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ABSTRACT
Mobile Ad hoc NETtworks (MANETs) are infrastructure-
less and self-configuring networks which consist of wireless
mobile devices. Due to these properties, routing in such
networks is a challenging task. Developing highly efficient
routing protocols for MANETs is an important issue, with
solutions having to fulfill many requirements, such as being
able to provide low packet delay, high packet delivery rate
and effective adaption to network topology changes with low
control overhead. Swarm intelligence inspired algorithms
offer possible solutions that fulfill the requirements and so
have attracted a lot of attention from academics. A success-
ful example in the swarm intelligence category is the Ant
Colony Optimization (ACO) algorithm which has been ap-
plied to balance the various routing related requirements in
MANETs. This paper presents a survey which focuses on lo-
cation aware ACO routing protocols in MANETs. The main
contributions of this survey include 1) introducing the ACO
routing principles, 2) surveying and comparing a selection of
routing protocols from the perspective of design and simu-
lation parameters, and 3) discussing open issues and future
possible design directions of ACO based routing protocols.
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1. INTRODUCTION
Mobile Ad hoc NETworks (MANETs) consist of mobile

devices which are connected wirelessly with each other.
Com-munication in MANETs is cooperative with multi-hop
fash-ion. Nodes join and leave thenetwork at any time. Charac-are 
not made or distributed for profit or commercial advantage and 
that

teristics such as the absence of infrastructure and dynamic
topologies, require the self-configuration, self-optimization,
and self-healing. To realize these self-organizing networks,
algorithms inspired by nature have been considered in re-
cent years. From naturalistic observation, it is found that
the dynamics of many biological systems are based on simple
generic rules which provide effective collaborative patterns
for performing tasks without any external centralized entity
[10]. Routing is one of the critical functionalities in com-
munication systems. In this work, we focus on it in the
special case of self-organizing MANETs. Due to the proper-
ties of MANETs, routing in such networks is a challenging
task. Two of these challenges are due to constantly changing
topology and transmission of large routing tables [40]. Ant
Colony Optimization (ACO) algorithms have attracted a lot
of attention as a design paradigm for new approaches that
maintain and optimize routing in self-organizing and dy-
namic ad hoc networks. ACO is inspired by the foraging be-
havior of ants in nature. It is part of the swarm intelligence
(collective behavior) approaches applied to solve hard static
and dynamic optimization problems. In order to achieve
the efficient routing in MANETs, several ACO based rout-
ing algorithms are proposed. In comparison with traditional
routing mechanisms, bio-inspired ACO based routing algo-
rithms are more effective. Additionally, these approaches
are also applied in many other areas, such as protein fold-
ing, feature selection, graph coloring, scheduling and so on
[37].

Different from other ACO related survey papers, we mainly
look at the location information aware ACO routing pro-
tocols for MANETs in this comparative analytical paper.
From the reviewed papers, We have observed that the suc-
cessful implementations of location aware ACO routing pro-
tocols in MANETs have encouraged researchers to design
new protocols for VANETs. We have also introduced the
technical transition of location aware ACO routing proto-
cols from MANETs to VANETs. The comparisons of the
existing protocols are presented in terms of protocol design
and simulation parameters. For a better understanding of
how ACO algorithms are practically applied in these rout-
ing protocols, we have selected some particular ACO related
parameters which are introduced in section 4.1.

The rest of this paper is organized as follows. In sec-
tion 2 the background of ACO meta-heuristic is presented.
Various of ACO based routing algorithms are presented in

Permission to make digital or hard copies of all or part of this work for personal 
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, to republish, to post on 
servers or to redistribute to lists, requires prior specific permission and/or a fee.
BICT 2017, March 15-16, Hoboken, United States

Copyright © 2017 



section 3. Then, in section 4 a comparative analysis of the
studied protocols and a discussion of open issues and future
possible design directions of ACO based routing protocols
are presented. Finally, section 5 concludes the work.

2. THE BACKGROUND OF ACO

2.1 Ants in nature
Ants evolved from wasp-like ancestors more than 100 mil-

lion years ago [34]. Today there are over 8800 known species
of ants [17] and they can be found almost everywhere across
the globe. In nature, ants are well known as eusocial insects.
Although ant colony size can vary from a few dozen to mil-
lions, nearly in all ant colonies there are some ”drones” and
”queens”, which are the fertile males and females. In a large
ant colony there could be some other castes, such as ”work-
ers” and ”soldiers”, which are formed by the sterile, wing-
less females. Each caste in the colony has its own special
task and all these castes of ants appear to work together
collectively to support the colony [31] [12]. Ant colonies
are superorganisms and have a division of labor. Due to
their collective intelligence, ants also show a strong ability
to solve complex problems, such as dealing with floods. Re-
searchers have found that ants can link their body to built
self-assemblages [1]. For example, fire ants can make rafts
to beat floods. Once a colony of fire ants is flooded, the ants
make living rafts using their own bodies. ”Workers” from
the colony spread themselves flat across the water’s surface
and connect with each other using their legs and mandibles
to make the bottom layer of the living rafts. The rest of the
colony gets on the living rafts and the whole colony floats
along until they land on a dry area. In another study [27], N.
J. Mlot et al. have also measured the strength and speed by
which ant rafts are built. The results show that thousands
of ants can rearrange themselves to make a two-layer stable
raft in only 200 seconds. Moreover, ants can use a force of
400 times their own weight to hold on to each other in the
raft. In [13] P.C. Foster et al. have launched an experimental
study to discover the arrangement of the ants in forming the
self-assemblages within three dimensional networks. Many
observations made by different researchers show that such
self-assemblages of ants can help them react to their envi-
ronment quickly and survive under adverse environmental
conditions. Assemblages of ants take on similar functions
like those existing in the human societies, but ants provide
and maintain these functions without any central control.
Therefore, understanding how the systems of ant colonies
work has long been an attractive subject of study.

2.2 From nature to artificial ants
A significant amount of research about ants has been per-

formed. One of the early study was published by P. Grassé in
1959. He observed the behavior of nest building in termites
and brought forward a theory to explain it [15]; In the 1980s,
F. Moyson and B. Manderick studied self-organization among
ants [29]. S. Goss et al. proposed the initial idea of ant
colony optimization algorithms based on their study of the
collective behavior of ants in [14]. In the early 1990s, M.
Dorigo proposed the first ant-inspired system in his disser-
tation and published it in 1992 [7]. In cooperation with
L. M. Gambardella, M. Dorigo proposed the Ant Colony
System (ACS) in 1997 [8]. In the meanwhile, there were
many other researchers who studied this area and proposed

some popular variations of ACO algorithms. For example,
B. Bullnheimer, et al. proposed the Rank-based Ant Sys-
tem in 1997 [4]. V. Maniezzo introduced ANTS: exact and
approximate nondeterministic tree-search procedures for the
quadratic assignment problem in 1999 [23]. T. Stützle and
H.H. Hoos invented the MAX-MIN Ant System (MMAS)
[36] in 2000. C. Blum et al. proposed a hyper-cube frame-
work for ant colony optimization (HC-ACO) one year later
[3].

2.3 The Ant Colony Optimization algorithm
The Ant Colony Optimization (ACO) meta-heuristic is

part of the swarm intelligence field and it is inspired by the
foraging behavior of ants in nature. Biological ants lay down
pheromone on the traveled path to transport information.
When subsequent ants come to the same place, they decide
whether they should follow the same path, depending on
the deposited pheromone. Once an ant deposits pheromone
along the path, the trail value is reinforced and this might
attract more ants to follow. Thus, the pheromone deposited
by biological ants realizes the indirect information exchange
between the individual ants.
Biological ants find a path between their nest (node N)

and the feeding source (node F) as shown in Figure 1 a. If
an obstacle is laid in the path as in Figure 1 b it shows the
ants will choose to turn left or right with equal probability.
Due to the obstacle, the two paths have different lengths.
Ants turning right side need less time to go past the obstacle
and therefore they could rapidly reconstruct the interrupted
pheromone trail in comparison with those ants choosing the
other side. As consequence, a short path would have a high
pheromone concentration and the following ants are more
likely to follow it as shown in Figure 1 c.
In ACO, the artificial ants communicate with each other

in a way similar to the biological ants. While exploring
the network, the artificial ants mark the nodes they have
passed with an artificial pheromone. For choosing the next
hop, they are usually attracted by the node with the highest
pheromone value.
In a simple ant colony optimization meta-heuristic algo-

rithm, when an ant which is named Forward ANT (FANT)
departs from the source node S to explore the network, it

N

F F F

N N
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a b c

Figure 1: Ant follow the pheromone to find the
shorter path.



chooses one neighbor of node S as the next hop node i. The
probability of node i being chosen is defined by the following
formulas [25]:

p(S, i) =
[τSi ]

α · [ηSi ]
β

∑
j∈N(S)

[
τSj

]α · [ηSj

]β (1)

∑
j∈N(S)

p(S, i) = 1 (2)

where τSi is the deposited pheromone on the edge between
node S and i; ηSi is the goodness value of the link between
node S and i; N(S) is the list of all neighboring nodes of
node S; α and β are respective weights for balancing the
deposited pheromone and the goodness value of the link.
According to formula 1, one artificial ant moves hop by hop
until it has achieved its termination criteria, such as hav-
ing reached the destination node or its lifetime having ex-
pired. Once the FANT has achieved the target location, a
corresponding Backward ANT (BANT) backtracks to the
source node. During the return trip, the BANT updates the
pheromone table at each intermediate node, like shown in
Figure 2, according to the reinforcement rule as below [25]:

τij = (1− e) · τij +Δτij (3)

where τij is the pheromone value laid by ants on the edge
of node i and node j ; e is the pheromone evaporation rate
which allows the ants to explore new paths; Δτij is a con-
stant amount of pheromone deposited by the ant. The com-
mon form to calculate Δτij is as below [25]:

Δτij = K/f(c) (4)

where K is a positive constant and f(c) is the cost function
which can be calculated based on the hop count from the
current node to the destination, the delay of finding a des-
tination, the available bandwidth of the link or the energy
consumption of each node along the way. To consider which
parameters in the cost function is according to the concrete
application. If there are more than one type of cost, the cost
function can be calculated as below:

f(c) =
n∑

k=0

wk · Ck (5)

where Ck is the value caused by the k-th type of cost; wk

is the weight of the k-th type of cost; n is the total types
of cost. Generally speaking, both FANTs and BANTs can

Figure 2: Example of Pheromone table.

collect the cost related parameters along their trips. When
the delay of finding destination is consider in the application,
BANTs are the better choice.
The main merit of the generality of the ACOmeta-heuristic

is that it has presented a common framework for approxi-
mating solutions to NP-hard optimization problems and in-
herently dynamic problems like routing in telecommunica-
tion networks, in already existing applications. ACO adapts
well to the dynamic changes in the networks and gives posi-
tive feedback accounts for the rapid discovery of good solu-
tions. Moreover, the artificial ants can find multiple paths si-
multaneously and do parallel computing of their pheromone
values [9]. Since the middle 1990s, the number of applica-
tions based on the Ant algorithms is booming. Until now,
ACO algorithms have already been applied to solve routing
problems in MANETs or WSNs with better scalability than
other approaches. They also lead to improvements in other
performance metrics.

3. REVIEW OF LOCATION AWARE ACO
ROUTING PROTOCOLS IN MANETS

The location of nodes is important information when ap-
plying the ACO routing protocol in practical applications.
Especially now that the Global Position System (GPS) [26]
is popularized and mobile devices come equipped with it,
the use of position information becomes possible.

3.1 POSANT
POSANT [20] is an early location aware multipath reac-

tive ACO protocol for MANETs which aims to minimize
the message delivery delay. It divides a node’s neighbor-
hood into three zones based on the physical location of all
neighbor nodes and that of the destination. For route dis-
covery, the source node sends one FANT to each area on
demand. Additionally, POSANT assumes that each node
can access a location service to acquire the current position
of the destination.

3.2 Robustness-ACO
Unlike POSANT, D. Kadono et.al [19] have proposed an

ACO routing approach based on robustness which requires
no location service. We abbreviate the proposed protocol
as Robustness-ACO from here on. The authors present two
robustness functions to evaluate the robustness of a link.
Each node predicts link disconnections by using the GPS [26]
information of its neighbors and redistributes the pheromone
to accelerate alternative path construction. This mechanism
is better adapted to dynamic network change and frequent
link disconnection.
The successful implementations of ACO routing protocol

in MANETs also inspire the application in Vehicle Ad hoc
NETworks (VANETs) which have high speed network nodes
and reasonably predictable mobility patterns. There are
three different types of communications in VANETs: the
Vehicle-to-Vehicle (V2V) communication which is the com-
munication between vehicles; the Vehicle-to-Infrastructure
(V2I) communication which is the communication between
vehicle and devices located in the margins of roads; and the
communication between the roadside devices. The devices
installed in the vehicles are called OBUs (On-Board Units),
and the ones located in the roads are called RSUs (RoadSide
Units). Figure 3 illustrates the three communication types
in VANETs.
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Figure 3: Communication in VANETs.

3.3 MAR-DYMO
S. L. O. B. Correia et.al [5] have likely proposed the first

ant-based algorithm that adapted to Dynamic MANETs
On-demand (DYMO) routing protocol in VANETs. The
idea of this paper is to use vehicles’ information to make
routing decision that applies well in VANETs. As this al-
gorithm is based on an ACO algorithm, it uses speed and
position to update the pheromone. In their mathematical
model, the amount of pheromone to be deposited for every
link is given by the following equation:

Δφij = PR +
tlink
tmax

(6)

In formula 6, Δφij is defined as the amount of pheromone
that is deposited in the link from node i to node j. PR

is the expected probability of successfully receiving a mes-
sage sent over a given distance, such as the probability of
node i receiving a message from j. It is estimated by us-
ing the Nakagami Fading Model [21]. It is a good indicator
for path quality when the destination is within the sender’s
wireless transmission range. tlink is the route lifetime (given
by the Kinetic Graph framework [16]) while the tmax is the
maximum route lifetime. This ratio also shows the link’s
stability. For the pheromone evaporation process, this pa-
per proposes a different evaporation rate for every link by
using the following equation:

ρ = 1−
(
ε

φ

) 1
k

(7)

Let ε be a smallest amount of pheromone and φ is the
pheromone level; the pheromone evaporation rate ρ is asso-
ciated with this link after it suffers the evaporation process
k times.

The authors modify the reactive DYMO protocol by adding
the pheromone level, evaporation rate and the predicted life-
time for each route to the routing table. It also works in the
multi-path model in VANETs, which means there is more
than one route to the same destination with different inter-
mediate nodes. The actual route is chosen based on their
pheromone levels, i.e., routes with higher pheromone level
will have a higher probability of being chosen.

The proposed algorithm is tested using NS2 [18] and Ve-
hicle Network Moment Generator (VNMG) [30]. The per-

formance is compared with AODV [32], DYMO (DYMOUM
[35] implementation) and Ant-DYMO [24] using performance
metrics such as average delivery ratio, average end-to-end
delay and routing overhead. The results show that it per-
forms much better than pure DYMO in the aspect of end-to-
end delay and good enough compared to the hybrid proto-
col Ant-DYMO. Moreover, it guarantees both the link qual-
ity and the link stability in the pheromone deposit process.
However, this mechanism consumes a large amount of band-
width and is not scalable [33].

3.4 MAZACORNET
In [33] H. Rana et al. introduce the first ant based rout-

ing algorithm for VANETs that uses the concept of zones.
It uses ACO to find multiple routes between nodes and to
mitigate link failure. In addition, it subdivides networks
into zones to achieve scalability. To reduce broadcasting
and congestion, they use a proactive approach to find routes
within the zones and a reactive approach between zones. In
MAZACORNET, the location information is provided by
Global Positioning System (GPS) [26] providing the speed
and position of each vehicle. The pheromone deposition and
evaporation models are same with MAR-DYMO [5]. The hy-
brid MAZACORNET algorithm categorizes vehicles as three
different types: interior vehicle (inside the zone), boundary
vehicle (overlapping vehicle within the zone with the hop
distance equal to the radius) and exterior vehicle (outside
the zone). Two routing tables are used: an intra zone rout-
ing table to proactively update the information within the
zone, and an inter zone routing table to reactively track the
information between the zones. They also use five types of
ants: internal forward ants, external forward ants, backward
ants, notification ants and error ants.
For route discovery within the zone, the internal ants pe-

riodically update the vehicle’s information in the intra zone
routing table. When the sender needs to send a message
to the destination, it first checks its intra routing table. If
found, the route discovery process is done. Otherwise, the
sender uses the inter zone routing table to identify the new
route by sending external forward ants to boundary vehi-
cles. If the destination is found, then the backward ant
traverses the network back to the sender based on the in-
herited route. During route maintenance, if a broken link
is detected within the zone, it will be repaired periodically
because of the proactive part of the approach. Otherwise,
the upstream vehicle of the broken link stores the packets
and finds another path. After finding an alternative path,
it sends a notification ant to the sender to update the new
route. If there is no alternative path, an error ant is sent
back to show the route failure.
The simulation is carried out using the NS2 simulator [18]

and the VANETs MobiSim traffic simulation tool [28]. The
result shows that MAZACORNET is more suitable for dense
networks where there are more vehicles within the zone. At
the same time, it generates more congestion due to vehicle
density and proactive ants which keep updating the routing
table frequently. The network achieves better connectivity
because of its multipath properties due to being an ACO
routing protocol. The sizes of the zones are defined by hop
count, which is set to 2, 5 and 10 hops in the simulation ex-
periments. However, this paper does not explain how zones
could be formed in a fast dynamic VANET.



3.5 Cluster-based ACO
Unlike the flat architecture of the zone-based hybrid ACO

routing protocol, S. Balaji et al. [2] introduce a hierarchi-
cal approach which combines a clustering architecture with
ACO routing procedures in VANETs. We abbreviate this
protocol as Cluster-based ACO from here on. In this proto-
col the network is divided into multiple virtual clusters for
efficient management. All nodes that are not in any clus-
ter will default to Orphan Node (ON) state, and broadcast a
Member Packet (MEP) which contains its ID to show its ex-
istence to the neighboring nodes. After receiving the MEP,
each node adds the source node to its neighbor list. A node
becomes a Cluster Head (CH) only if all its neighbors are
in ON state, and this group forms a cluster as a result. For
cluster management, the CH broadcasts MEP periodically
within the cluster. When cluster members receive an MEP,
they send back a Member Acknowledge Packet (MAP) that
contains its information. The CH generates a cluster-based
tree and creates a list of cluster members. If the size of a
cluster is greater than the upper bound U, then the clus-
ter is divided into two clusters. However, if there are fewer
cluster members than the lower bound L, the cluster will
merge. After autonomous clustering, ACO-DYMO routing
procedures are employed in the same way as in MAR-DYMO
[5]. The simulation is carried out using the NS2 [18] and the
Vehicle Network Moment Generator (VNMG) [30]. The pro-
posed algorithm is compared with the AODV [32] protocol.
It shows better results concerning end-to-end delay, delivery
ratio and routing overhead. One notable idea in this proto-
col is that it uses reactive approach instead of using hybrid
approach which is commonly applied in cluster-based net-
works.

3.6 S-AMCQ
M. H. Eiza et al.[11] have proposed a novel Secure Ant

based Multi-Constrained QoS routing algorithm (S-AMCQ)
for VANETs, which considers not only QoS constraints but
also the security issues. S-AMCQ applies ACO algorithm to
calculate the feasible routes which satisfy multiple QoS con-
straints determined by data traffic types in VANETs’ com-
munications and it uses an extended VANET-oriented evolv-
ing graph (VoEG) model for performing plausibility checks
on routing control messages. In this scheme, an authenti-
cation mechanism is used in the route discovery process to
defend against external attackers. In order to protect the
network from internal attackers, eg. compromised vehicles,
S-AMCQ employs plausibility checks. S-AMCQ not only
ensures authentication, integrity and non-repudiation, but
also protects vehicles privacy by using pseudonymous cer-
tificates. However, the simulation results show that the se-
curity overhead, i.e. route discovery delay, slightly affects its
performance. Moreover, S-AMCQ is designed for V2I com-
munications. Therefore, the authentication process applied
in the protocol is centralized and relies on a Certification
Authority(CA) which the local transportation authority or
vehicle manufacturer can act as.

3.7 Summary
In this section, we have reviewed the above protocols de-

signed for MANETs and VANETs. The papers represent
a steady development of location aware ACO routing al-
gorithms that leverage GPS [26]. POSTAN [20] is an early
reactive protocol for MANETs which minimizes message de-

livery delay, while D. Kadono et al.[19] combine robustness-
based path construction with predictions of link disconnec-
tion. The successful implementation in MANETs motivates
many researchers to design new ACO based routing proto-
cols for VANETs. MAR-DYMO [5] is proposed as the first
ACO-based algorithm that adapted to VANETs. It guaran-
tees both link quality and link stability. After the first ACO
based protocol in VANETs, researchers focus on two main
methods for managing the network, namely zone-based and
cluster-based architectures. MAZACORNET [33] is the first
ACO based routing algorithm that subdivides the networks
into zones to achieve scalability. It uses proactive approach
to find routes within the zones and a reactive approach be-
tween zones. It clearly states its communication procedures
while the formation and management of zones are ambigu-
ous. Different from MAZACORNET, S. Balaji et al.[2] in-
troduce a hierarchical cluster-based approach that aims to
reduce the number of routing control packets. However, it
does not explain how message delivery within and between
the clusters after the autonomous clustering works. ACO
based routing protocols in VANETs are still a hot issue in
recent years. They are not only adapted in V2V commu-
nications, but also associated with devices like Road Side
Units (RST). J. Amudhavel et al.[39] have introduced the
idea of using recursive ant colony optimization. They divide
routes into sub-routes, which contain one or more RSUs in
each sub-set. Then it finds the shortest path of each sub-
route by comparing the iteration count of RSUs and finally
merging them. However, this paper does not provide any the
simulation experiments. There also still exist several open
issues, such as the avoidance of local optima for each sub-
route. S-AMCQ[11] addresses multiple issues in the routing
process. It considers both the QoS constraints and the se-
curity issues. Thus it ensures reliable and robust routing in
VANETs. In general, location aware ACO routing protocol
have been well developed and show good prospects in both
MANETs and VANETs.

4. ANALYTICAL COMPARISON
In this section, we summarize and compare the previ-

ously surveyed ACO based routing protocols. We focus on
comparing the design patterns and simulation parameters of
these ACO-based routing protocols.

4.1 Analytical parameters
We have chosen the following seven parameters to com-

pare the different ACO based routing protocols:
Design goals: This parameter explains the aims of the

proposed protocols. The goals usually indicate the cate-
gories which the routing protocol belongs to.
Ant types: In conventional ACO based routing pro-

tocols, there are usually two types of ants: FANTs and
BANTs. However, depending on the design of the proto-
cols, there could be other types of ants in the network. This
parameter lists all types of ants in the protocol.
Pheromone reinforcement factors (Ph. reinforce-

ment): Pheromone is one of the most important parts in
ACO based routing protocols. This parameter specifies what
is considered while reinforcing the pheromone values in the
algorithm.
Pheromone evaporation factors (Ph. evaporation):

In ant colonies pheromone evaporates over time. This allows
ants to forget old paths. This parameter specifies what is



Protocol Routing Approach Tran. Type FANT Ph. Activator

POSANT [20] reactive unicast BANTs
Robustness-ACO [19] hybrid broadcast FANTs,BANTs
MAR-DYMO [5] reactive broadcast RREPs
MAZACORNET [33] hybrid unicast unknown
Cluster-based ACO [2] reactive broadcast RREPs
S-AMCQ [11] reactive unicast or broadcast RQANTs

Table 1: Design parameter overview of location aware ACO routing protocols.

Protocol Design Goals Ant Types Ph. Reinforcement Ph. Evaporation

POSANT [20] Minimize delivery delay FANT,BANT distance,location constant rate
Robustness-
ACO [19]

construct robust paths
Hybrid FANT/

BANT
robustness,cost constant rate

MAR-DYMO [5]
adapt ACO to

dynamic VANETs
Hello message,
RREQ/RREP

reception probability,
lifetime ratio

path lifetime

MAZA-
CORNET [33]

scalability,robust
to link failures

IFANT,EFANT,
BANT,NANT,EANT

same with
MAR-DYMO

same with
MAR-DYMO

Cluster-based
ACO [2]

improve MAC layer
efficiency

Hello message,
RREQ/RREP

same with
MAR-DYMO

same with
MAR-DYMO

S-AMCQ [11]
ensure reliable,
robust routing

RQANT,RPANT
REANT

QoS metrics,
reliability value

individual
variable

Table 2: Pheromone parameter overview of location aware ACO routing protocols.

considered while evaporating the pheromone values in the
algorithm.

Routing approach: This parameter signifies if the rout-
ing protocol is proactive, reactive or hybrid.

Transmission type of FANTs (Tran. Type FANTs):
This parameter explains the type of transmission for FANTs.
The types used in all reviewed protocols in this work are uni-
cast and broadcast.

Pheromone update activators (Ph. Activators):
Pheromone in ACO based routing protocols changes dy-
namically. This parameter explains where the pheromone
is updated in the routing protocol.

4.2 Comparison of design patterns
In this subsection, we divide the parameters mentioned in

section 4.1 into two groups as shown in Table 1 and Table 2:
the common basic design properties and the pheromone re-
lated core design properties. The first group introduces the
basic routing structure, while the other group reflects the
core ACO mechanism within the routing protocol.

Table 1 shows that all the reviewed protocols avoid to ap-
ply the proactive approach, due to the overhead caused by
proactively maintaining of routing tables. As for the trans-
mission type of FANTs, ca. 50% of all approaches broad-
cast FANTs while the remaining protocols except S-AMCQ,
unicast FANTs. S-AMCQ broadcasts the routing control
ants only when there is insufficient information available at
the pheromone table. Generally speaking, broadcasting a
message produces more control messages, because the mes-
sage needs to be transferred to all recipients simultaneously.
On the contrary, using unicast method the message is sent
to exactly one destination device. However, it has a rel-
atively lower probability of finding global optima. In the
pheromone update phase, only in the Robustness-ACO pro-
tocol both FANTs and BANTs can update the pheromone.
Utilizing the location information from Global Position Sys-
tem (GPS) [26] helps ACO based routing protocols adapt

better to MANETs, especially to VANETs. The main goals
of many reviewed protocols in this subsection are to mini-
mize delivery delay and establish robust routes. Various ant
types are used in these approaches. Other than the basic
FANTs and BANTs, there are internal FANTs (IFANTs),
external FANTs (EFANTs), Notification ANTs (NANTs)
and Error ANTs (EANTs) in protocols which are designed
for hierarchical networks, such as MAZACORNET. In some
of the reviewed protocols, RREQs and RREPs are also used
in the route discovery phase. Hop count and the cost of a
route are two main pheromone reinforce factors in MANETs.
In VANETs, however, this can be quite different due to
frequent interruptions of paths. [5],[33],[2] in the VANETs
scope use the probability of reception of a message, the ratio
between the estimated lifetime of a path and the maximum
allowed lifetime of a path, to update the pheromone. The
protocols in MANETs use a constant rate for pheromone
evaporation, while the VANETs protocols use the lifetime
of a path or an individual variable value [11] to reduce the
pheromone values.

4.3 Comparison of implementation metrics
Table 3 shows the representative performance metrics of

the surveyed protocols. As can be seen in table 3, all of
the surveyed protocols have implemented their ideas and
evaluated their performance, ca. 67% are implemented in
common simulators, such as NS2 [18] and OMNet++ [38].
The rest protocols are implemented in self-developed simu-
lators. All of the studied protocols in the table have com-
pared their performance to that of other standard routing
protocols for MANETs. AODV [32] is one of the most pop-
ular protocols chosen for comparison. In order to evaluate
the performance, researchers mainly focus on the Data De-
livery Ratio (DDR), the end to end delay and the routing
overhead. 83% of the studied protocols have shown results
for all of these three metrics. Moreover, nearly 67% of the
protocols in the table have also considered other special per-



Protocol Compare with Simulator DDR Delay Overhead Special

POSANT [20]
AntNet, GPSR,
AntHocNet[6]

own simulator [20] YES YES YES NO

Robustness-
ACO [19]

AntHocNet, LAR own simulator [19] YES YES YES YES

MAR-
DYMO [5]

AODV,DYMO,
Ant-DYMO

NS2,
VNMG [30]

YES YES YES NO

MAZA-
CORNET [33]

AODV,AMODV,
GPSR

NS2,
VanetMobiSim [28]

YES YES YES YES

Cluster-based
ACO [2]

AODV NS2,VNMG YES YES YES YES

S-AMCQ [11] IAQR [22],AMCQ [11] OMNet++ YES YES NO YES

Table 3: Simulation parameter overview of ACO based routing protocols.

formance metrics.
The comparison results shown in 4.2 and 4.3 show that

significant efforts have been made to address the require-
ments of efficient and effective routing protocols for MANETs.
However, most of the reviewed approaches have not been
evaluated with large networks. Although all the surveyed
protocols have shown good performance in small networks,
the scalability of the proposed protocols has not been demon-
strated. Moreover, security issues are not considered in the
most of them and all the proposed protocols in VANETs lack
completely the practical testing via real-time traffic models.

4.4 Discussion
Since 2007 location aware ACO routing protocols have at-

tracted more and more researchers. Designing routing proto-
cols which satisfy only the basic requirements of MANETs’
communications was no longer the focus of this research
area. During the last ten years, location information aware
vehicle routing are becoming hot topics, due to the increas-
ing ubiquity of GPS [26]. Location information aware rout-
ing protocols have been widely used, especially in VANETs.
From the reviewed ACO based routing protocols in VANETs,
we have recognized that most of the protocols are designed
for V2V networks. As the V2I communication networks de-
velop progressively, we assume that in the future new pro-
tocols will be proposed in this area. Moreover, since most of
the reviewed protocols do not consider any security issues,
we infer that designing security and location aware ACO
routing protocols in MANETs, would be an interesting fu-
ture research direction. S-AMCQ [11] is an good example.
Considering multiple issues, such as QoS, security, energy,
etc., in the design of a routing protocol can make the pro-
tocol more suitable for real world applications. Therefore,
we infer that designing ACO routing protocols based on
the multiple existing issues in MANETs and especially in
VANETs, would be an interesting future research direction.

5. CONCLUSIONS
Routing in MANETs is a challenging problem, due to

the self-organizing properties of these networks. ACO algo-
rithms provide a promising approach for the design of coop-
erative routing protocols with favorable properties. In this
work, we have studied various location aware ACO routing
protocols in MANETs which have been proposed from 2007
up to now. We have briefly reviewed each selected proto-
col and also presented a detailed comparative analysis in
terms of protocol design and simulation related parameters.

Besides our reviews and comparison tables, we have also
discussed the open issues of the surveyed protocols. Ad-
ditionally, based on our observations we have pointed out
promising future directions of research in ACO based rout-
ing protocols. The main goal of this work is to give a general
overview of the existing location aware ACO based routing
protocols for MANETs and we hope this work can encourage
protocol designers to take into account the various protocol
properties studied so far when designing new ACO based
routing protocols.
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