ is the set
of integer values Z, representing the number of times a spe-
cific location type have been observed when transiting from
one state to another. Figure 2 shows an example of FSM,
corresponding to a typical working day, where the time has
been discretized in 5 buckets.

For each user, a set of FSM are incrementally created
in an unsupervised way from the sequences of episodic ele-
ments that are generated at the end of each day. Given a
sequence of episodic element {ee1, ee2, . . . , eek}, the system
has to decide (a) whether the sequence is an instance of an
existing FSM, possibly modifying the FSM to accommodate
the sequence of episodic element or (b) to create a new FSM,
since the given sequence is not well matched by any existing
FSM. This decision is described in the algorithm 1 and can
be explained as follows:

1. Given a candidate FSM, we temporarily update it with

s0

Time

Space

s1

s2 s3

s4Home

Shop

Home:5

Home:2
s5

Home:2

s6

Shop:2
Home:2

Gym s7

Gym:1

Home:1

s8

Cinema

Bar

s9

Bar:1

Cinema:1

Home:1

Home:6

O�ce

O�ce:5
O�ce:6

O�ce:5

Figure 3: Example of matching of a sequence of EEs
against an existing finite state machine.

the sequence of EEs, possibly adding new states, in-
creasing the output value on each transition between
existing states or creating new transitions with output
value 1 if such transitions do not appear in the original
FSM.

2. We compute the degree of match DoM between the
sequence of EEs and the FSM as the product of each
output value of the state transitions triggered by the
sequence of EEs, normalized by NFSM, that is, the
number of sequences of EEs that have been matched
with the FSM under evaluation.

3. If the degree of match is below a certain threshold θ,
it means that the given FSM is not a good match for
the sequence of EEs, otherwise the FSM is marked as
possible candidate.

4. If the list of candidate FSM is empty, a new FSM is
created, corresponding to the sequence of EEs.

5. If the list of candidate FSM is not empty, the sequence
of EEs is matched with the FSM with the highest
DoM . For all the other discarded FSMs, the tempo-
rary modifications to the states, transitions and output
values are undone.

The threshold θ of the degree of match with a given FSM is

defined as 1
NFSM

λ
, where NFSM is the number of sequences of

EEs that have been matched with the given FSM, and λ ∈
{1, . . . , k} is a parameter that control how much diversity
between the sequence of EEs and the FSM is accepted to
consider the FSM a good match for the sequence of EEs.

Figure 3 shows the tentative match between the sequence
of EEs {Home, Office, Bar, Cinema, Home} and the exist-
ing FSM of Figure 2. The output value of the transitions
s0 → s1 and s1 → s2 is increased by 1, and the states and
transitions corresponding to Office→Bar, Bar→Cinema and
Cinema→Home are added to the FSM with output value 1.
Assuming that NFSM = 6, the degree of match in this case

is 6
6
· 6
6
· 1
6
· 1
6
· 1
6

= 0.0046. If the threshold θ = 1
6

λ
is param-

eterised with λ ∈ {1, 2, 3, 4, 5}, the degree of match between
the sequence of EEs and the FSM is above θ, thus putting
the FSM into the candidate set.

By attributing sequences of EE to existing state machines
or by generating new ones, we propose an incremental method

Algorithm 1 Finite State Machine Matching

Input: models, EEs
Output: selectedFSM

degrees = Map(FSM, degree)
for FSM in models do

update(FSM, EEs)
degrees.add computeDegree(FSM, EEs)
undo(FSM, EEs)

if selectedFSM != null then
update(selectedSEM, EEs) return selectedFSM

else
selectedFSM = generateNewFSM(EEs)

function update(FSM, EEs)
previousEE = FSM.startEvent
for EE in EEs do

if FSM.contains(EE) then
FSM.get(EE).incrementCounter

else
FSM.add(EE)

if FSM.containsDirectedEdge(previousEE, EE)
then

FSM.incrementEdge previousEE, EE
else

FSM.createEdge previousEE, EE

previousEE = EE

function undo(FSM, EEs)
previousEE = FSM.startEvent
for EE in EEs do

FSM.get(EE).decrementCounter
FSM.decrementEdge previousEE, EE
previousEE = EE

function computeDegree(FSM, EEs)
weight = 1
previousEE = FSM.startEvent
for EE in EEs do

weight = weight * getWeight(previousEE, EE)
previousEE = EE

return weight/FSM.numberOfActivations

to effectively aggregate EEs into SEMs, each SEM being
modeled by the corresponding finite state machine. The
proposed model is flexible regarding the insertion of addi-
tional EEs, the deletion of EEs or the substitution of one
EE by another. However, the intrinsic time-ordering of the
buckets makes it very order-dependent and not suitable for
unordered SEMs.

4.2 Frequent pattern model
We propose an alternative approach (FPM) for the gener-

ation of SEM based on frequent itemset mining and frequent
sequence mining. Frequent itemset mining aims at finding
in a list of transactions, the (unordered) sets of items which
are present in more than si transactions, where si is the min-
imum support necessary to be defined as frequent itemset.
Conversely, sequence mining aims at finding the (ordered)
sequences which are present in more than ss transactions.
These methods offer the advantage of working with trans-
actions of different sizes, making the bucketing introduced

in the previous model unnecessary. A second advantage is
that the combination of the two methods allow for the de-
tection of both ordered and unordered patterns, making this
approach more flexible than the finite state machines. Item-
sets and sequences being two closely related concepts, we
will, when possible, use the term pattern to refer indiffer-
ently to one or the other.

Once frequent patterns of both type have been detected,
a list of boolean features is computed for each SEM based
on whether the SEM matches a specific pattern or not. Fi-
nally a hierarchical clustering is performed on these binary
features in order to group SEM which share similar patterns.

4.2.1 Incremental frequent itemset mining
The frequent itemset mining algorithm used in routine-

Sense is based on the FUP algorithm [19]. Although more
recent and more efficient algorithms have been developed,
FUP has the advantage of being base on the Apriori algo-
rithm which can also be altered for sequence mining. It is
therefore possible to share the required scans of the database
for both frequent itemset mining and sequence mining.

However, FUP as most of the incremental itemset min-
ing algorithm uses a support si relative to the size of the
database (e.g. si = 10% means that to become frequent,
the itemset needs to appear in at least 10% of the trans-
actions present in the database). This is not suitable for
routineSense as it would allow itemsets which were previ-
ously frequent to become non-frequent if they don’t appear
in the next increments. This behavior would be equivalent
to forgetting. Although forgetting is a property of the brain,
it is not suitable in our case to forget. Information which
may have required some user input can be deleted and, at a
later time, the user would be prompted again for the same
information because the itemset would have been frequent
again. To this purpose, FUP is adapted for absolute sup-
port(e.g. si = 7 means that to become frequent, the itemset
needs to appear in at least 7 transactions present in the
database).

We define a database DB : [day1, day2, ..., dayn], where
dayi = [eei1, eei2, ..., eeid] represents a day i as an ordered
sequence of d EEs and an increment increment : [dayn+1,
dayn+2, ..., daym] following the same notation. The frequent
itemsets of k-items present in DB before the increment are
denoted as Lk. The modified FUP algorithm, presented in
Algorithm 2, is used to process a new increment and up-
date the list of frequent itemsets. It follows the bottom-up
approach of the standard Apriori algorithm, but makes use
of the list of frequent itemsets discovered in previous itera-
tion to reduce the necessary computation performed at each
scan.

The modified FUP algorithm will generate candidate item-
sets of size k + 1 using the method presented in algorithm
3. This method makes use of the frequent itemsets of size k
and applies the same principle as the original Apriori algo-
rithm: a k-itemset can be frequent only if all of its subsets
are frequent. The modified FUP algorithm will then test
these candidates against the database and retain only the
frequent candidates. This process is repeated recursively
until the set of retained frequent candidates is empty.

4.2.2 Incremental frequent sequence mining
In parallel to frequent itemset mining, we use frequent

sequence mining to be able to capture the temporal rela-

Algorithm 2 Frequent itemset mining

Input: DB, increment, Set < Lk >
Output: Set < Lk > //updated

update of L1

for day in increment do
EEs = getUniqueEEs(day)
if X ∈ EEs in L1 then

X.support++
else

Candidate1 = Candidate1 ∪X
for day in DB do

if support(X) ∈ C1 is subset of day then
X.support++

if support(X) ∈ C1 > si then
L1 = L1 ∪X

If |Lk−1| > 1 update Lk:
Ck = aprioriGen(Lk−1)
Ck = Ck − Lk
for day in increment do

if X ∈ Ck then
X.support++

if X ∈ Lk then
X.support++

for day in DB do
if X ∈ Ck then

X.support++

if support(X) ∈ Ck > si then
Lk = Lk ∪X

Algorithm 3 Apriori generation

Input: Lk−1

Output: Lk
sort(X ∈ Lk)
Lk = {}
for X ∈ Lk do

for Y ∈ Lk do
if (X −X.last) == (Y − Y.last) then
Lk = Lk ∪ {X ∪ Y }

return Lk

tionships between EEs when available. To this purpose we
use the GSP algorithm [20]. This algorithm, originally not
incremental, modifies the generation of the candidate item-
sets of the Apriori algorithm to enforce the time-ordering of
the sequence. For example Lk−1 = {A → B,A → C} will
lead to the generation of candidate sequences {A → B →
C,A → C → B,A → BC}. We can note that the right
hand side of the last sequence is composed of simultaneous
event B and C which is assumed impossible in routineSense:
the user is doing only one activity at a time. The original
GSP algorithm contains additional features such a defini-
tion of a minimum or maximum gap between elements of a
sequence or definition of a sliding window within which the
elements must be found in order to be eligible for becoming
a frequent sequence. We do not need these features as they
were initially intended to filter shopping basket databases,
which is why these features are not retained in the context
of routineSense and therefore, not implemented. Our algo-
rithm for sequence mining is similar to the modified FUP

algorithm (algorithm 2) presented previously, the difference
being that the generation of the candidate sequences is done
using the sequence candidates generation of GSP as defined
in algorithm 4.

Algorithm 4 Sequence Apriori generation

Input: Lk−1

Output: Lk
sort(X ∈ Lk)
Lk = {}
for X ∈ Lk do

for Y ∈ Lk do
if (X −X.last) == (Y − Y.last) then
Lk = Lk ∪ {(X −X.last)→ Y.last→ X.last}
Lk = Lk ∪ {(X −X.last)→ X.last→ Y.last}

return Lk

The choice of the FUP algorithm is therefore motivated by
the fact that both frequent itemsets and frequent sequences
can be discovered during the same iteration of FUP. This
property allow for less scan of the database further reducing
the computational cost of our approach.

4.2.3 Generation of binary features

Definition. A pattern (itemset or sequence) p is closed if
there exist no superset s such that support(p) = support(s).

Once frequent itemsets and sequences are discovered, each
day can be attributed a list of boolean features: for each
itemset and sequences denoted as patterns, if the day matches
the pattern, the corresponding boolean is set to true, false
otherwise. At this stage, frequent itemsets and sequences
are filtered in order to retain only meaningful patterns. To
this purpose patterns containing a single element are filtered
out. Indeed, they just inform about the presence of an el-
ement without adding extra information. As an additional
clustering, only closed frequent patterns are retained. This
is to avoid duplication of information.

Indeed, following the definition, if a pattern is not closed,
it contains the same amount of information as its superset
with equal support. The consequence for our list of boolean
features is that for each day, the boolean corresponding to
the open pattern and the boolean corresponding to its su-
perset with equal support would always have the same value,
hence the redundancy in information.

4.2.4 Hierarchical clustering
Once the boolean features list has been defined for each

day, they can be clustered based on this list. Indeed, days
having a high number of patterns in common should be clas-
sified as belonging to the same SEM. To this purpose we use
an agglomerative hierarchical clustering approach using a
maximum distance between clusters as a stopping criterion.

The distance between 2 days is taken as the hamming
distance between their respective boolean features. The
hamming distance can be defined as the number of posi-
tions at which the element of two ordered list differ (e.g.
Hamming(01001, 01111) = 2).

The linkage (i.e. distance between two clusters) is taken
as full linkage to avoid any “chaining effect”. Therefore
the linkage of two clusters A = {sem1, sem2, ..., semk} and
B = {sem1, sem2, ..., semj} is defined as max{a ∈ A, b ∈
B,Hamming(a, b)}.

We can notice that the clustering is not done incremen-
tally. The growth of the number of frequent patterns is
much slower than the growth of the database and therefore
the complexity added by an incremental algorithm would
not be justified.

4.2.5 Example
In this example we cover the entire pipeline of generation

of SEMs using frequent pattern mining. The days of the user
and their associated EEs are described in table 1. We set the
minimum support threshold of the frequent itemset mining
(Si) and the minimum support threshold of the frequent
sequence mining (Ss) as si = ss = 3. The stopping criterion
of the hierarchical clustering is set to maxDistance = 1.

Day EEs
1 home, work, restaurant, work, home
2 home, work, restaurant, work, supermarket, home
3 home, work, sport center, work, parents in law
4 home, supermarket, sport center, restaurant, hotel

Table 1: Dataset example

The frequent itemset mining result is given in table 2. As
we can see, for an itemset size k, only the frequent (k − 1)-
itemsets are used to generate the candidates.

itemset size {itemsets} support

1
{home} 4
{work} 3

{restaurant} 3

2
{home,work} 3

{home, restaurant} 3

Table 2: Frequent itemsets

The frequent sequence mining result is given in table 3.
The results are very similar to the frequent itemsets for two
reasons: First, the same minimum support threshold was
used for both pattern mining techniques. Secondly, the or-
dering of the EEs of each day is quite similar, leading to
strong temporal correlation. However, we can notice that
sequences involving the same EE are allowed (whereas they
where prohibited for the frequent itemset mining, due to the
definition of sets).

sequence size {sequences} support

1
{home} 4
{work} 3

{restaurant} 3

2
{home→ work} 3

{home→ restaurant} 3
{work → work} 3

3 {home→ work → work} 3

Table 3: Frequent sequences

Once frequent patterns are found, they are filtered by re-
moving the 1-patterns and the open patterns. leading to the
ordered list of pattern: {home,work}, {home, restaurant},
{home→ restaurant} and {home→ work → work}. Each

day is then matched again these pattern resulting in the
boolean features described in table 4.

Day boolean features
1 1, 1, 1, 1
2 1, 1, 1, 1
3 1, 0, 0, 1
4 0, 1, 1, 0

Table 4: Boolean features ordered as: {home,work},
{home, restaurant}, {home → restaurant}, {home →
work → work}

Applying a hierarchical clustering of the boolean features,
we obtain the following clusters representing SEMs:
{day1, day2}, {day3}, {day4}.

5. EVALUATION
Both finite state machine and frequent itemsets models

were evaluated against a real world dataset. The Nokia
data challenge dataset [21][22] contains readings from var-
ious phone sensors for 191 users. For our study, due to
the sparsity of some sensors data, we focused on the GPS
traces of the users extended by the GPS location of the wifi
routers in range. In order to better focus on the generation
of SEMs, we take as input for our algorithms the episodic
elements generated using the modified ESOINN algorithm
presented by Aberer et al. in [23]. The GPS traces are
clustered using the modified ESOINN and each cluster is
augmented with the closest venue returned by foursquare.
In order to alleviate the absence of feedback from the user,
we attribute the label to each cluster once the entire dataset
has been processed. This way, we avoid issues such as split-
ting and merging of clusters that would have required to
be handled by the user. Since SEMs represent EEs with a
higher level of abstraction, the evaluation of the SEMs gen-
erated using both models was not possible using solely the
Nokia dataset. For this purpose, we ran a crowdsourced ex-
periment, trusting the ability of the crowd to evaluate the
SEMs. In addition, to better evaluate our approaches, we
compare their results to the ones obtained with the state-
of-the-art T-pattern mining algorithm.

5.1 Preprocessing
The Nokia dataset contains data about 191 users. Along

with GPS information, the dataset defines also visits repre-
senting a time window during which the user was considered
as being at a single location. These visits are used in order
to further filter the results provided by ESOINN. However,
the users were often using the phone provided for the study
as a secondary phone, which was not activated all the time.
Furthermore, due to low accuracy GPS reading, some signals
are not usable. For this reason, we filter out users with less
than at least four days with more that three EEs, reducing
the number of users to 131.

We extend the dataset by adding the home location of
each users during each night if this night does not contain
any location information. The home location is taken as
the most frequent location of the user between 10pm and
7am. The resulting days are then provided to the pattern
matching algorithms. The statistics about these days are
detailed in table 5.

Number of users:
preprocessing: 191
postprocessing: 131

Number of days per users: µ = 33.48, σ = 33.32
Number of EEs per day: µ = 4.46, σ = 0.27

Table 5: Statistics of the dataset. Days per users
and EEs per day are defined by their average (µ)
and standard deviation (σ)

Furthermore, each location record is extended with infor-
mation gathered from Foursquare (i.e., location name, cat-
egory, etc.) We based our evaluation on the Nokia dataset
(which just contains When? and Where? information), al-
though routineSense could leverage further semantic infor-
mation about the Episodic Elements, e.g., the What? in-
formation. The rationale behind this choice was to test our
algorithms on a large, realistic dataset that spanned over
many months, at the cost of not leveraging the full poten-
tial of the algorithms. At the moment of writing this pa-
per, we are not aware of any large dataset (i.e., hundreds
of users, hundreds of days) which contains What?, When?,
and Where?

5.2 Generation of SEM
The preprocessing phase has generated a list of days de-

fined as sequences of EEs for each user. This list is passed
on to the frequent pattern mining model and the finite state
machine model. At this point, a definition of equality was
needed to compare EEs. A possible formulation of equality
between EEs could be based on the type of their venue: an
EE happening in a restaurant in the city center is equal to
an EE happening at the restaurant of the university. In this
work we assume a stricter formulation of equality, which
means that two EEs are equal if and only if their actual
venues are equal. This is motivated by the fact that the
automatic retrieval of the venues associated with the stay-
points computed from the Nokia dataset was not manually
validated and therefore our approach could have picked up
erroneous patterns due to mislabeled venues. Strict equality
prevents these patterns from being detected.

5.2.1 Finite state machine
As defined in the previous section, the finite state ma-

chine approach requires a fix number of buckets. We set
this number to 24, meaning that each day contains 24 EEs.
Since, the average number of EEs per day is 4.46, we need
to interpolate the representation of the days. This interpo-
lation is done in the following fashion: due to the addition
of home locations in the preprocessing phase, we are sure
that at least the first bucket of the day (i.e. from midnight
to 1a.m.) contains a EE. From there, if the original day
contains an EE happening within a bucket’s time slot, this
bucket will take the information of the EE, otherwise, the
information of the previous bucket will be used. In case
multiple EEs happen during the same bucket’s time slot a
majority rule is used to pick the most frequent EEs.

Once the days are interpolated, they are provided to the
finite state machine model that will decide, based on the
threshold θ, if the day contributes to an existing FSM or if
there is need for a new FSM. We empirically set this thresh-
old θ = 5. The resulting FSMs are taken as the different
type of SEMs.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

m
s

eti fo re
mbu

N

Number of days for a user
Finite state machines Vectors of boolean features

y = x

Figure 4: Number of finite state machine created
and number of unique boolean features combina-
tions as a function of the number of days per user.

5.2.2 Frequent pattern mining
To evaluate the FPM approach, the list of days is passed to

the modified version of the FUP algorithm described above
by weekly increments. In other words, groups of 7 days are
passed to FUP until all of the days of the user are pro-
cessed. The minimum support for both frequent itemsets
and sequences is set to 7 (i.e. a pattern needs to appear in 7
different days before being labeled as frequent). At the end
of each iteration, boolean features are generated for each of
the 7 days and are placed in a set containing all the previ-
ous features lists. A hierarchical clustering with a maximum
distance between clusters of 3 is then performed on this set
to group days into SEMs. Although in a real application
the cluster to which a day belongs can be determined on the
fly when the day is accessed, for the sake of the user study
the list of days is scanned one last time to attribute a SEM
label to each day. The statistics of the resulting SEMs are
provided in table 6.

We can note that a day with boolean features< 0, 0, ..., 0 >
means that it matches none of the frequent patterns. Days
having such vector are therefore exceptional and must be
treated separately. Indeed, these days are very different from
one another and should not be used in the clustering phase,
instead they are grouped in a separate cluster.

Length of the boolean features: 9.55
Number of unique boolean features: 5.52

Number of SEMs: 3.37

Table 6: Statistics (averaged per user) for the fre-
quent pattern matching approach

The number of finite state machines generated by the FSM
model and the number of unique vectors of boolean features
created by the frequent pattern mining model for each user
are depicted in figure 4 as a function of the number of days
collected for each users. We can notice a long tail of users
having only 1 vector of boolean features (< 0, 0, ..., 0 >).
This implies that no frequent patterns were discovered for
these users. This behavior is an artifact of the nokia dataset
and happens essentially with users with not enough data
and irregular routines: 97% of these special cases have less

than 30 days of data.

5.3 Comparison with T-patterns
In order to further evaluate the two approaches devel-

opped in this paper, we compare them to the well known
T-pattern mining algorithm developped in [17]. The algo-
rithm takes as input raw GPS traces and processes as fol-
lows: i) Superpose the GPS traces on a grid and determine
the density of each cell of the grid based on the number of
traces visiting the cell. ii) Define regions of interest (ROI) by
grouping cells which have a density above a certain threshold
δ. iii) Generate T-patterns in a bottom-up fashion, taking
as parameters a minimum support (usually equal to δ) and
a maximum transition time between states.

We use the open-source version of the T-pattern algo-
rithm, and we choose its parameters to match the condi-
tions of both our approaches: No interpolation between two
points of a trace, an absolute minimum support and density
threshold δ = 7, a grid subdivision of 100 ∗ 100 and a time
limite infinite. There is therefore no time constraint for the
generation of T-patterns.

5.4 Crowdsourced evaluation
We run a user study on Amazon Mechanical Turk to as-

sess if the routines identified by T-patterns, FPM and FSM
are deemed reasonable by humans. To this extent, we de-
signed an experiment where each worker was presented with
4 different sets of daily activities, and 6 different choices.
The choices were the following: (Outlier) 4 buttons for each
single day, to signal that the given set of activities was an
outlier among the other 3; (All-match) 1 button to signal
that all the 4 days could be mapped to the same routine;
(No-match) 1 button to signal that all the 4 days were dif-
ferent (therefore not mappable to the same routine). All
the tasks have been generated automatically, in a random-
ized fashion. In total, combining the 3 different approaches,
more than 3800 tasks (paid $0.02 each) were performed by
279 crowd workers.

Table 7 reports the results we obtained from the crowd,
with FPM as a clear winner. Given the 6 choices presented
to the user, on the same task a randomized baseline algo-
rithm would perform with a 16.7% accuracy. Realistically
though, an algorithm that performs poorly could obtain way
worse results than the randomized baseline in an evaluation
with human subjects, e.g., the algorithm could fail to iden-
tify many important routines (therefore classifying most of
the days as No-match), while they will not go unnoticed to
the crowd workers.

It is also interesting to notice that a state-of-the-art al-
gorithm like T-patterns performs almost as the randomized
baseline for this specific task, confirming that routineSense
is tackling an hard (and novel) variant of a well-known class
of problems. Such performance does not question the va-
lidity of T-patterns per se, but only its suitability in the
context of identifying user routines.

The accuracy has been measured accordingly to the con-
fusion matrix in Table 8.

For the sake of readability, we compacted the Outlier
4−categories classification task as a single entry in the ma-
trix. The first cell contains in bold the percentage of outliers
that have been correctly identified among all the tasks sub-
mitted to the workers, while the value in parenthesis repre-
sents the mislabeled outliers. All the other cells follow the

Accuracy Sensitivity Specificity
T-patterns 21.6% 40.6% 8.8%
FSM 44.0% 59.1% 49.7%
FPM 56.3% 74.3% 51.9%

Table 7: Crowdsourced evaluation of T-patterns,
FSM and FPM (i.e., user agreement)

Outlier All-match No-match
Outlier 32.1/(20.3) 12.7 3.8
All-match 10.3 7.0 1.1
No-match 0.8 0.7 11.2

Table 8: Confusion matrix for the classification
tasks performed by the crowd (compound of T-
patterns, FSM and FPM). All numbers are percent-
ages, and the correct classifications are reported in
bold. Rows are expected answers, columns are the
input from the crowd.

usual behavior of a confusion matrix, with the diagonal re-
porting the accurate classifications, and all the other cells
reporting the misclassifications.

5.5 Performance evaluation
In order to assess that our approach is suitable for nowa-

days devices, we also evaluated the runtime performance of
both SEM generation methods. We used a Google Nexus
4 with a quadcore CPU (1.5 GHz), 2GB of RAM and the
operating system Android 4.4.

Both finite state machine and frequent pattern mining
approaches are compared to a baseline defined as a non-
incremental version of the frequent pattern mining process,
in which frequent itemsets are discovered using the original
Apriori algorithm, and frequent sequences are discovered us-
ing the original GSP algorithm. The rest of the process (i.e.,
boolean features generation and hierarchical clustering) re-
main as described in the previous section.

The results presented in figure 5 show that, as weeks accu-
mulate, the processing time required by the non-incremental
method outgrows significantly our two approaches, justify-
ing the incremental processing design choice of routineSense.
The time taken to process a single week of data is below 10
seconds for both our algorithms, therefore an app that em-
beds routineSense will not make the phone unresponsive,
nor it will hinder the user experience.

Given that the battery consumption is influenced by the
CPU usage, it is also worth to notice that the incremental
processing capabilities of routineSense make it a battery-
conscious framework – an especially desirable feature, con-
sidering the plethora of energy-hungry applications that run
on modern smartphones.

6. CONCLUSIONS AND FUTURE WORK
The framework routineSense presented in this paper en-

deavours to model, in an energy efficient manner, the past
activities of a user, similarly to the way the human brain
builds memories. We propose two concurrent methods to
aggregate low level pieces of memories (EE) into more ab-
stract simple episodic memories. To compensate for the lack
of information about SEM in the dataset used for the experi-

0

5

10

15

20

0 5 10 15 20

Ti
m

e
(s

ec
o

n
d

s)

Increment (week)

non-incremental Apriori Frequent pattern mining Finite state machine

Figure 5: Time required to process a new week of
data for both SEM generation methods, compared
to a non-incremental method based on original Apri-
ori and GSP.

ment, we conducted a crowd-sourced experiment to evaluate
the soundness of our approach. The results show that we im-
prove almost 3 times on the current state-of-the-art, without
leveraging any user feedback. The performance evaluation
also shows that both our methods for generating SEMs are
suitable for mobile computation.

As a future work, we want to lift the assumptions that
the length of an SEM should be fixed to a day, enabling us
to cover even longer SEMs. A second goal as future work
regards the collection of a dataset that better represents the
type of data handled by routineSense. Finally, the possibili-
ties offered by the semantic approach taken in routineSense
are not fully explored. Although the data collected by the
routineSense are properly structured, additional research on
semantic reasoning can be exploited to improve the capabil-
ities of the framework.

7. ACKNOWLEDGMENTS
The MemorySense project was sponsored by Samsung Re-

search America, and by Haslerstiftung in the context of the
Smart World 11005 (MEM0R1ES) project. Portion of the
research in this paper used the MDC Database (owned by
Nokia and made available by the Idiap Research Institute,
Switzerland).

8. REFERENCES
[1] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury,

and A. T. Campbell, “The jigsaw continuous sensing
engine for mobile phone applications,” in SenSys, 2010.

[2] M. A. Conway, “Episodic memories,”
Neuropsychologia, 2009.

[3] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning
transportation mode from raw gps data for geographic
applications on the web,” in WWW ’08, pp. 247–256,
ACM, 2008.

[4] Y. Zheng, L. Wang, R. Zhang, X. Xie, and W.-Y. Ma,
“Geolife: Managing and understanding your past life
over maps,” in Proceedings of the The Ninth
International Conference on Mobile Data
Management, IEEE Computer Society, 2008.

[5] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen,
and M. Srivastava, “Using mobile phones to determine
transportation modes,” ACM Transactions on Sensor
Networks (TOSN), 2010.

[6] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and
K. Aberer, “Energy-efficient continuous activity
recognition on mobile phones: An activity-adaptive
approach,” in ISWC ’12, pp. 17–24, Ieee, 2012.

[7] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower,
A. LaMarca, L. Legrand, A. Rahimi, A. Rea,
G. Bordello, B. Hemingway, P. Klasnja, K. Koscher,
J. A. Landay, J. Lester, D. Wyatt, and D. Haehnel,
“The mobile sensing platform: An embedded activity
recognition system,” PerCom ’08, 2008.

[8] J. R. Kwapisz, G. M. Weiss, and S. A. Moore,
“Activity recognition using cell phone accelerometers,”
ACM SigKDD Explorations Newsletter, vol. 12, no. 2,
pp. 74–82, 2011.

[9] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell, “Sound-sense: Scalable sound sensing for
people-centric applications on mobile phones,” in
MobiSys, 2009.

[10] N. Bicocchi, G. Castelli, M. Mamei, A. Rosi, and
F. Zambonelli, “Supporting location-aware services for
mobile users with the whereabouts diary,” in
MOBILWARE ’08, 2008.

[11] D. Feldman, A. Sugaya, C. Sung, and D. Rus, “idiary:
From gps signals to a text-searchable diary,” in
Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, p. 6, ACM, 2013.

[12] B. Guo, D. Zhang, D. Yang, Z. Yu, and X. Zhou,
“Enhancing memory recall via an intelligent social
contact management system,” Human-Machine
Systems, IEEE Transactions on, vol. 44, no. 1,
pp. 78–91, 2014.

[13] B. Chikhaoui, S. Wang, and H. Pigot, “Adr-splda:
Activity discovery and recognition by combining
sequential patterns and latent dirichlet allocation,”
Pervasive and Mobile Computing, 2012.

[14] U. Blanke and B. Schiele, “Daily routine recognition
through activity spotting,” in Proceedings of the 4th
International Symposium on Location and Context
Awareness, pp. 192–206, Springer-Verlag, 2009.

[15] K. Farrahi and D. Gatica-Perez, “Discovering routines
from large-scale human locations using probabilistic
topic models,” ACM Trans. Intell. Syst. Technol.,
vol. 2, pp. 3:1–3:27, Jan. 2011.

[16] N. Eagle and A. S. Pentland, “Eigenbehaviors:
Identifying structure in routine,” Behavioral Ecology
and Sociobiology, vol. 63, no. 7, pp. 1057–1066, 2009.

[17] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi,
“Trajectory pattern mining,” in SIGKDD ’07, KDD
’07, (New York, NY, USA), pp. 330–339, ACM, 2007.

[18] S. Furao, T. Ogura, and O. Hasegawa, “An enhanced
self-organizing incremental neural network for online
unsupervised learning,”Neural Networks, vol. 20, 2007.

[19] P. S. Tsai, C.-C. Lee, and A. L. Chen, “An efficient
approach for incremental association rule mining,” in
Methodologies for Knowledge Discovery and Data
Mining, Springer, 1999.

[20] R. Srikant and R. Agrawal, Mining sequential
patterns: Generalizations and performance
improvements. Springer, 1996.

[21] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez,
and J. Laurila, “Towards rich mobile phone datasets:
Lausanne data collection campaign,” ICPS, 2010.

[22] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom,
O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle, and
M. Miettinen, “The mobile data challenge: Big data
for mobile computing research,” in Proceedings of the
Workshop on the Nokia Mobile Data Challenge, 2012.

[23] K. Aberer, M. Catasta, H. Radu, J.-E. Ranvier,
M. Vasirani, and Z. Yan, “Memorysense:
Reconstructing and ranking user memories on mobile

devices,” in PERCOM Workshops ’14, IEEE, 2014.

